
Multinomial Logit Bandit with Low Switching Cost

Appendix
A. Proof of the regret upper bound in Theorem 2
In this section we complete the proof of Theorem 2 for completeness. The proof is almost identical to that in (Agrawal et al.,
2017) except for the handling of the deferred UCB value updates.

The following lemma proves that v̂i is indeed an upper confidence bound of true parameter vi with high probability, and
converges to the true value with decent rate.

Lemma 15 (Lemma 4.1 of (Agrawal et al., 2017)). For any ` = 1, 2, 3, . . . , in Algorithm 2, at Line 7 immediately after the
`-th epoch, the following two statements hold,

1. With probability at least 1� 6

N` , ni
Ti

+

q

48(ni/Ti) ln(
p
N`+1)

Ti
+

48 ln(

p
N`+1)

Ti
� vi for any i 2 [N],

2. With probability at least 1� 7

N` , for any i 2 [N],

ni

Ti
+

s

48(ni/Ti) ln(
p
N`+ 1)

Ti
+

48 ln(

p
N`+ 1)

Ti
� vi 

s

144vi ln(
p
N`+ 1)

Ti
+

144 ln(

p
N`+ 1)

Ti
.

By the update rule, Lemma 16 can be extended to {v̂i} as follows.

Lemma 16. For any ` = 1, 2, 3, · · · , the following two statements hold at the end of the `-th iteration of the outer for-loop
of Algorithm 2.

1. With probability at least 1� 6

N` , v̂i � vi for any i 2 [N],

2. With probability at least 1� 7

N` , for any i 2 [N],

v̂i � vi .

s

vi log(
p
N`+ 1)

Ti
+

log(

p
N`+ 1)

Ti
.

Proof. For any epoch `, let T 0
i and v̂0i be the value of Ti and v̂i at the last update. Then we have, v̂i = v̂0i and T 0

i  2Ti.
Inherited from Lemma 15, we have v̂i = v̂0i � vi. And

v̂i � vi = v̂0i � vi .
s

vi log(
p
N`+ 1)

T 0
i

+

log(

p
N`+ 1)

T 0
i

.

s

vi log(
p
N`+ 1)

Ti
+

log(

p
N`+ 1)

Ti
.

Once we establish Lemma 16, the proof of the regret upper bound in Theorem 2 is identical to that in (Agrawal et al., 2017).
We include the proof here for completeness.

The next lemma shows that the expect regret for one epoch is bounded by the summation of estimation errors in the
assortment.

Lemma 17 (Lemma A.4 of (Agrawal et al., 2017)). For any epoch `, if ri 2 [0, 1] and 0  vi  v̂i hold for every i 2 [N]

at the beginning of the `-th iteration of the outer for-loop in Algorithm 2, we have that

1 +

X

i2S`

vi

!

(R(S`, ˆv)�R(S`,v)) 
X

i2S`

(v̂i � vi).

As a corollary, we have the following lemma, which is an analog to Lemma 4.3 of (Agrawal et al., 2017).

Multinomial Logit Bandit with Low Switching Cost

Lemma 18. Given that ri 2 [0, 1] for every i 2 [N], for any epoch ` = 1, 2, 3, . . . , with probability at least 13

` we have that

1 +

X

i2S`

vi

!

(R(S`, ˆv)�R(S`,v)) .

s

vi log(
p
N`+ 1)

Ti
+

log(

p
N`+ 1)

Ti
.

Proof. Combine Lemma 16 and Lemma 17.

We will also use the following lemma which is proved in (Agrawal et al., 2017).
Lemma 19 (Lemma A.3 of (Agrawal et al., 2017)). If vi  v̂i holds for every i 2 [N], then we have that R(S?, ˆv) �
R(S?,v).

Now we complete the proof of Theorem 2.

Proof of the regret upper bound in Theorem 2. Let E(`) be the length of epoch `. That is, the number of time steps taken in
epoch `. Note that E(`) is a geometric random variable with mean (1 +

P

i2S`
vi). As a result,

E[RegT] = E

"

L
X

`=1

E(`)
(R(S?,v)�R(S`,v))

#

 E

"

L
X

`=1

E(`)

✓

R(S?, ˆv)�R(S`,v) +
6

`

◆

#

 E

"

L
X

`=1

E(`)

✓

R(S`, ˆv)�R(S`,v) +
6

`

◆

#

= E

"

L
X

`=1

1 +

X

i2S`

vi

!

✓

R(S?, ˆv)�R(S`, ˆv) +
6

`

◆

#

,

where the first inequality is due to Lemma 19 and Lemma 16. Let �R(`) def
=

�

1 +

P

i2S`
vi
�

(R(S?, ˆv)�R(S`, ˆv) + 6/`)

for shorthand. We use T (`)
i to denote the value of variable Ti at the beginning of epoch `. By Lemma 18, we have

E[�R(`)
] . 1

`

1 +

X

i2S`

vi

!

+ E

2

4

X

i2S`

0

@

v

u

u

t

vi log(
p
NT + 1)

T (`)
i

+

log(

p
NT + 1)

T (`)
i

1

A

3

5 .

As a consequence,

E[RegT] .
L
X

`=1

0

@

1

`

1 +

X

i2S`

vi

!

+ E

2

4

X

i2S`

0

@

v

u

u

t

vi log(
p
NT + 1)

T (`)
i

+

log(

p
NT + 1)

T (`)
i

1

A

3

5

1

A

. N log T +

L
X

`=1

E

2

4

X

i2S`

0

@

v

u

u

t

vi log(
p
NT + 1)

T (`)
i

+

log(

p
NT + 1)

T (`)
i

1

A

3

5

. N log T + E

2

4N log

2

(

p
NT + 1) +

X

i2[N]

q

viT
(L)

i log(

p
NT + 1)

3

5

. N log

2

(

p
NT + 1) +

X

i2[N]

q

E[viT (L)

i] log(

p
NT + 1). (11)

Note that E[E`] = 1 +

P

i2S`
vi. We have

X

i2[N]

viT
(L)

i =

L
X

`=1

X

i2S`

vi 
L
X

`=1

E[E`]  T.

Multinomial Logit Bandit with Low Switching Cost

As a result, by Jensen’s inequality we get that

(11) . N log

2

(

p
NT + 1) +

q

NT log(

p
NT + 1),

which concludes the proof.

B. Ommitted proofs for the FH-DUCB algorithm in Section 3
B.1. Proof of Lemma 5

By Lemma 15, we have that Pr[¬E(1)

i,⌧i
]  13

NT 2

. Via a union bound, we have that

Pr[¬E(1)

] 
X

i,⌧i

Pr[¬E(1)

i,⌧i
]  13

T
.

Next we introduce the following concentration inequality for geometric random variables.

Lemma 20 (Theorem 1 and Proposition 1 of (Jin et al., 2019)). For any m i.i.d. geometric random variables x
1

, . . . , xm

with parameter p, i.e., Pr[xi = k] = p(1� p)k, we have

Pr

"

m
X

i=1

xi <
m(1� p)

2p

#

 exp

✓

�m · 1� p

8

◆

.

Note that ni,⌧i is the sum of |T (i, ⌧i)| independent geometric random variables with parameter p =

1

1+vi
(by Observation 1).

Substituting vi � 1

2

q

1

NT and m = |T (i, ⌧i)| � T
4Nvi

, we have (1�p)
2p =

vi
2

and

Pr



ni,⌧i <
1

2

vi · |T (i, ⌧i)|
�

 exp

✓

�|T (i, ⌧i)| · 1� p

8

◆

 exp

� T

4Nvi
· 1�

1

1+vi

8

!

 exp

✓

� T

64N

◆

 1

NT 2

,

where the last inequality holds for T such that T � N4 and T greater than a sufficiently large universal constant. By a union
bound, we have that

Pr[¬E(2)

]  1

T
.

Therefore, we have that

Pr[E] � 1� Pr[¬E(1)

] + Pr[¬E(2)

] � 1� 14

T
,

proving the lemma.

B.2. Proof of Lemma 6

We first state the following lemma, showing that for any item and before stage ⌧
0

, the stage lengths quickly grows to T/N .

Lemma 21. For each i 2 [N] and ⌧  ⌧
0

, if ⌧ is not the last stage for i, it holds that |T (i, ⌧)| � (T/N)

1�2

�⌧+1

.

Lemma 21 can be proved by combining the condition P(i, ⌧) for ⌧ < ⌧
0

and ⌧ = ⌧
0

(also noting that v̂i,⌧  1 for all ⌧) and
the following fact (whose proof is via straightforward induction and omitted).

Fact 22. For M � 0 and a sequence a
0

, a
1

, a
2

, . . . such that ai � 1+

p

Mai�1

for all i � 1, we have that a⌧ �M1�2

�⌧+1

for all ⌧ � 1.

Multinomial Logit Bandit with Low Switching Cost

Now we are ready to prove Lemma 6.

Proof of Lemma 6. We have that |T (i, ⌧
0

)| � T
2N because of Lemma 21. We now prove that vi � 1

2

q

1

NT . This is because,

suppose the contrary, for T such that T � N4 and greater than a sufficiently large universal constant, conditioned on E(1),
we have that

v̂i,⌧
0

 vi +

v

u

u

t

144 ln(

p
NT 2

+ 1)

T (⌧
0

)

i /vi
+

144 ln(

p
NT 2

+ 1)

T (⌧
0

)

i

 1

2

p
NT

+O
⇣

s

ln(

p
NT 2

+ 1)

p

T 3/N
+

ln(

p
NT 2

+ 1)

T

⌘

,

which is at most 1/
p
NT , contradicting to the condition P(i, ⌧

0

) and that ⌧
0

is not the last stage.

Moreover, for T such that T � N4 and greater than a sufficiently large universal constant, when ⌧ > ⌧
0

, using T (⌧)
i �

|T (i, ⌧
0

)| � T
2N , we have that

v̂i,⌧  vi +

v

u

u

t

144vi ln(
p
NT 2

+ 1)

T (⌧)
i

+

144 ln(

p
NT 2

+ 1)

T (⌧)
i

 2vi.

By the condition P(i, ⌧), when ⌧ > ⌧
0

and ⌧ is not the last stage, we have that

|T (i, ⌧i)| � 1 +

s

T · T (⌧i)
i

N · v̂i,⌧i
� 1 +

s

T · |T (i, ⌧i � 1)|
2N · vi .

Applying Fact 22, we prove the desired inequality of this lemma.

B.3. Proof of Lemma 7

Proof of Lemma 7. For the first stage, i.e., ⌧ = 1, since the number of epochs in this stage is at most
p

T/N , we have that
P

`2T (i,1)(v̂i,1 � vi) 
p

T/N for any item i. From now on, we only prove the lemma for ⌧ 2 [2, ⌧i(L)].

If ⌧ 2 [2, ⌧
0

], we have that |T (i, ⌧)| 
q

T ·T (⌧)

i
N + 1. By E(1), we upper bound

P

`2T (i,⌧)(v̂i,⌧ � vi) by the order of
s

T · T (⌧)
i

N
·

v

u

u

t

vi ln(
p
NT 2

+ 1)

T (⌧)
i

+

ln(

p
NT 2

+ 1)

T (⌧)
i

!

.
q

T ln(

p
NT 2

+ 1)/N,

where the inequality holds due to that vi  1 and T (⌧)
i �pT/N for any ⌧ 2 [2, ⌧

0

] (by Lemma 21).

When ⌧ > ⌧
0

, we prove the lemma by considering the following two cases. The first case is that v̂i,⌧
0

 1/
p
NT . In this

case, we have that
P

`2T (i,⌧)(v̂i,⌧ � vi)  T · v̂i,⌧ 
p

T/N.

In the second case where v̂i,⌧
0

> 1/
p
NT , by Lemma 6 it holds that vi � 1/(2

p
NT). By E(1), we have v̂i,⌧ � vi.

Therefore, v̂i,⌧ � 1/(2
p
NT). Also note that T (⌧)

i � |T (i, ⌧
0

)| � T
2N by Lemma 21, and |T (i, ⌧)|  1 +

r

T ·T (⌧)

i
N ·v̂i,⌧ .

Altogether, we have that
P

`2T (i,⌧)(v̂i,⌧ � vi) is upper bounded by a universal constant times

s

T · T (⌧)
i

N · v̂i,⌧ ·
0

@

v

u

u

t

vi ln(
p
NT 2

+ 1)

T (⌧)
i

+

ln(

p
NT 2

+ 1)

T (⌧)
i

1

A .

s

T ln(

p
NT 2

+ 1)

N
+

p
T ln(

p
NT 2

+ 1)

q

NT (⌧)
i v̂i,⌧

,

which is O(

q

T ln(

p
NT 2

+ 1)/N) for T � N4.

Multinomial Logit Bandit with Low Switching Cost

C. Bounding the number of item switches for Algorithm 2
Since an assortment switch may incur at most 2K item switches, Theorem 2 trivially implies that Algorithm 2 (AT-DUCB)
incurs at most O(KN log T) item switches, which is upper bounded by O(N2

log T) since K = O(N). In the following
theorem, we prove an improved upper bound on item switches for Algorithm 2.

Theorem 23. For any input instance with N items, before any time T , the number of item switches of Algorithm 2
(AT-DUCB) satisfies that (item)

T . N1.5
log T .

The proof of Theorem 23 includes a novel analysis with the careful application of the Cauchy-Schwartz inequality, which
will be presented immediately after this paragraph. However, we would like to first add a few remarks on the optimality of
the presented analysis. Indeed, we do not know whether the upper bound proved in Theorem 23 can be improved, and leave
the possibility of further improvement as an open question. Our preliminary research suggests that the number of the item
switches of Algorithm 2 is closely related to the maximal number of planar K-sets (i.e., the number of subsets P 0 ✓ P
where P is a given set of N points in a 2-dimensional plane, P 0

= P \H for a half-space H). Very roughly, this relation
is suggested by Lemma 24, where the optimal assortment argmaxS✓[N],|S|K R(S,v) can be viewed as a planar K-set
whether each item correspond to a 2-dimensional point (�vi, viri) and the half plane H = {(x, y) : y � r? · x + b} for
some parameter b. The continuous change of the the estimated optimal revenue r? during the UCB algorithm may produce
many half planes, and lead to the item change in the K-sets (assortments). Upper bounding the number of the K-sets would
result in an upper bound for the number of the item switches. To our best knowledge, the best known upper bound for the
number of planar K-sets is O(NK1/3

) (Dey, 1998), and the best known lower bound is Ne⌦(

p
logK) (Tóth, 2001). For

future work, it is very interesting to study whether these upper and lower bounds imply the bounds on the number of item
switches of our Algorithm 2.

Now we dive into the proof of Theorem 23.

We first analyze the optimization process of argmaxS✓[N],|S|K R(S,v) for any preference vector v. Define F (v)
def
=

maxS✓[N],|S|K R(S,v). The following lemma characterizes the optimal assortment S given the preference vector v.
Similar statements can also be found in, e.g., Section 2.1 of (Rusmevichientong et al., 2010).

Lemma 24. For any preference value vector v � 0, let r? = F (v). Define gi = vi(ri � r?). Let � be the minimal
permutation of [N] such that g�i � g�j for all 1  i < j  N. (In other words, � is the sorted index according to value g,
with a deterministic tie-breaking rule). Then the optimal assortment S is given by S = {�i : 1  i  K, g�i > 0}.

Proof. Let S?
= argmaxS✓[N],|S|K R(S,v). Then we have

P

i2S? rivi
1 +

P

i2S? vi
= r?,

which implies that
X

i2S?

vi(ri � r?) =
X

i2S?

gi = r?. (12)

Now we prove that S?
= argmaxS✓[N],|S|K

�

P

i2S gi
�

. Suppose otherwise that there exists S0 ✓ [N] with |S0|  K
such that

P

i2S0 gi >
P

i2S? gi = r?. It follows that
P

i2S0 vi(ri � r?) > r?. Therefore,

R(S0,v) =

P

i2S0 viri
1 +

P

i2S0 vi
> r?,

which contradicts to the definition of S?.

Now, note that � is a permutation of [N] such that g�i is non-increasing according to i. We have that
argmaxS✓[N],|S|K

�

P

i2S gi
�

= {�i : 1  i  K, g�i > 0}, which finishes the proof.

The next lemma shows that F (v) is monotonically decreasing in v.

Lemma 25. Consider two vectors v and ˆv. If v̂i � vi � 0 for all i 2 [N], we have F (

ˆv) � F (v).

Multinomial Logit Bandit with Low Switching Cost

Proof. Let S?
= argmaxS✓[N],|S|K R(S,v) and r? = R(S?,v). Then we have

P

i2S? vi(ri � r?) = r?. According to
Lemma 24, ri� r? > 0 for all i 2 S?. Combining with the assumption that v̂i � vi, 8i 2 [N], we get

P

i2S? v̂i(ri� r?) �
P

i2S? vi(ri � r?) = r?. As a result,

R(S?, v̂) =

P

i2S? rivi
1 +

P

i2S? vi
� r?.

Therefore, F (

ˆv) = maxS✓[N],|S|K R(S, ˆv) � R(S?, ˆv) � r? = F (v).

Let m be the total number of times that Line 8 of Algorithm 2 is executed, and let ⌧ (1) < ⌧ (2) < ⌧ (3) < · · · < ⌧ (m) be
the time steps that Line 8 of Algorithm 2 is executed. In other words, only in the time steps in {⌧ (p)}mp=0

, the UCB value
vector ˆv is updated (where for convenience, we set ⌧ (0) = 0). Let ˆv(p) be the UCB value after the update at time ⌧ (p),

and for convenience we let ˆv(0)

= (1, 1, · · · , 1). Define r(p) = F (

ˆv(p)
). Let ⇢(p)i be the rank of item i according to value

g(p)i
def
= v̂(p)i (ri � r(p)) with the tie-breaking rule defined in Lemma 24. We then have the following lemma.

Lemma 26. Let �(p)i,j
def
= I[⇢(p)i > ⇢(p)j]. For any two items i, j 2 [N], the number of times that the relative order of i, j

changes is bounded by c log T for some universal constant c. That is,

m�1

X

p=0

I
h

�(p)i,j 6= �(p+1)

i,j

i

. log T.

As a corollary, we have that
X

i,j2[N]

m�1

X

p=0

I
h

�(p)i,j 6= �(p+1)

i,j

i

. N2

log T.

Proof. Let D(p)
i be the event that Line 8 is executed in Algorithm 2 for item i at time ⌧ (p). In the following we prove that

m�1

X

p=0

I
h

�(p)i,j 6= �(p+1)

i,j

i

 2

m�1

X

p=0

D(p)
i + 2

m�1

X

p=0

D(p)
j .

For a fixed pair of items i, j, let {p̄q}Qq=1

be the time steps that D(p̄q)

i or D(p̄q)

j occur. We only need to prove that

p̄q+1

�1

X

p=p̄q

I
h

�(p)i,j 6= �(p+1)

i,j

i

 1

for all q 2 [Q].

Note that at time interval [p̄q, p̄q+1

� 1], v̄i and v̄j does not change. Therefore, �(p)i,j = I[v̄i(ri � r(p)) < v̄j(rj � r(p))]. It is

implied by Lemma 25 that r(p) is monotonically decreasing. As a result,
Pp̄q+1

�1

p=p̄q
I
h

�(p)i,j 6= �(p+1)

i,j

i

 1.

Now we are ready to prove Theorem 23.

Proof of Theorem 23. Let K(p)
= min

n

K,
�

�

�

{i : g(p)i > 0}
�

�

�

o

. Note that since r(p) is non-increasing, K(p) is non-

decreasing. Then we have, S(⌧p)
= {i : ⇢(p)i  K(p)}. Let ¯S(⌧p+1

)

= {i : ⇢(p+1)

i  K(p)}. Then we have,
¯S(⌧p+1

) ✓ S(⌧p+1

) and
�

�S(⌧p+1

) \ ¯S(⌧p+1

)

�

�

= K(p+1) �K(p). It follows that

|S⌧p � S⌧p+1 |  ��S⌧p � ¯S⌧p+1

�

�

+K(p+1) �K(p). (13)

Let x(p)
=

�

�S⌧p � ¯S⌧p+1

�

� . In the following we prove that

(x(p)/2)2 
X

i,j2[N]

I[�(p)i,j 6= �(p+1)

i,j]. (14)

Multinomial Logit Bandit with Low Switching Cost

Note that |S(⌧p)| = | ¯S(⌧p+1

)| = K(p). Define Z = S(⌧p) \ ¯S(⌧p+1

) and Z 0
=

¯S(⌧p+1

) \ S(⌧p). Then we have that
x(p)

= 2|Z| = 2|Z 0|. Note that for all i 2 Z, we have that ⇢(p)i  K(p) and ⇢(p+1)

i > K(p). And for all j 2 Z 0, we have
that ⇢(p)i > K(p) and ⇢(p+1)

i  K(p). It follows that �(p)i,j = 0, �(p+1)

i,j = 1 for all i 2 Z, j 2 Z 0. Hence, we have that
X

i,j2[N]

I[�(p)i,j 6= �(p+1)

i,j] � |Z|⇥ |Z 0| = (x(p)/2)2,

which establishes (14).

Combining (14) and Lemma 26, we have that
Pm�1

p=1

(x(p)/2)2  N2

log T. By the deferred update rule in Algorithm 2, we
have that m  N(1 + log T). Applying Cauchy-Schwarz inequality, we get that

m�1

X

p=1

x(p) . N1.5
log T.

Therefore, by (13) we have that

m�1

X

p=1

|S(⌧p) � S(⌧p+1

)| 
m�1

X

p=1

(x(p)
+K(p+1) �K(p)

) . N1.5
log T. (15)

Note that there is no assortment switch at time steps where ˆv is not updated. Therefore (15) directly leads to Theorem 23.

D. Omitted proofs for the ESUCB algorithm in Section 4
D.1. Proof of Lemma 9

Proof of Lemma 9. We first prove the existence of ✓?. Note that the uniqueness follows directly from statements 1) and 2)
in the lemma statement.

Proof of the existence of ✓?. Let S?
= argmaxS✓[N]:|S|K R(S,v) and ✓? = R(S?,v). We only need to prove that

G(✓?) = ✓?.

On the one hand, since G(✓) = R(S✓,v), we have G(✓?)  ✓? be the optimality of S?. On the other hand, we will prove
that G(✓?) � ✓?. For the sake of contradiction, suppose G(✓?) < ✓?. Then we have,

P

i2S✓?
viri

1 +

P

i2S✓?
vi

= G(✓?) < ✓?.

By algebraic manipulation we get
P

i2S✓?
vi(ri � ✓?) < ✓?. By the optimality of S✓? we have

X

i2S?

vi(ri � ✓?) 
X

i2S✓?

vi(ri � ✓?) < ✓?.

As a result, we have R(S?,v) =
P

i2S? viri
1+

P
i2S? vi

< ✓?, which leads to contradiction.

Proof of statement 1). For the sake of contradiction, suppose G(✓)  ✓. Then we have
P

i2S✓
rivi

1 +

P

i2S✓
vi
 ✓,

which means that
P

i2S✓
vi(ri � ✓)  ✓. Note that vi � 0 for all i 2 [N]. By the optimality of S✓, we get
X

i2S✓?

vi(ri � ✓?) 
X

i2S✓?

vi(ri � ✓) 
X

i2S✓

vi(ri � ✓)  ✓ < ✓?.

By algebraic manipulation, we get R(S✓? ,v) < ✓?, which leads to contradiction.

Multinomial Logit Bandit with Low Switching Cost

Proof of statement 2). By the optimality of S?, we have G(✓)  G(✓?) = ✓? < ✓.

D.2. Proof of Lemma 11

Proof of Lemma 11. Observe that in the CHECK procedure, when b equals false, S` is evaluated by Line 9 and with respect
to ✓r. When b is set to true, S` will always be evaluated by Line 6 with respect to ✓l. This switch happens for at most
once. Therefore, we only need to show that for fixed any ✓ 2 {✓l, ✓r}, and S0

` = argmaxS✓[N],|S|K

�

P

i2S v̂i(ri � ✓)
�

,
it holds that (assuming that there are L epochs)

L�1

X

`=1

|S0
` � S0

`+1

| . N log T. (16)

Suppose that there are n` items whose UCB values are updated after the `-th epoch. We claim that |S` � S`+1

|  n`. This
is simply because S` corresponds to the items i 2 [N] such that ˆvi(ri � ✓) is positive and among the K largest ones (and
thanks to the tie breaking rule). Therefore, any update to a single ˆvi will incur at most one item switch to S`, and n` updates
will incur at most n` item switches. Now, (16) is established because

PL�1

`=1

|S0
` � S0

`+1

| PL�1

`=1

n` . N log T , where
the second inequality is due to the deferred update rule for the UCB values.

D.3. Proof of Lemma 12

We now prove Lemma 12. For preparation, we first show that the UCB value v̂i is valid throughout the execution of
Algorithm 6.

Lemma 27. For any invocation of CHECK(✓l, ✓r, tmax

), and for any epoch ` = 1, 2, 3, . . . , during the algorithm, the
following two statements hold throughout the execution,

1. With probability at least 1� �
4NT 2

, v̂(`)i � vi for any i 2 [N],

2. With probability at least 1� �
4NT 2

, for any i 2 [N],

v̂(`)i � vi 
s

196vi log(NT/�)

T (`)
i

+

292 log(NT/�)

T (`)
i

.

Proof. The proof is essentially the same as Lemma 16.

Let H be the event that the events described by Lemma 27 holds throughout the execution of Algorithm 6 for any ` and
i 2 [N]. We have that Pr[H] � 1� �

4T .

Now we prove the following lemma.

Lemma 28. For any fixed ✓ where G(✓) � ✓, define ˆS✓ = argmaxS:S✓[N],|S|K

�

P

i2S v̂i(ri � ✓)
�

. Suppose v̂i � vi for
all i 2 [N]. We have that

0

@

1 +

X

i2 ˆS✓

vi

1

A

⇣

✓ �R(

ˆS✓,v)
⌘


X

i2 ˆS✓

(v̂i � vi).

Proof. Recall that S✓ = argmaxS:S✓[N],|S|K

�

P

i2S vi(ri � ✓)
�

. We then have that

0

@

1 +

X

i2 ˆS✓

vi

1

A

⇣

✓ �R(

ˆS✓,v)
⌘

=

0

@

1 +

X

i2 ˆS✓

vi

1

A

✓ �
P

i2 ˆS✓
riv̂i

1 +

P

i2 ˆS✓
v̂i

+

P

i2 ˆS✓
riv̂i

1 +

P

i2 ˆS✓
v̂i
�R(

ˆS✓,v)

!

Multinomial Logit Bandit with Low Switching Cost

=

0

@

1 +

X

i2 ˆS✓

vi

1

A

✓ �
P

i2 ˆS✓
riv̂i

1 +

P

i2 ˆS✓
v̂i

!

+

X

i2 ˆS✓

ri

0

@

0

@

1 +

X

i2 ˆS✓

vi

1

A

v̂i
1 +

P

i2 ˆS✓
v̂i
� vi

1

A . (17)

Note that by assumption we have v̂i � vi for all i 2 [N]. Therefore it holds that 1 +
P

i2 ˆS✓
v̂i � 1 +

P

i2 ˆS✓
vi. As a result,

X

i2 ˆS✓

ri

0

@

0

@

1 +

X

i2 ˆS✓

vi

1

A

v̂i
1 +

P

i2 ˆS✓
v̂i
� vi

1

A 
X

i2 ˆS✓

ri (v̂i � vi) 
X

i2 ˆS✓

(v̂i � vi) . (18)

On the other hand,
0

@

1 +

X

i2 ˆS✓

vi

1

A

✓ �
P

i2 ˆS✓
riv̂i

1 +

P

i2 ˆS✓
v̂i

!

=

1 +

P

i2 ˆS✓
vi

1 +

P

i2 ˆS✓
v̂i

0

@✓ �
X

i2 ˆS✓

v̂i(ri � ✓)

1

A . (19)

Note that by monotonicity (see Lemma 25) and our assumption (namely, G(✓) > ✓),
P

i2 ˆS✓
riv̂i

1 +

P

i2 ˆS✓
v̂i

= R(

ˆS✓, ˆv) � R(S✓,v) = G(✓) � ✓.

By algebraic manipulation, we get that
X

i2 ˆS✓

v̂i(ri � ✓) � ✓. (20)

Combining (19) and (20), we get that
0

@

1 +

X

i2 ˆS✓

vi

1

A

✓ �
P

i2 ˆS✓
riv̂i

1 +

P

i2 ˆS✓
v̂i

!

 0. (21)

Plug in (18) and (21) into (17), we have that
0

@

1 +

X

i2 ˆS✓

vi

1

A

⇣

✓ �R(

ˆS✓,v)
⌘


X

i2 ˆS✓

(v̂i � vi).

We will also need the following Azuma-Hoeffding inequality for martingales.
Theorem 29. Suppose {Xk : k = 0, 1, 2, 3, . . . , } is a martingale and |Xk �Xk�1

| M almost surely for all k. Then for
all positive integers n and all positive reals ✏, it holds that

Pr[Xn �X
0

� ✏]  exp

✓

� ✏2

2nM2

◆

.

Now we are ready to prove Lemma 12.

Proof of Lemma 12. We prove that each of the statements (a)–(c) holds with probability at least 1� �/(4T), given that the
UCB estimation of value v is valid (i.e., event H). Then Lemma 12 holds by a union bound.

Proof of statement (a). Note that we only need to prove that if G(✓r) � ✓r, then with probability at least 1� �/(4T),
CHECK(✓l, ✓r, tmax

) returns false.

For simplicity, we use the superscript (`) to denote the value of a variable in Algorithm 6 at the beginning of epoch `. For
example, t(`) denotes the time steps taken at the beginning of epoch `. Now we prove that for large enough constants c

2

and
c
3

, and any fixed L it holds that

Pr

h

t(L)

X

⌧=1

⇣

R(S(⌧)
✓r

,v)� ✓r
⌘

+(c
2

� 8)

q

Nt(L)

log

3

(NT/�)

Multinomial Logit Bandit with Low Switching Cost

+ c
3

N log

3

(NT/�) � 0 ^ t(L)  t
max

i

 1� �/(8T). (22)

Let J` be the filtration of random variables upto epoch `. Let S(`)
✓ = argmaxS:S✓[N],|S|K

⇣

P

i2S ri(v̂
(`)
i � ✓)

⌘

. Then

S(`)
✓r

is J`�1

measurable. For simplicity we define S` = S(`)
✓r

. As a result,

t(L)

X

⌧=1

⇣

✓(`)r �R(S`,v)
⌘

=

L
X

`=1

⇣

t(`+1) � t(`)
⌘⇣

✓(`)r �R(S`,v)
⌘

.

Note that
�

t(`+1) � t(`)
�

follows geometric distribution given J`�1

with mean
�

1 +

P

i2S`
vi
�

. Therefore with probability
at least 1 � �/(16T 3

) we have t(`+1) � t(`)  24 log(T/�)
�

1 +

P

i2S`
vi
�

. Consequently, with probability at least
1� �/(16T 2

),

L
X

`=1

⇣

t(`+1) � t(`)
⌘⇣

✓(`)r �R(S`,v)
⌘


L
X

`=1

24 log(T/�)

1 +

X

i2S`

vi

!

⇣

✓(`)r �R(S`,v)
⌘

+

,

where the (x)
+

notation denotes max {x, 0} . Under event H, it follows from Lemma 28 that

L
X

`=1

24 log(T/�)

1 +

X

i2S`

vi

!

⇣

✓(`)r �R(S`,v)
⌘

+

 24 log(T/�)
L
X

`=1

X

i2S`

(v̂(`)i � vi)

 24 log(T/�)
L
X

`=1

X

i2S`

s

196vi log(NT/�)

T (`)
i

+

292 log(NT/�)

T (`)
i

!

 24 log(T/�)

0

@

X

i2[N]

q

392T (L)

i vi log(NT/�) + 876N log

2

(NT/�)

1

A .

Recall that in Algorithm 6 we define

v̄(L)

i =

L
X

`=1

�

(`)
i /T (L)

i .

Since �(`)
i follows geometric distribution, by concentration inequality (namely, Theorem 5 of (Agrawal et al., 2017))

Pr



v̄(L)

i <
1

2

vi

�

 exp

⇣

�T (L)

i vi/48
⌘

.

Therefore we get with probability at least 1� �/(16T 2

), for any i 2 [N],

T (L)

i vi  max

n

2n̄(L)

i , 144 log(NT/�)
o

.

Since every time step at most one item can be chosen, we get
P

i2[N]

n̄(L)

i  t(L). Consequently,

X

i2[N]

q

T (L)

i vi log(NT/�)


X

i2[N]

q

2n̄(L)

i log(NT/�) +
p
144N log(NT/�)


q

2Nt(L)

log(NT/�) +
p
144N log(NT/�).

Multinomial Logit Bandit with Low Switching Cost

Putting everything together, we prove Eq. (22) with c
2

= 688 and c
3

= 21036. Note that

r(⌧)CHECK �R(S(⌧)
✓r

,v)

is a martingale sequence for ⌧ = 0, 1, 2, 3, By Theorem 29 (using M = 2), with probability 1� �/(8T 2

), we have that

t(L)

X

⌧=1

⇣

r(⌧)CHECK � ✓r
⌘

�
t(L)

X

⌧=1

⇣

R(S(⌧)
✓r

)� ✓r
⌘

� 8

p

t
max

log(T/�).

Combining with (22), we get with probability at least 1� �/(4T), it holds that

t(L)

X

⌧=1

⇣

r(⌧)CHECK � ✓r
⌘

+ c
2

q

Nt
max

log

3

(NT/�) + c
3

N log

3

(NT/�) � 0,

in any of the epoch L such that t(L)  t
max

. Consequently, with probability at most 1� �/(4T), the event that ⇢̂(`) < ✓
never occur, which means that CHECK(✓l, ✓r, tmax

) returns false.

Proof of Statement (b). Note that when the Algorithm returns false, the if-condition in Line 4 is always false. By the
optimality, we have ✓? = G(✓?) � R(S(⌧)

✓r
,v) for any 1  ⌧  t

max

. Note that (r(⌧)CHECK � R(S(⌧)
✓r

,v)) is a martingale
sequence. Again, invoking Theorem 29, we have that with probability at least 1� �/(8T), it holds that

✓? � 1

t(L)

t(L)

X

⌧=1

R(S(⌧)
✓r

,v)

� 1

t(L)

t(L)

X

⌧=1

r(⌧)CHECK � 8

q

log(T/�)/t(L) (Martingale concentration)

� ✓r � 1

t(L)

✓

c
2

q

Nt(L)

log

3

(NT/�) + c
3

N log

3

(NT/�) + 8

q

t(L)

log(T/�)

◆

. (By the if statement in Line 4)

Note that the time steps taken by the last epoch is bounded by 24(N +1) log(T/�) with probability 1� �/(8T). As a result,
(c

2

+ 8)/t(L)  2/t
max

and c
3

/t(L)  2/t
max

. Consequently,

✓r � 1

t(L)

✓

c
2

q

Nt(L)

log

3

(NT/�) + c
3

N log

3

(NT/�) + 8

q

t(L)

log(T/�)

◆

� ✓r � 2

t
max

✓

c
2

q

Nt
max

log

3

(NT/�) + c
3

N log

3

(NT/�)

◆

,

which proves statement (b).

Proof of statement (c). Let ¯t be the time step when the if condition is first violated (and let ¯t = t
max

if the condition
holds throughout an execution). We first show that

E

"

¯t
X

⌧=1

⇣

✓l �R(S(⌧)
✓r

,v)
⌘

#

.
q

Nt
max

log

3

(NT/�) +N log

3

(NT/�) (23)

holds with high probability. Note that the if condition is false for all t  ¯t. Therefore, ¯t✓r 
P

¯t
⌧=1

r(⌧)CHECK +

c
2

q

Nt
max

log

3

(NT/�) + c
3

N log

3

(NT/�). Applying Theorem 29, we have that with probability at least 1� �/(8T), it

holds that
P

¯t
⌧=1

r(⌧)CHECK �
P

¯t
⌧=1

R(S(⌧)
✓r

,v) .
p

t
max

log(T/�). Note that ✓l  ✓r, we get (23) with probability at least
1� �/(8T).

Then we show that given ¯t,

(t
max

� ¯t)✓l � E

2

4

t
max

X

t=¯t+1

r(t)CHECK

3

5 .
q

Nt
max

log

3

(NT/�) +N log

3

(NT/�), (24)

Multinomial Logit Bandit with Low Switching Cost

holds with high probability. Note that by assumption we have ✓l  ✓?. It follows from Lemma 9 that G(✓l) � ✓l. By the
same argument in the proof of statement (a), we have with probability 1� �/(8T), it holds that

E

2

4

t
max

X

⌧=¯t+1

⇣

R(S(⌧)
✓l

,v)� ✓l
⌘

3

5

+ c
2

q

Nt
max

log

3

(NT/�) + c
3

N log

3

(NT/�) � 0,

which implies (24).

Combining (23) and (24) with a union bound, we prove statement (c).

E. Lower bound proofs
E.1. Proof of Theorem 3

To prove Theorem 3, we first introduce the following more general theorem relating the expected regret with the number of
assortment switches.
Theorem 30. For any N � 2, T

0

� 4, fix a function g(T) such that g(T) 2
h

3

log

2

T ,
1

2

i

and is non-increasing for T � T
0

.

For any anytime algorithm, there exists an N -item assortment instance I with time horizon T 2 [T
0

, T 2

0

] such that either
the expected regret of the algorithm for instant I is

E [RegT] �
1

7525

·
p
NT

1

2

+

g(T)

3

or the expected assortment switching cost before time T is

E
h

(asst)

T

i

= E
"

T�1

X

t=1

I [St 6= St+1

]

#

� N

8 log

2

(1 + g(T))
.

Before proving Theorem 30, we first prove Theorem 3 using Theorem 30.

Proof of Theorem 3. We set g(T) = 3C ln ln(NT)

lnT . It is easy to verify that the derivative of ln ln(NT)

lnT is

lnT � ln(NT) · ln ln(NT)

T ln

2 T ln(NT)
< 0

for all N � 2 and T � 2. Therefore g(T) is non-increasing for all N � 2 and T � 2. Also note that for T � N and T

greater than a sufficiently large constant that only depends on C, we have that g(T) 2
h

3

log

2

T ,
1

2

i

.

Now invoke Theorem 30, and we have that there exists an N -item assortment instance I with time horizon T 2 [T
0

, T 2

0

]

such that either E [RegT] � 1

7525

·pNT (ln(NT))C or

E
h

(asst)

T

i

� ⌦
✓

N

g(T)

◆

= ⌦

✓

N log T

C log log(NT)

◆

,

proving Theorem 3.

Proof of Theorem 30. Suppose that the expected number of assortment switches by the given policy for any input instance
is at most N

8 log

2

(1+g(T))

for any time horizon T , we will prove the theorem by showing that there exists an instance with

time horizon T 2 [T
0

, T 2

0

] such that the expected regret is at least 1

7525

· T 1

2

+

g(T)

3 .

Consider the assortment instance I = (v, r), where vi =
1

2

and ri = 1 for any i 2 [N]. We will let the capacity constraint
be K = 1 for all assortment instances considered in this proof. By the assumption of the algorithm, the expected number of
assortment switches given input instance I is at most N

8 log

2

(1+g(T 2

0

))

. Thus, there exists T
1

such that T 1+g(T 2

0

)

1

2 [T
0

, T 2

0

] and

the expected number of assortment switches in time interval [T
1

, T
1+g(T 2

0

)

1

] is at most N
8

. Otherwise, there are 1

log

2

(1+g(T 2

0

))

Multinomial Logit Bandit with Low Switching Cost

such disjoint intervals in range [T
0

, T 2

0

] and the expected number of assortment switches is at least N
8 log

2

(1+g(T 2

0

))

, violating
the assumption. Let

F (i)
1

= {item i is not offered in time interval [T
1

, T
1+g(T 2

0

)

1

] given instance I}.

Note that
P

i PrI [¬F (i)
1

]  N
8

+ 1  5N
8

for any N � 2, because the expected number of items get offered in time interval

[T
1

, T
1+g(T 2

0

)

1

] is at most the expected number of assortment switches plus 1. Therefore, there must exist a set of items
I ✓ [N] such that |I| � N

4

and for any item i 2 I , PrI [¬F (i)
1

]  5

6

. Let

F (i)
2

= {the number of times that item i is offered in [1, T
1

] given instance I is at most
48T

1

N
}.

Note that T
1

is at least the expected number of times an item i 2 I is chosen between [1, T
1

], which implies T
1

�
48T

1

N ·Pi2I PrI [¬F (i)
2

]. Thus there exists k 2 I such that PrI [¬F (k)
2

]  1

12

since |I| � N
4

. Let F (k)
= F (k)

1

\ F (k)
2

, we
have

Pr

I
[F (k)

] � 1� Pr

I
[¬F (k)

1

]� Pr

I
[¬F (k)

2

] � 1

12

. (25)

Now we consider the assortment instance I(k)
= (v(k), r) where v(k)k =

1

2

+

1

16

q

N
24T

1

and v(k)j =

1

2

for j 6= k. We will

be interested in the regret of the algorithm at time horizon T
1+g(T 2

0

)

1

. First, we show that with high probability, no algorithm
can distinguish instance I and I(k) at time T

1

with high probability. Formally, we have the following lemma, the proof of
which is provided at the end of this section.

Lemma 31. We have that
�

�

�

�

Pr

I
[F (k)

]� Pr

I(k)

[F (k)
]

�

�

�

�

 1

24

,

where PrI [·] uses the probability distribution when running the policy using input instance I.

Combining Lemma 31 with inequality (25), we have

Pr

I(k)

[F (k)
] � 1

24

.

Now, we lower bound the expected regret of the algorithm for instance I(k) at time horizon T
1+g(T 2

0

)

1

as

E
I(k)



Reg

T
1+g(T2

0

)

1

�

� E
I(k)



Reg

T
1+g(T2

0

)

1

�

�

�

�

F (k)

�

· Pr
I(k)

[F (k)
]

� (T
1+g(T 2

0

)

1

� T
1

) ·
1

16

q

N
24T

1

3

2

+

1

16

q

N
24T

1

· 1

24

� 1

7525

·
p
NT

1

2

+g(T 2

0

)

1

� 1

7525

·
p
NT

(1+g(T 2

0

))(

1

2

+

g(T2

0

)

3

)

1

,

for any g(T 2

0

) 2
h

3

log

2

T 2

0

, 1

2

i

. The third inequality holds because 3

2

+

1

16

q

N
24T

1

 2 and T
1+g(T 2

0

)

1

� T
0

, and hence for

g(T 2

0

) � 3

log

2

T 2

0

, we have T
1+g(T 2

0

)

1

� T
1

· T
g(T2

0

)

1+g(T2

0

)

0

� 2T
1

. Let T = T
1+g(T 2

0

)

1

2 [T
0

, T 2

0

]. Since by assumption g(·) is a
non-increasing function when T � T

0

, we have that g(T) � g(T 2

0

), therefore

E [RegT] �
1

7525

· T 1

2

+

g(T)

3 .

Finally we need to prove Lemma 31. First we introduce the following theorem on bounding the difference of the probability
for a certain event.

Multinomial Logit Bandit with Low Switching Cost

Theorem 32 ((Pinsker, 1964)). For any probability distribution P,Q on measurable space (X,⌃), for any event F 2 ⌃,
we have

|P (F)�Q(F)| 
r

1

2

KL(P ||Q),

where KL(P ||Q) is the KL-divergence between distribution P and Q.
Lemma 33. The KL divergence between two Bernoulli distributions with p

1

=

1

3

+� and p
2

=

1

3

is

KL(p
1

, p
2

)  9�

2

2

Proof. The KL-divergence between two Bernoulli distributions with parameters p
1

, p
2

is

KL(p
1

, p
2

) = p
1

ln

p
1

p
2

+ (1� p
1

) ln

1� p
1

1� p
2

Substituting p
1

=

1

3

+� and p
2

= 1

3

, we have

KL(p
1

, p
2

) =

✓

1

3

+�

◆

ln (1 + 3�) +

✓

2

3

��
◆

ln

✓

1� 3�

2

◆

 9�

2

2

where the last inequality holds by ln(1 + x)  x.

Proof of Lemma 31. Note that in our construction, the choice distribution at each time t is a Bernoulli distribution. More
specifically, under instance I, when item k is offered to the customer, the probability she chooses to purchase item k is
p
2

=

1

2

1+

1

2

=

1

3

, while under instance I(k), when item k is offered to the customer, the probability she chooses to purchase
item k is

p
1

=

1

2

+

1

16

q

N
24T

1

3

2

+

1

16

q

N
24T

1

=

1

3

+

1

16

q

N
24T

1

3

2

+

1

16

q

N
24T

1

 1

3

+

1

24

r

N

24T
1

. (26)

In event F (k), the number of times item k is offered is at most 48T
1

N . The total information available to the algorithm is
the set of choice distributions observed for item k since the choice distributions for other items are the same. Therefore,
combining Theorem 32, Lemma 33 and inequality (26), we have

�

�

�

�

Pr

I
[F (k)

]� Pr

I(k)

[F (k)
]

�

�

�

�


r

1

2

· 48T1

N
·KL(p

1

, p
2

)  1

24

.

E.2. Proof of Theorem 8

The proof of Theorem 8 is similar to that of Theorem 3 except for that we divide the time periods with a different scheme. It
suffices to prove the following theorem in order to establish Theorem 8.
Theorem 34. For any N � 2, T � 4, and M  log

2

log

2

T , we have that for any algorithm such that the expected number

assortment switches before time horizon T is E
h

(asst)

T

i

 NM
8

, there exists an N -item assortment instance I such that
the expected regret of the algorithm for instance I at time horizon T is

E [RegT] �
1

7525

·
p
NT

1

2(1�2

�M
) .

Before proving Theorem 34, we first prove Theorem 8 using Theorem 34.

Proof of Theorem 8. We set M = blog
2

(

log

2

T
2C log

2

ln(NT)

)c. It is easy to verify that M is at most log
2

log

2

T for T larger
than a universal constant that depends on C. Now invoke Theorem 34, and we have that for any algorithm, there exists an
N -item assortment instance I such that either E [RegT] � 1

7525

·pNT (ln(NT))C or

E
h

(asst)

T

i

= ⌦

✓

NM

8

◆

= ⌦ (N log log T) ,

proving Theorem 8.

Multinomial Logit Bandit with Low Switching Cost

Proof of Theorem 34. Suppose that the expected number of assortment switches by the given policy for any input instance
is at most NM

8

before time horizon T , we will prove the theorem by showing that there exists an instance such that the

expected regret incurred by the algorithm is at least 1

7525

·pNT
1

2(1�2

�M
) .

Consider the assortment instance I = (v, r), where vi =
1

2

and ri = 1 for any i 2 [N]. We will let the capacity constraint
be K = 1 for all assortment instances considered in this proof. By the assumption of the algorithm, the expected number of
assortment switches given input instance I is at most M

8

. For any j M , we define

T
(j) = T

1�2

�j

1�2

�M .

By definition, we have that T
(M)

= T . Therefore, there exists j such that 0  j  M � 1 and the expected number of
assortment switches in time interval [T

(j), T(j+1)

] is at most N
8

since there are M such disjoint intervals in range [1, T]. Let

G(i)
1

= {item i is not offered in time interval [T
(j), T(j+1)

] given instance I}.

Note that
P

i PrI [¬G(i)
1

]  N
8

+ 1  5N
8

for any N � 2, because the expected number of items get offered during time
interval [T

(j), T(j+1)

] is at most the expected number of assortment switches plus 1. Therefore, by an averaging argument,
we have that there exists a set of items I ✓ [N] such that |I| � N

4

and for any item i 2 I , PrI [¬G(i)
1

]  5

6

. Define the
following event

G(i)
2

= {the number of times that item i is offered in [1, T
(j)] given instance I is at most

48T
(j)

N
}.

Note that T
1

is at least the expected number of times an item i 2 I is chosen between [1, T
1

], which implies T
(j) �

48T
(j)

N ·Pi2I PrI [¬G(i)
2

]. Thus there exists k 2 I such that PrI [¬G(k)
2

]  1

12

since |I| � N
4

. Let G(k)
= G(k)

1

\ G(k)
2

, we
have that

Pr

I
[G(k)

] � 1� Pr

I
[¬G(k)

1

]� Pr

I
[¬G(k)

2

] � 1

12

. (27)

Now we consider the assortment instance I(k)
= (v(k), r) where v(k)k =

1

2

+

1

16

q

N
24T

(j)
and v(k)j =

1

2

for j 6= k. Using
the same proof of Lemma 31, we have that

�

�

�

�

Pr

I
[G(k)

]� Pr

I(k)

[G(k)
]

�

�

�

�

 1

24

,

and combining it with inequality (27), we have that

Pr

I(k)

[G(k)
] � 1

24

.

Now, we lower bound the expected regret of the algorithm for instance I(k) as

E
I(k)

[RegT] � E
I(k)

h

RegT

�

�

�

G(k)
i

· Pr
I(k)

[G(k)
]

� (T
(j+1)

� T
(j)) ·

1

16

q

N
24T

(j)

3

2

+

1

16

q

N
24T

(j)

· 1

24

� 1

7525

· T
(j+1)

·
s

N

T
(j)
� 1

7525

·
p
NT

1

2(1�2

�M
) ,

The third inequality holds because 3

2

+

1

16

q

N
24T

(j)
 2 and for j M � 1, M  log

2

log

2

T , we have that

T
(j+1)

= T
1�2

�j�1

1�2

�M � T
1�2

�j

1�2

�M · T 2

�j�1

1�2

�M � T
1�2

�j

1�2

�M · T 2

�M

1�2

�M � 2T
1�2

�j

1�2

�M
= 2T

(j).

Multinomial Logit Bandit with Low Switching Cost

F. N log T item switch bound for ESUCB
In this section we show that a modification of ESUCB algorithm achieves O(N log T) item switches.

The modification is to use variables Ti and ni without initializing in each CHECK(✓l, ✓r, tmax

) sub-routine. That is, move
the Ti 0, ni 0 statement to the initialize phase of Algorithm 5. Note that ni/Ti is still an unbiased estimation of vi,
and only concentrates better. As a result, the regret analysis applies directly.

Regarding the number of item switches, since the value of Ti and ni are not initialized in CHECK procedure, number of
updates in value v̂i is bounded by log T during the execution of ESUCB algorithm, instead of log2 T when initialization is
executed in CHECK. Therefore we can give a better upper bound on the item switch of ESUCB algorithm. The following
theorem shows the item switch bound of modified ESUCB algorithm.

Theorem 35. The number of item switches incurred by ESUCB algorithm is bounded by O(N log T).

Proof. Recall that S` is calculated by S` = argmaxS2[N],|S|K

�

P

i2S v̂i(ri � ✓)
�

for some ✓ (Line 6 and Line 9 of
Algorithm 6). Observe that the value of b in Algorithm 6 can only be switched once in an invocation. Therefore the number
of switches in value ✓ is upper bounded by O(log T). The item number of item switch introduced by the change of ✓ is then
bounded by O(N log T). Now, consider an consecutive time steps where ✓ is unchanged. We only need to show that for
fixed any ✓, and S0

` = argmaxS✓[N],|S|K

�

P

i2S v̂i(ri � ✓)
�

, it holds that (assuming that there are L epochs)

L�1

X

`=1

|S0
` � S0

`+1

| . N log T. (28)

Suppose that there are n` items whose UCB values are updated after the `-th epoch. We claim that |S` � S`+1

|  n`. This
is simply because S` corresponds to the items i 2 [N] such that ˆvi(ri � ✓) is positive and among the K largest ones (and
thanks to the tie breaking rule). Therefore, any update to a single ˆvi will incur at most one item switch to S`, and n` updates
will incur at most n` item switches. Now, (28) is established because

PL�1

`=1

|S0
` � S0

`+1

| PL�1

`=1

n` . N log T , where
the second inequality is due to the deferred update rule for the UCB values.

