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Abstract
Composition is one of the most important prop-
erties of differential privacy (DP), as it allows
algorithm designers to build complex private al-
gorithms from DP primitives. We consider pre-
cise composition bounds of the overall privacy
loss for exponential mechanisms, one of the fun-
damental classes of mechanisms in DP. Expo-
nential mechanism has also become a funda-
mental building block in private machine learn-
ing, e.g. private PCA and hyperparameter selec-
tion. We give explicit formulations of the opti-
mal privacy loss for both the adaptive and non-
adaptive composition of exponential mechanism.
For the non-adaptive setting in which each mech-
anism has the same privacy parameter, we give
an efficiently computable formulation of the op-
timal privacy loss. In the adaptive case, we de-
rive a recursive formula and an efficiently com-
putable upper bound. These precise understand-
ings about the problem lead to a 40% saving of
the privacy budget in a practical application. Fur-
thermore, the algorithm-specific analysis shows a
difference in privacy parameters of adaptive and
non-adaptive composition, which was widely be-
lieved to not exist based on the evidence from
general analysis.

1. Introduction
Differential privacy (DP) has emerged as the leading pri-
vacy benchmark in machine learning as well as data analyt-
ics on sensitive data sets. The basic idea is to inject noise
into training algorithms so that it masks individual level of
information while still preserves statistical efficiency. One
of the fundamental DP primitives is exponential mecha-
nism, which has various application in machine learning,

*Equal contribution 1Applied Mathematics and Computa-
tional Sciences, University of Pennsylvania 2Data Science Ap-
plied Research, LinkedIn. Correspondence to: Jinshuo Dong
<djs.pku@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

such as hyper parameter selection (Liu and Talwar, 2019),
private PCA (Chaudhuri et al., 2013), synthetic data gener-
ation (Hardt and Rothblum, 2010), and so on. As a building
block, it is often used repeatedly/recursively. The overall
privacy guarantee was often handled by a general composi-
tion theorem in DP, which is one of the most important fea-
tures of DP that leads to its success. However, the general
theorem (Dwork et al., 2010) is suboptimal and not mak-
ing use of any specific structure of the algorithm, hence
often underestimates the true privacy guarantee of the al-
gorithm. A possible negative consequence is algorithm de-
signers may decide to inject more noise until general com-
position theorem says its private, hence incurring unneces-
sary drop in model accuracy. If the precise privacy guaran-
tee was known, we could have added the exact amount of
noise for desired level of privacy, and not waste any model
accuracy.

That being said, exact and optimal privacy characterization
is important for private machine learning. Recently, there
have been extensive works in this direction. Kairouz et al.
(2017); Murtagh and Vadhan (2016) provides optimal com-
position theorem when all that is know is each component
being (ε, δ)-DP.

Although these black box composition theorems give opti-
mal privacy parameters over multiple rounds of general DP
algorithms, one should be able to improve by making use
of the specific structure of the components. That is, white
box composition can further improve privacy analysis. An
example of this type of analysis is the moments accoun-
tant considered in Abadi et al. (2016). They analyzed the
privacy of noisy stochastic gradient descent as a composi-
tion of subsampled Gaussian mechanism and achieved the
first reasonably private MNIST classifier without signifi-
cant drop in accuracy compared to non-private baselines.
However, no optimality is known for their privacy analysis.

Dong et al. (2019) invented techniques that manage to ex-
hibit exact and optimal analysis of white box composition
for a wide range of algorithms, including most building
block algorithms of DP such as Laplace mechanism, Gaus-
sian mechanism and their subsampled versions (Bu et al.,
2019). However, their technique does not directly apply to
exponential mechanism. Durfee and Rogers (2019) intro-
duced bounded range (BR) as a property for DP algorithms
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and performed improved analysis for composition of expo-
nential mechanisms.

The primary focus of this paper is to complement the
story of white-box composition by answering the follow-
ing question: what is the optimal DP composition bound
over the class of exponential mechanisms?

Surprisingly, the answer to this question depends on
whether the exponential mechanisms is adaptively chosen
at each round or not. This is the first of its kind in the con-
text of DP composition. Because of this reason we provide
two main results: a formula of the optimal parameters in
the non-adaptive case, and an iterative algorithm to com-
pute optimal parameters in the adaptive case.

Both the non-adaptive and adaptive setting will have practi-
cal importance. The most straightforward one is the setting
considered in (Durfee and Rogers, 2019), where their pri-
vate top-k algorithms (main ingredient of which is expo-
nential mechanisms) is repeatedly used to answer queries
like “What are the most popular articles in the last 30 days
among data scientists working in Bay area?” In particular,
the non-adaptive formula can be applied in a dashboard
setting, where the set of queries is predetermined. The iter-
ative algorithm for the adaptive setting can be applied in an
API setting, where the analyst adaptively interacts with the
DP system. It is important to be aware of the distinction
and use optimal parameters respectively.

While the improvement we give here in the overall pri-
vacy parameters are not asymptotically significant, it in-
creases the number of allowable queries by a constant fac-
tor when the privacy parameters for each of the queries are
considered fix. This can have a substantial impact on prac-
tical deployments. From our results in Figure 1, our non-
adaptive composition formula allows for about four times
more queries than what black-box composition. Further-
more, this optimal composition allows for about two times
more queries than the improved bounds given in (Durfee
and Rogers, 2019). Additionally, in some settings our im-
provement for the adaptive composition bound of exponen-
tial mechanisms allows for about three times more queries
than both the optimal composition for DP mechanisms and
the improved bounds in (Durfee and Rogers, 2019).

Remark Although we have presented the exponential
mechanism as a specific DP mechanism, it is also impor-
tant to discuss its generality. In particular, there is the folk-
lore knowledge that any (pure) DP mechanism can be writ-
ten in terms of an exponential mechanism with a particular
quality score, i.e. the log-density of the mechanism (Mc-
Sherry and Talwar, 2007). Hence, it might seem that expo-
nential mechanisms and pure DP mechanisms are the same
thing. As a consequence, optimal composition over the two
classes might also seem to be identical and hence well-

understood because of the works of Kairouz et al. (2017)
and Murtagh and Vadhan (2016). Realizing the distinction
of the two classes is an important first step of our improve-
ment. We will clarify this in Section 2.2.

1.1. Our Contributions

We summarize our main contributions here. They will be
formally stated in later sections once we have set up the
requisite notation.

1. As remarked above, we properly identify and
parametrize the class of exponential mechanisms.
This is explained in Section 2.2.

2. In the non-adaptive (NA) model, for any ε > 0, there
is a smallest δ such that all k-fold non-adaptive com-
position of properly parametrized exponential mech-
anisms satisfy (ε, δ)-DP. Denote this smallest δ by
δNA
k (ε). We give an explicit formula of δNA

k (ε).

3. Similarly in the adaptive (A) model, let δA
k (ε) be the

smallest δ such that all k-fold adaptive composition
of properly parametrized exponential mechanisms sat-
isfy (ε, δ)-DP. We give an recursive formula of δA

k (ε).

4. Beyond these optimality results, we provide an effi-
cient approach to bound the adaptive parameter δA

k (ε),
and compare all these findings numerically with pre-
vious results.

2. Preliminaries
The two central concepts of this paper are composition and
exponential mechanism. We settle the definition and nota-
tion in this section.

We first cover the standard differential privacy definition
from (Dwork et al., 2006b;a), where we will say that two
datasets x, x′ ∈ X are neighbors if they differ in the addi-
tion or deletion of one individual’s data, sometimes denoted
as x ∼ x′.

Definition 2.1. A mechanism M : X → Y is (ε, δ)-
differentially-private (DP) if the following holds for any
neighboring dataset x, x′ and S ⊆ Y:

Pr[M(x) ∈ S] 6 eεPr[M(x′) ∈ S] + δ.

Also if δ = 0, we simply write ε-DP.

We remark that all results remain valid for other neigh-
boring relations such as replacing individuals, except the
claim that involves counting queries (see the discussion fol-
lowing Proposition 2).
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2.1. Composition

We will consider two kinds of composition: adaptive and
non-adaptive. The following presentation follows the re-
cent line of work (Mironov, 2017; Bun and Steinke, 2016;
Dong et al., 2019).

In the non-adaptive case, component mechanisms are Mi :
X → Yi, i = 1, 2, . . . , k. SinceMi are randomized,Mi(x)
is a distribution over Yi. The composition M : X →
Y1 × · · · × Yk simply outputs an outcome sampled from
the product distribution M1(x)× · · · ×Mk(x).

In the adaptive case, component mechanisms take in previ-
ous outputs and look like Mi : X × Y1 × · · · × Yi−1 →
Yi, i = 1, 2, . . . , k. The output (y1, y2, . . . , yk) of the com-
position M : X → Y1 × · · · × Yk satisfies

y1 = M1(x),

y2 = M2(x, y1),

· · ·
yk = Mk(x, y1, y2, . . . , yk−1).

2.2. Exponential Mechanism and Bounded Range
Property

We are interested in composition where each component
comes from the class of exponential mechanisms, but as
noted in Section 1, we have to parameterize properly. It
turns out that this is a tricky question. We will in the end
identify the class of interest as the class of range bounded
mechanisms, first introduced in (Durfee and Rogers, 2019).

Recall that exponential mechanism is defined in terms of a
quality score u : X ×Y → R. Traditionally, the sensitivity
of the quality score ∆u := maxy∈Y maxx∼x′ |u(x, y) −
u(x′, y)| plays a crucial role in the theory. Here we take a
slightly less traditional presentation by moving the sensi-
tivity from the mechanism to the privacy guarantee.

Definition 2.2 (Exponential Mechanism (McSherry and
Talwar, 2007)). A randomized algorithmMu,ε : X → Y is
called the exponential mechanism with quality score u and
parameter ε, if the outcome y is sampled with probability
proportional to eεu(x,y), i.e.

P [Mu,ε(x) = y] =
eεu(x,y)∑
y∈Y eεu(x,y)

.

We know from (McSherry and Talwar, 2007) that

Theorem 1. Mu,ε is 2∆u · ε-DP .

Remember our goal is to study optimal composition of ex-
ponential mechanisms. For that purpose, we would like to
focus on the case when every component is in the following

class:

{Exponential mechanisms | parameter is ε
quality score has sensitivity 6 L}

However, the class is ambiguous since the quality score is
not uniquely determined by the mechanism. The following
two clarification both make sense but often cause confu-
sion. For simplicity let us assume L = 1.

Mε
1 =

{
M : X → Y | ∆v 6 1 where

v(x, y) = 1
ε lnP [M(x) = y]

}
Mε

2 =
{
M : X → Y | ∃v(x, y) s.t.

∆v 6 1, P [M(x) = y] ∼ eεv(x,y)
}

Observe the following facts:

1. Mε
1 = {M : X → Y |M is ε-DP};

2. Mε
1 $ Mε

2 $ M2ε
1 .

Common folklore that exponential mechanisms are “uni-
versal” in ε-DP refers to the first fact. However, our paper
focuses on the class Mε

2, not only because the composition
in Mε

1 is well-understood (Kairouz et al., 2017; Murtagh
and Vadhan, 2016; Dong et al., 2019), but also because
quality scores exist a priori in practice. On the other hand,
it is not obvious that the function 1

ε lnP [M(x) = y] is
meaningful in any sense.

If we were to use Mε
1 as a proxy, then the second fact sug-

gest that we can get a 2-approximation of the truely optimal
result. However, a factor of 2 can be of vital importance in
practice as mentioned in Section 1.

Having justified the importance of the class Mε
2, we note

that this class is quite challenging to study. The reason is
best illustrated by the following example.

Example 1. Consider two quality scores u(x, y) and
u′(x, y) = u(x, y) + f(x) where f : X → R is an ar-
bitrary function. The two quality scores lead to the same
mechanism since

eεu(x,y)∑
y e

εu(x,y)
=

eεu
′(x,y)∑

y e
εu′(x,y)

.

However, it is very common that ∆u 6= ∆u′. For example
let X = Y = {0, 1} and u(x, y) = x+ y, f(x) = 10x and
hence u′(x, y) = 11x+ y. Clearly ∆u = 1 and ∆u′ = 11.

This example shows that even if a mechanism has a very
sensitive quality score u′, it may still belong to Mε

2, be-
cause a less sensitive quality score u may lead to the same
mechanism.

In this respect, we propose to use the following more re-
fined quantity to replace sensitivity.
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Definition 2.3. Given a quality score u : X × Y → R, its
range ∆̃u is defined as

∆̃u = sup
x∼x′

{
max
y
{u(x′, y)− u(x, y)}

−min
y
{u(x′, y)− u(x, y)}

}
.

Let’s first examine the above example. Since the only
neighbors are x = 0 and x′ = 1, we have ∆̃u = maxy{1+

y} − miny{1 + y} = 1 and ∆̃u′ = maxy{11 + y} −
miny{11 + y} = 1. This is true in general. We state this
fact and some more in the following proposition.
Proposition 1. The range ∆̃ has the following properties

(a) ∆̃u = ∆̃u′ when u′(x, y) = u(x, y) + f(x);

(b) ∆̃u 6 2 ·∆u;

The exponential mechanism with quality score u and pa-
rameter ε, as in Definition 2.2, has the following privacy
property:
Proposition 2. Mu,ε is ∆̃u · ε-DP.

Theorem 1 is a corollary of this proposition and property
(b). This shows that the range ∆̃ can lead to more re-
fined privacy analysis than the previously accepted notion
of sensitivity ∆. Indeed, for counting queries1 we have
∆̃u = ∆u. For this important class, Proposition 2 man-
ages to improve by an (important!) factor of 2 on Theo-
rem 1 with the help of the newly introduced notion.

Back to the class of exponential mechanisms that we are
interested in, the new definition using range is

M̃ε
1 =

{
M : X → Y | ∆̃u 6 1 where

u(x, y) = 1
ε lnP [M(x) = y]

}
M̃ε

2 =
{
M : X → Y | ∃u(x, y) s.t.

∆̃u 6 1, P [M(x) = y] ∼ eεu(x,y)
}

Now we can claim another property, continuing Proposi-
tion 2.

(c) M̃ε
1 = M̃ε

2.

Because of the focal position of this class in the rest of the
paper, it is worth of a definition.
Definition 2.4. A mechanism M : X → Y is
called ε-bounded-range (BR) if the log likelihood function
u(x, y) = lnP [M(x) = y] has range at most ε.

This is exactly the notion introduced in (Durfee and
Rogers, 2019). It’s not hard to see the following formu-
lations are equivalent:

1The function u is a counting query if u(x, y) is the number
of people in dataset x that has property y.

Proposition 3. The followings are equivalent:

(1) M is ε-BR;

(2) M ∈ M̃ε
1 = M̃ε

2;

(3) For each pair of neighboring datasets x, x′ there ex-
ists some t ∈ [0, ε] such that for any outcome y ∈ Y
we have

t− ε 6 ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
6 t.

Moreover, the equivalence between (1) and (2) identifies
the class of ε-BR mechanisms and M̃ε

2. As a consequence,
the following terms will be used interchangably in the rest
of the paper:

“ε-BR mechanisms”
=

“exponential mechanisms whose quality score has
range at most 1 and has parameter ε”

2.3. Composition of BR Mechanisms

Now that we have identified the class of exponenetial
mechanisms we are interested in as the class of ε-BR mech-
anisms, the primary focus of the paper becomes adaptive
and non-adaptive compositions of BR mechanisms. More
precisely, a mechanism M : X → Y1 × · · · × Yk is a
k-fold non-adaptive composition of ε-BR mechanisms if
there are ε-BR mechanisms Mi : X → Yi, i = 1, 2 . . . , k
such that M(x) =

(
M1(x), . . . ,Mk(x)

)
. Similarly, M is

a k-fold adaptive composition of ε-BR mechanisms if there
are mechanisms Mi : X × Y1× · · · × Yi−1 → Yi such that
M is the composition of M1, . . . ,Mk as defined in Sec-
tion 2.1, and Mi(·, y1, . . . , yi−1) : X → Yi is ε-BR for
each y1 ∈ Y1, . . . , yi−1 ∈ Yi−1. Again, the only difference
is whether latter mechanisms are allowed to see former out-
puts.

On the practice side, as briefly discussed in the introduc-
tion, we are mainly interested in answering queries like
“What are the most popular articles in the last 30 days
among data scientists working in Bay area?” privately. For
the next question, she may consider changing the time win-
dow. This is a typical case where the composition is adap-
tive.

All proofs of the statements in this section are quite
straightforward, so they are relegated to the appendix.

3. Main Results
We set up a few notations before we state the results.
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The following two formula are useful through out the rest
of the paper. For ε > 0 and t ∈ [0, ε], let

pt,ε =
e−t − e−ε

1− e−ε
, qt,ε = etpt,ε =

1− et−ε

1− e−ε
(1)

The ε subscript is usually dropped when the meaning is
clear from the context. It might be helpful to notice that
when t increases from 0 to ε, both pt and qt decrease from
1 to 0.

We follow the convention of (Murtagh and Vadhan, 2016)
and use ε to denote the privacy parameters of a single mech-
anism and (εg, δg) for the global privacy parameters in-
curred by the composition. Although typical use case fixes
δg ∈ [0, 1] and computes the dependence εg(δg), it is often
easier ((Kairouz et al., 2017; Murtagh and Vadhan, 2016;
Balle and Wang, 2018), see also Lemma 4.2) to write δg as
an explicit formula of εg . Because of the obvious mono-
tone dependence of δg on εg , a binary search can invert the
function conveniently.

Now we are ready for the formal statements.

For non-adaptive composition, we have
Theorem 2. If M is a k-fold non-adaptive composition of
ε-BR mechanisms, then it is

(
εg, δ

NA
k (εg)

)
-DP where

δNA
k (εg) = max

06`6k

k∑
i=0

(
k

i

)
pk−it∗`

(1− pt∗` )i(ekt
∗
`−iε − eεg )+,

where (a)+ is defined as max{a, 0} and t∗` =
εg+(`+1)ε

k+1
where if t∗` /∈ [0, ε], then we round it to the closest point in
[0, ε].

Privacy parameter δNA
k (εg) cannot be improved. Further-

more, it can be evaluated in O(k2) time.

We remark that the seemingly complicated expression
comes from a significant simplification to an even
more colossal optimization problem, which enjoys all
possible challenging features: high-dimensional, non-
convex/concave, non-smooth. We manage to show the
symmetry of its maximizer and simplify it to the shape
above.

In the adaptive case, we have a recursive formula.
Theorem 3. IfM is a k-fold adaptive composition of ε-BR
mechanisms, then it is

(
εg, δ

A
k (εg)

)
-DP where {δA

j }06j6k
are recursively defined as

δA
0 (εg) = max{1− eεg , 0}

δA
j+1(εg) = max

t∈[0,ε]
qtδ

A
j (εg − t) + (1− qt)δA

j (εg − t+ ε).

Privacy parameter δA
k (εg) is not improvable.

This recursive formula is not provably efficient, because
the value of the j+ 1-th function at εg not only depends on

values of previous functions at εg , but also at other loca-
tions. However, the following is a heuristic approach: we
first discretize the domain of t and εg , and restrict δA

j to the
grid of εg to get an array of function values. Now we use
the recursion to compute the next array using the previous
array. Running time of this heuristic algorithm is at most
kN2 where N is the grid size.

In the appendix we show that δNA
k (εg) and δA

k (εg) are not
equal for a wide range of εg . Together with the optimality
of δNA

k and δA
k , it implies the following explicit distinction

between adaptive composition and non-adaptive composi-
tion of BR mechanisms.

Theorem 4. For each k > 4 and εg ∈ [0, (k − 3)ε], let
δ = δNA

k (εg). Then

1. Every k-fold non-adaptive composition of ε-BR mech-
anisms is (εg, δ)-DP;

2. There exists a k-fold adaptive composition of ε-BR
mechanisms that is not (εg, δ)-DP.

For the heterogenous case where BR parameters ε1, . . . , εk
are allowed to be different, see the appendix for results.
Unfortunately in this case there are reasons to believe that
optimal formula are #P-hard to evaluate, similar to the
hardness result in (Murtagh and Vadhan, 2016). Instead,
we provide an efficiently computable bound on the optimal
privacy parameter by exploiting moment generating func-
tion of the privacy loss.

3.1. Efficiently Computable Bounds for Adaptive
Jeterogenous Composition

Both results presented in the following can be considered as
improvements of the previous result in (Durfee and Rogers,
2019). To understand the source of these improvements, it
is helpful to recall their technique: they followed a sim-
ilar approach to (Dwork et al., 2010), applying both an
Azuma-Hoeffding bound (on the variance) and a KL diver-
gence bound (on the bias) to achieve a reasonably simple
upper bound on the optimal composition. However, this
work only considered using the BR property to improve
the bound from Azuma-Hoeffding and did not consider im-
proving the KL divergence bound. Using the reduction to
be introduced in the next section, the supremum of the KL
divergence can be computed exactly. This yields the fol-
lowing result:

Proposition 4. If Mi is εi-BR for i = 1, 2, . . . , k, then
their adaptive composition is

(
εg(δg), δg

)
-DP with

εg(δ) = min

{ k∑
i=1

εi,
k∑
i=1

( εi
1− e−εi

− 1− ln
( εi

1− e−εi

))

+

√√√√1

2

k∑
i=1

ε2i ln(1/δ)

}
.



Optimal DP Composition for Exponential Mechanisms

This improvement can be substantial in some settings (See
Figure 1), but we will further improve this bound. For
that purpose, we backtrack one more step and use the same
techniques from the proof of Azuma-Hoeffding but apply
our more exact characterization.

Theorem 5. If Mi is εi-BR for i = 1, 2, . . . , k, then their
adaptive composition is (εg, δ

MGF(εg))-DP for any εg ≥ 0
with

δMGF(εg) = inf
λ>0

e−λεg+
∑

i h(λ;εi).

where h(λ; ε) := supt∈[0,ε] λ(ε− t) + ln
(
1 + pε,t(e

−λε−
1)
)

with pε,t = e−t−e−ε

1−e−ε as in (1).

We present plots of our results in Figure 1 for the homo-
geneous case, plotting εg as a function of k. As stated
earlier, we label “ε-DP OptComp” as the optimal composi-
tion bound for DP mechanisms from (Murtagh and Vadhan,
2016), “DR19” as the composition bound for ε-BR mech-
anisms from (Durfee and Rogers, 2019), and “BR Opt-
Comp” as the composition bound in Theorem 2, which only
applies in the non-adaptive setting. Furthermore, we label
“OptKL” as the bound from Proposition 4 and “MGF” as
the bound in Theorem 5. To compare our bounds with sim-
ply using the optimal DP composition bound with a half the
actual privacy parameter, we also plot the DP optimal com-
position bound with ε/2 with label “ε/2-DP OptComp”.
This last curve highlights the fact that ε-BR is almost the
same as ε/2-DP when applying composition.

4. Overview of Techniques
4.1. Reduction to Generalized Randomized Response

Essentially all of the results are obtained by first identify-
ing the “worst-case” mechanism for the class of BR mech-
anisms and then reason about them. Similar to (Kairouz
et al., 2017; Murtagh and Vadhan, 2016), “worst-case”
means that any BR mechanism can be simulated through
post-processing of this worst-case mechanism. For the
class of ε-DP mechanisms, the worst-case mechanism
was shown to be randomized response (Kairouz et al.,
2017; Murtagh and Vadhan, 2016). Fixing the neighbor-
ing datasets x and x′, randomized response returns two
Bernoulli distributions with parameters 1

1+eε and eε

1+eε re-
spectively. The “generalized randomized response”, when
applied to neighboring datasets, returns two Bernoulli dis-
tributions with parameters pt and qt as defined in (1). In
fact, the two parameters are specifically defined for this
purpose. More precisely,

Lemma 4.1. If a mechanism M : X → Y is ε-BR and
x, x′ ∈ X are neighboring datasets, there exists some
t = t(M,x0, x1) ∈ [0, ε] and a randomized function
Proc : {0, 1} → Y , such that the following distributional

equalities hold:

Proc
(
Bern(pt)

)
= M(x), Proc

(
Bern(qt)

)
= M(x′).

This closely mirrors the reduction of ε-DP mechanisms re-
duce to randomized response result. To take a closer look
and understand the expressions of pt and qt, recall that a
mechanism M is ε-DP if and only if for any y, the log like-
lihood ratio (or equivalently, privacy loss) lies in a closed
interval

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
∈ [−ε, ε].

Randomized response, namely M(x) = Bern( 1
1+eε ) and

M(x) = Bern( eε

1+eε ), satisfies a more restrained version

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
∈ {−ε, ε}.

In parallel, we know from Corollary 3 that a mechanism
M : X → Y is ε-BR, if and only if there is t = t(x, x′) ∈
[0, ε] such that for any y,

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
∈ [t− ε, t].

It is straightforward to verify that the log likelihood ratio
of Bern(pt) and Bern(qt) only takes values t− ε and t. In
particular, this allows a hypothesis testing interpretation of
ε-BR and the powerful Blackwell’s theorem2 (Blackwell,
1950) kicks in. A similar argument as in (Kairouz et al.,
2017; Murtagh and Vadhan, 2016) yields Lemma 4.1.

With this reduction, it then follows that composition of BR
mechanisms (adaptive or non-adaptive) can be reduced to
simply considering composition of this worst-case mecha-
nism, allowing for explicit description of the optimal com-
position.

While the result explained so far is largely unsurprising, we
point out that the additional parameter t yields significant
difficulty. Roughly speaking, since t is only an intermedi-
ate object that cannot appear in the theorems, we need to
find the worst collection of {ti : i = 1, 2, . . . , k} where
k is the number of components in the composition. It is
this optimization step that makes the problem challenging.
In addition, interactivity allows the adversary to “choose”
the next t based on the previous results he has seen. This
additional power is absent in all previous works, which ex-
plains why this setting admits the first separation result on
adaptive and non-adaptive composition.

2It is possible to avoid this heavy machinery and only utilize
elementary results in hypothesis testing. See (Dong et al., 2019).
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Figure 1. Comparison of optimal DP composition with the BR composition bounds in this work and in Durfee and Rogers (2019). BR
OptComp (dashed blue) corresponds to Theorem 2, one of our main theorem. It is almost as private as optimal DP composition (dotted
black) with parameter cut in half. We present results for δg = 10−6 and ε ∈ {0.01, 0.1, 1}.

To finish on reduction, we note that the BR property is not
preserved under randomization. On the other hand, ran-
domization is common in private machine learning. Con-
sequently, the right object to study is composition in the
class of randomized BR mechanisms, instead of composi-
tion of pure BR mechanisms. However, it turns out there’s
no difference in terms of their optimal (ε, δ) parameters.
Interested readers can read about the simple argument in
the appendix.

4.2. Non-adaptive Composition

From Section 2.1 we see that non-adaptive composition
simply yields product distributions. Using the reduction
introduced above, the “worst-case” of each ε-BR compo-
nent is some generalized randomized response. To obtain
the optimal composition guarantee, it suffices to assume
the composition M operate on neighboring datasets x, x′

as follows:

M(x) = Bern(pt1)× · · · × Bern(ptk)

M(x′) = Bern(qt1)× · · · × Bern(qtk)

We first recall a useful tool that computes for a given mech-
anismM , the optimal δ such thatM is (ε, δ)-DP. Formally,
given a mechanism M : X → Y and any ε ∈ R, let

δopt(M, ε) := inf
{
δ : M is (ε, δ)-DP

}
Lemma 4.2.

δopt(M, ε) = sup
x∼x′

Ey∼M(x′)

[
(1− eε−L(y;x,x

′))+
]

where L(y;x, x′) = ln P [M(x′)=y]
P [M(x)=y] is the log likelihood ra-

tio function and a+ denotes max{a, 0}.

Plugging in Bernoulli products into Lemma 4.2 and opti-
mizing over t = (t1, . . . , tk) yields the following prelimi-
nary version of Theorem 2.
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Lemma 4.3. If M is a k-fold non-adaptive composition of
ε-BR mechanisms, then it is

(
εg, δ

NA
k (εg)

)
-DP where

δNA
k (εg) = sup

t∈[0,ε]k

∑
S⊆{1,...,k}

max
{

0,
∏
i/∈S

qti
∏
i∈S

(1− qti)

−eεg
∏
i/∈S

pti
∏
i∈S

(1− pti)
}
.

Note this formulation closely mirrors the following result
from Murtagh and Vadhan (2016).
Theorem 6 (Theorem 1.5 from Murtagh and Vadhan
(2016)). M1, . . . ,Mk be mechanisms such that Mi is
εi-DP, i = 1, 2, . . . , k. Their adaptive composition is(
εg, δ

DP(εg)
)
-DP with

δDP(εg) =
∑

S⊆{1,...,k}

max
{

0,
∏
i/∈S

q̃i
∏
i∈S

(1− q̃i)

−eεg
∏
i/∈S

p̃i
∏
i∈S

(1− p̃i)
}

where p̃i = 1
1+eεi , q̃i = eεi

1+eεi . In addition, evaluating
δDP(εg) is #P-complete.

The major difference between these two results is that
Lemma 4.3 involves an additional high dimensional opti-
mization, with highly non-convex and non-smooth objec-
tive. This seems to suggest that δNA

k is even harder to eval-
uate than δDP. With the strong hardness conclusion of The-
orem 6, it seems quite challenging, if not hopeless, to tackle
δNA
k .

It turns out that we can overcome the difficulty, as stated in
Theorem 2. Our simplification will require significant tech-
nical work that will ultimately be done in two key steps: 1)
we show that the supremum is achieved when all ti = tj
for i 6= j, and 2) we show that the supremum is achieved
by a certain value ti = t∗ ∈ [0, ε] contained in a set of
at most k possible values. This will then yield an explicit
and efficiently computable formulation of the optimal non-
adaptive composition of range-bounded mechanisms.

We remind the readers that this result focuses on the homo-
geneous setting where ε1, · · · , εk = ε, while Theorem 6
is about the general heterogenous case. Unfortunately, our
technique does not extend to either the heterogenous set-
ting, for which we conjecture the same #P-hardness, or the
adaptive setting, pointing to the natural question of whether
there is in fact further privacy loss when the adversary is
given power to choose the mechanism based upon previous
responses.

4.3. Additional Power of Interactivity

Rigorous justification of the gap relies heavily upon having
obtained optimality results for adaptive and non-adaptive

compositions, plus intensive calculation. Even an intuitive
explanation is heavy in terms of notation, so we relegate
everything to the appendix. Here we make some comments
on why this can be particularly interesting to the DP com-
munity.

For the existing DP composition theorems, adaptivity in
the choice of DP algorithm did not affect the overall pri-
vacy parameters. Rogers et al. (2016) show that there is
an asymptotic gap in the privacy loss bound when the pri-
vacy parameters {εi}ki=1 are fixed in advance versus when
an analyst can adaptively select the privacy parameters εi
at each round i based on previous outcomes before i. How-
ever, we focus on the traditional view of DP that fixes all
the privacy parameters up front. Role of interactivity and
adaptivity in learning algorithms and estimation tasks have
been studied in (Kasiviswanathan et al., 2011; Smith et al.,
2017; Joseph et al., 2019; Duchi and Rogers, 2019) in the
model of local DP.

5. Conclusion and Future Directions
In this work, we studied the privacy parameters when com-
posing multiple exponential mechanisms, which is funda-
mental in private machine learning and private data analy-
sis. We considered both cases when the exponential mech-
anisms can be adaptively selected at each round and when
they are all selected in advance, and provide optimal results
in both cases. Based on these results, we showed a sepa-
ration of privacy parameters between adaptive composition
and non-adaptive composition, which to our knowledge is
a first of its kind result.

We then provided improved and computationally efficient
composition bounds for the adaptive and inhomogeneous
case by tailoring concentration bounds for our particular
setting. In order to better understand the adaptive compo-
sition bound, one potential direction for future work is to
understand the asymptotics of the privacy loss bound, as
k → ∞. We conjecture that the asymptotic gap collapses
between the optimal composition bound for the adaptive
and nonadaptive cases, and leave that as future work to
study. Furthermore, in the non-asymptotic setting we be-
lieve that the gap between adaptive and non-adaptive is
quite small, and also leave proving a strong upper bound
on this gap to future work.

We demonstrate by Figure 1 that our improved analysis let
the top-k algorithm in (Durfee and Rogers, 2019) run twice
as many rounds as in the original analysis. An exciting
direction is to apply the analysis to other machine learning
algorithms such as private PCA (Chaudhuri et al., 2012) to
see how much privacy budget we can save, or equivalently,
how much accuracy we can buy while retaining the same
privacy level.
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