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A. Omitted details in Section 2
Recall that we defined

Mε
1 =

{
M : X → Y | ∆u 6 1 where u(x, y) = 1

ε lnP [M(x) = y]
}

Mε
2 =

{
M : X → Y | ∃u(x, y) s.t. ∆u 6 1, P [M(x) = y] ∼ eεu(x,y)

}
and stated that

Lemma A.1. The following facts hold

1. Mε
1 = {M : X → Y |M is ε-DP};

2. Mε
1 $ Mε

2 $ M2ε
1 .

Proof of Lemma A.1. 1. Let u(x, y) = 1
ε lnP [M(x) = y].

M is ε-DP⇔
∣∣∣ln P [M(x′)=y]

P [M(x)=y]

∣∣∣ 6 ε for all neighboring x, x′

⇔ |εu(x′, y)− εu(x, y)| 6 ε for all neighboring x, x′

⇔ |u(x′, y)− u(x, y)| 6 1 for all neighboring x, x′

⇔ ∆u 6 1.

2. Mε
1 $ Mε

2 $ M2ε
1 .

Mε
1 ⊆Mε

2 is straightforward from definition. Mε
2 ⊆M2ε

1 follows from the well-known Theorem 1.

Next we show the strict inequalities. For simplicity we assume X = Y = {0, 1}. Consider u(x, y) = x − 2xy.
Obviously ∆u = 1, and hence the resulting mechanism Mu,ε ∈ Mε

2. However, if we compute its normalized log
probability function

ũ(x, y) = 1
ε lnP [Mu,ε(x) = y] = 1

ε ln
eεu(x,y)∑
y eεu(x,y)

= u(x, y)− 1
ε ln

∑
y eεu(x,y)︸ ︷︷ ︸
f(x)

.

Easy calculation shows f(0) = 2, f(1) = eε + e−ε > f(0). We have

ũ(1, y)− ũ(0, y) = 1− 2y −
(

1
ε ln f(1)− 1

ε ln f(0)︸ ︷︷ ︸
γ

)
.
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Since f(1) > f(0), we have γ > 0. Taking maximum over y, we have

∆ũ = max
y∈{0,1}

|ũ(1, y)− ũ(0, y)| = max{| − 1− γ|, |1− γ|} = max{|1 + γ|, |1− γ|}.

As long as γ 6= 0, we have ∆ũ > 1, which is to say, Mu,ε 6∈Mε
1. This proves the first strict inequality.

For the second strict inequality, consider the following randomized response: M(0) = Bern(p),M(1) = Bern(1−p)
where p = e2ε

1+e2ε . It’s easy to verify that M ∈M2ε
1 . We want to argue that it is not in Mε

2. Suppose it was, i.e. there is
a quality score u with ∆u 6 1, P [M(x) = y] ∼ eεu(x,y). Then u must look like the following for some numbers a, b

u(x, y) y = 0 y = 1
x = 0 a+ 1

ε ln(1− p) a+ 1
ε ln p

x = 1 b+ 1
ε ln p b+ 1

ε ln(1− p)

We can compute sensitivity as follows

u(0, 1)− u(1, 1) = a− b+ 1
ε ln p

1−p = a− b+ 2

u(0, 0)− u(1, 0) = a− b+ 1
ε ln 1−p

p = a− b− 2

∆u 6 1 requires that both of them are in [−1, 1], but a − b + 2 6 1 and a − b − 2 > −1 obviously contradict each
other. This shows the randomized response is in M2ε

1 but not in Mε
2, hence the second strict inequality.

Proof of Proposition 1. (a) By definition,

∆̃u′ = sup
x∼x′

{
(max

y
−min

y
) {u′(x′, y)− u′(x, y)}

}
= sup
x∼x′

{
(max

y
−min

y
) {u(x′, y)− u(x, y) + f(x′)− f(x)}

}
= sup
x∼x′

{
(max

y
−min

y
) {u(x′, y)− u(x, y)}

}
= ∆̃u

(b)

∆̃u = sup
x∼x′

{
(max

y
−min

y
) {u(x′, y)− u(x, y)}

}
6 sup
x∼x′

{
max
y
{u(x′, y)− u(x, y)}

}
+ sup
x∼x′

{
−min

y
{u(x′, y)− u(x, y)}

}
6 ∆u+ ∆u = 2∆u.

(c) Obviously, M̃ε
1 ⊆ M̃ε

2. To see the reverse direction, notice that if a mechanism can be realized by two scores u, u′,
then u− u′ is independent of y. By (a) it implies ∆̃u = ∆̃u′. Hence M̃ε

2 ⊆ M̃ε
1.

Proof of Proposition 2. The proof first appears in (Durfee and Rogers, 2019). We repeat here for completeness. Let
p(x, y) = lnP [Mu,ε(x) = y]. Since 1

εp and u realize the same mechanism, it follows from (a) of Proposition 2 that
∆̃ 1
εp = ∆̃u. Therefore, ∆̃p = ∆̃u · ε. It suffices to show that Mu,ε is ∆̃p-DP, i.e. for any neighboring x, x′ we have

|p(x, y)− p(x′, y)| 6 ∆̃p,∀y.

Let

t = max
y
{p(x, y)− p(x′, y)},

s = min
y
{p(x, y)− p(x′, y)}.
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Since p(x, y) and p(x′, y) both satisfy a normalizing condition, i.e.
∑
y ep(x,y) =

∑
y ep(x

′,y) = 1, it’s impossible that
p(x, y) is uniformly larger or smaller than p(x′, y). So we have s 6 0 6 t. Therefore for any y,

|p(x, y)− p(x′, y)| 6 max{|t|, |s|} 6 t− s 6 ∆̃p.

The proof is now complete.

Proof of Proposition 3. The equivalence between (1) and (2) follows directly from the definition of M̃ε
1. The equivalence

of (1) and (3) follows essentially from the argument for Proposition 2. Let p(x, y) = lnP [M(x) = y] and

t = max
y
{p(x, y)− p(x′, y)},

s = min
y
{p(x, y)− p(x′, y)}.

We have seen that s 6 0 6 t. ε-BR property is equivalent to that t− s 6 ε, i.e. s > t− ε. Therefore for each pair of x, x′

we have

t− ε 6 s 6 p(x, y)− p(x′, y) = ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
6 t.

The reverse argument also holds. The proof is now complete.

B. Proof of Theorem 2 and 3 via reduction
In this section we prove the main results of this paper, Theorem 2 and 3. In Appendix B.1 we point out an issue that
is not mentioned in the main body and explain why it does not affect the result. In Appendix B.2 we prove the basic
tools – Lemma 4.1 and 4.2. In particular, Lemma 4.1 reduces bounded range mechanisms to Bernoulli distributions. In
Appendix B.3 we use the tools to prove Theorem 2. The heavy calculation are relegated to Appendix C. In Appendix B.3
we prove Theorem 3.

We remark that the reduction technique in Appendix B.2 is first introduced to differential privacy by Kairouz et al. (2017),
relying on the magical Blackwell’s theorem. Later on it is greatly developed by Dong et al. (2019). Using their language
and techniques, it is possible to get simplified proofs, and simultaneously avoid the use of Blackwell’s theorem. However,
we follow the approach in Kairouz et al. (2017) to minimize machinery and make it accessible to the broadest audience.

B.1. Handling randomization

In Section 2 we claimed to have justified that we should focus on the follwing class

Mε = {M : X → Y |M is ε-BR}.

It models the scenario where a data analyst is allowed to choose from a collection of queries that lead to quality scores
with bounded range. However, it does not take into consideration that the data analyst can randomize over this collection
of queries. That being said, what really needs to be modeled, is the convex hull of this class, namely, conv(Mε). This
issue is rarely raised in the existing literature because previously considered classes of mechanisms are all convex. For
example, a convex combination of (ε, δ)-DP mechanisms is still (ε, δ)-DP. However, there are simple examples show-
ing that Conv(Mε) 6= Mε. So what we should really consider, is the adaptive/non-adaptive composition with in the
class conv(Mε). For example, in Section 2.3 we explained what we mean by “non-adaptive composition of ε-BR mech-
anisms”. Taking randomization into consideration, we should consider “non-adaptive composition of randomized ε-BR
mechanisms”. More specifically, a mechanism M : X → Y k is a k-fold non-adaptive composition of randomized ε-BR
mechanisms if there are Mi : X → Y, i = 1, 2 . . . , k, each in conv(Mε), such that M(x) =

(
M1(x), . . . ,Mk(x)

)
. The

adaptive version can be similarly defined.

However, we argue here that randomization is not a concern: any (ε, δ)-DP guarantee that holds for composition of BR
mechanisms also holds for composition of randomized BR mechanisms. The reason is simple: composition of randomized
BR mechanisms must also be a randomization over composition of BR mechanisms. To see this, let M be a composition
of randomized BR mechanisms. In the process of composition, although randomization can be introduced in every step,
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we can condition on all the randomness introduced in the process, and end up with a composition of pure (in contrast to
randomized) BR mechanisms. We can recover M by adding back all the randomness extracted, all at once. This argument
explains why Theorem 2 and 3 also hold with randomization.

For the ease of proofs, we will continue to assume that the component mechanisms are “pure” BR mechanisms.

B.2. Proof of Lemma 4.1 and 4.2

In order to use Blackwell’s theorem ((Blackwell, 1950), Theorem 10), we will need to first establish some notation. For
a pair of probability distributions P and Q on a common probability space Ω, its trade-off function Dong et al. (2019)
describes the hardness of the hypothesis testing problem H0 : P vs H1 : Q. Let E ⊆ Ω be an arbitrary rejection region
and αE = P [E], βE = 1 − Q[E] be the type I and type II errors of the test E respectively. Fix a level α0 and let E run
over all test with type I error at most α0, the minimal type II error is

inf{βE : E is a rejection region s.t. αE 6 α0}.

This correspondence of α0 to the minimal type II error defines a function from [0, 1] to [0, 1]. We will call this function
T (P,Q). Formally,

T (P,Q) : [0, 1]→ [0, 1]

α0 7→ inf{βE : αE 6 α0}

The following form of Blackwell’s theorem is taken from (Dong et al., 2019).

Theorem 1. Let P,Q be probability distributions on Y and P ′, Q′ be probability distributions on Z. The following two
statements are equivalent:

(a) T (P,Q) 6 T (P ′, Q′).

(b) There exists a randomized algorithm Proc : Y → Z such that Proc(P ) = P ′,Proc(Q) = Q′.

We now prove that we can post-process a pair of Bernoulli distributions to simulate any BR mechanism on neighboring
inputs.

Proof of Lemma 4.1. Let P be the outcome distribution of M(x0) and Q be the outcome distribution of M(x1). By
Proposition 3, we know there exists some t ∈ [0, ε] such that

t− ε 6 ln
Q(y)

P (y)
6 t.

Equivalently, for any event E ⊆ Y ,
et−εP [E] 6 Q[E] 6 etP [E]. (1)

Applying the same rule for the complement event Ec, we have

et−εP [Ec] 6 Q[Ec] 6 etP [Ec]. (2)

The second inequality of (1) and the first inequality of (2) imply

1− βE 6 etαE , et−ε(1− αE) 6 βE . (3)

Let the piece-wise linear function lt,ε : [0, 1]→ [0, 1] be defined as

lt,ε(x) = max{1− etx, et−ε(1− x)}.

It’s easy to see that (3) implies T (P,Q) > lt,ε pointwise in [0, 1]. Furthermore, it is straightforward to verify that lt,ε ≡
T (Bern(pt),Bern(qt)). Therefore, there must be a t = t(M,x, x′) such that

T (Bern(pt),Bern(qt)) 6 T
(
M(x),M(x′)

)
.

Applying Theorem 1 then gives our desired claim.
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Proof of Lemma 4.2. Starting from definition,

δopt(M, ε) = inf
{
δ : M is (ε, δ)-DP

}
= inf
x∼x′

min{δ : P [M(x′) ∈ E] 6 eεP [M(x) ∈ E] + δ, ∀E}

= sup
x∼x′

max
E
{P [M(x′) ∈ E]− eεP [M(x) ∈ E]} .

Let px(y) = P [M(x) = y] be the density function. Then for a fixed pair x, x′

max
E
{P [M(x′) ∈ E]− eεP [M(x) ∈ E]} = max

E

∫
E

[
px′(y)− eεpx(y)

]
dy

Obviously, the maximum is attained at the event that the integrand being non-negative. That is, E = {y : px′(y) −
eεpx(y) > 0}. Therefore,

max
E
{P [M(x′) ∈ E]− eεP [M(x) ∈ E]} =

∫ [
px′(y)− eεpx(y)

]
+

dy (∗)

=

∫
px′(y)

[
1− eε · px(y)px′ (y)

]
+

dy

=

∫
px′(y)

[
1− eε−L(y;x,x

′)
]
+

dy

= Ey∼M(x′)

[
1− eε−L(y;x,x

′)
]
+

dy

Taking supremum over x, x′ yields the desired result.

B.3. Proof of Theorem 2

LetM : X → Y1×· · ·×Yk be a k-fold non-adaptive composition of ε-BR mechanisms, i.e. M(x) =
(
M1(x), . . . ,Mk(x)

)
such that Mi : X → Yi, i = 1, 2 . . . , k are ε-BR mechanisms. Fix neighboring datasets x, x′, Lemma 4.1 implies that
there are randomized mappings Ki : {0, 1} → Yi, i = 1, 2, . . . , k such that

If b ∼ Bern(pt), then Ki(b) ∼Mi(x)

If b ∼ Bern(qt), then Ki(b) ∼Mi(x
′)

As a consequence, we can construct K : {0, 1}k → Y1 × · · · × Yk such that

If (b1, . . . , bk) ∼ Bern(pt1)× · · · × Bern(ptk), then K(b1, . . . , bk) ∼M(x)

If (b1, . . . , bk) ∼ Bern(qt1)× · · · × Bern(qtk), then K(b1, . . . , bk) ∼M(x′)

Basically the distinction between the two Bernoulli products is larger than that between the neighboring distributions
M(x) and M(x′). In other words, for k-fold non-adaptive composition of ε-BR mechanisms, the worst case neighbors are
Bernoulli products. Together with Lemma 4.2, we can compute δoptNA

k (εg), the optimal δ such that all k-fold non-adaptive
composition of ε-BR mechanisms are (εg, δ)-DP.

It turns out the intermediate formula (∗) is more useful, where we replace px(y) and px′(y) by the probability functions
of Bern(pt1) × · · · × Bern(ptk) and Bern(qt1) × · · · × Bern(qtk) respectively. For example, the probability function of
Bern(pt1)× · · · × Bern(ptk) is

f(b1, . . . , bk) =

k∏
i=1

pbiti (1− pti)
1−bi .

Integral in (∗) is replaced by summation over b1b2 . . . bk ∈ {0, 1}k. Note that we need to take supremum over t1, . . . , tk
because they depend on the neighboring datasets x, x′ and hence should be maximized over as in Lemma 4.2.

δoptNA
k (εg) = sup

t1,...,tk

∑
b1b2...bk∈{0,1}k

[
k∏
i=1

qbiti (1− qti)
1−bi − eεg

k∏
i=1

pbiti (1− pti)
1−bi

]
+

.
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Let S be the subset of indices such that bi = 0. This change of dummy variable yields an equivalent formula for δoptNA
k (εg).

δoptNA
k (εg) = sup

t∈[0,ε]k

∑
S⊆{1,...,k}

[∏
i/∈S

qti
∏
i∈S

(1− qti)− eεg
∏
i/∈S

pti
∏
i∈S

(1− pti)

]
+

.

In order to prove Theorem 2, it suffices to show δoptNA
k (εg) above agrees with the expression δNA

k (εg) defined in the
statement. This is highly non-trivial and involves identifying the symmetry of the maximizers of a high dimensional
non-convex and non-smooth optimization problem. We state the lemma here and will accomplish it in Section C.

Lemma B.1. δoptNA
k (εg) = δNA

k (εg). That is,

sup
t∈[0,ε]k

∑
S⊆{1,...,k}

[∏
i/∈S

qti
∏
i∈S

(1− qti)− eεg
∏
i/∈S

pti
∏
i∈S

(1− pti)

]
+

= max
06`6k

k∑
i=0

(
k

i

)
pk−it∗`

(1− pt∗` )i(ekt
∗
`−iε − eεg )+,

where t∗` =
εg+(`+1)ε

k+1 . If t∗` /∈ [0, ε], then we round it to the closest point in [0, ε].

B.4. Proof of Theorem 3

First we prove a useful lemma. Let M1 : X → Y,M2 : X × Y → Z be two randomized algorithms on databases and
M : X → Y × Z be their adaptive composition as explained in Section 2.1. Let px(y) = P [M1(x) = y] be the density
function / probability function of the first mechanism and Lx,x′(y) = ln px′ (y)

px(y)
be the log likelihood ratio. Then we have

Lemma B.2. If M2 is
(
ε, δ2(ε)

)
-DP for all ε, then the composition M is

(
ε, δcompo(ε)

)
-DP for all ε with

δcompo(ε) = sup
x,x′

∫
δ2(ε− Lx,x′(y)) · px′(y) dy.

Proof of Lemma B.2. Using similar notation and Lemma 4.2, we have that the composition M is (ε, δ)-DP with

δ = sup
x,x′

∫∫ [
px′(y, z)− eεpx(y, z)

]
+

dy dz

= sup
x,x′

∫∫ [
px′(z|y)px′(y)− eεpx(z|y)px(y)

]
+

dy dz

= sup
x,x′

∫∫
px′(y)

[
px′(z|y)− eεpx(z|y) px(y)px′ (y)

]
+

dy dz

= sup
x,x′

∫
px′(y)

(∫ [
px′(z|y)− eε−Lx,x′ (y)px(z|y)

]
+

dz

)
dy

6 sup
x,x′

∫
px′(y)δ2(ε− Lx,x′(y)) dy.

So we can pick δ = δcompo(ε) = supx,x′
∫
δ2(ε− Lx,x′(y)) · px′(y) dy.

To prove Theorem 3, we do two inductions on k for k-fold adaptive composition of ε-BR mechanisms, one for validity of
the privacy guarantee and one for its optimality. Now we start from the induction for validity.

For the base case where k = 0, we apply no mechanism, which amounts to set all inputs the same, i.e. x = x′. In that case
L(y;x, x′) = 0 in Lemma 4.2, and Ey∼M(x′)

[
1− eεg−L(y;x,x

′)
]
+

dy ≡ max{1− eεg , 0}.

Assuming all k-fold adaptive composition of ε-BR mechanisms are
(
εg, δ

A
k (εg)

)
-DP for any εg . We proceed to consider a

k+1-fold adaptive composition M : X → Y1×· · ·×Yk+1. It can be decomposed as the adaptive composition of an ε-BR
mechanism M1 : X → Y1 and a k-fold composition of ε-BR mechanism M2 : X × Y1 → Y2 × · · · × Yk+1. Fix a pair
of neighboring datasets x, x′. Using Lemma 4.1, we know that the first step can be assumed to be Bernoulli distributions
Bern(pt) and Bern(qt) where t = t(x, x′), and then the second step remains to be

(
εg, δ

A
k (εg)

)
-DP for any εg . Now we
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can use Lemma B.2 and conclude that any k+ 1-fold adaptive composition of ε-BR mechanisms is
(
εg, δ

A
k+1(εg)

)
-DP for

any εg , where

δA
k+1(εg) = sup

x,x′
qt(x,x′)δ

A
k (εg − Lx,x′(1)) + (1− qt(x,x′))δA

k (εg − Lx,x′(0))

Lx,x′ is the log likelihood ratio between Bern(pt) and Bern(qt). So using Equation (1) at the beginnig of Section 3, we
have

Lx,x′(1) = ln
qt
pt

= t, Lx,x′(0) = ln
1− qt
1− pt

= t− ε.

Therefore,

δA
k+1(εg) = sup

x,x′
qt(x,x′)δ

A
k (εg − t) + (1− qt(x,x′))δA

k (εg − t(x, x′) + ε)

= sup
t∈[0,ε]

qtδ
A
k (εg − t) + (1− qt)δA

k (εg − t+ ε).

This finishes the induction and proves the validity of the privacy guarantee in Theorem 3.

Now we start the induction for optimality. Obviously the base case k = 0 is optimal. Assuming the recursive formula is
optimal for k, i.e. for any given εg there is a k-fold adaptive composition of ε-BR mechanisms that is not (εg, δ)-DP for any
δ < δA

k (εg). We claim it is also true for k+ 1-fold composition. In fact, for a fixed εg , let t∗ be a maximizer in the formula
for δA

k+1(εg). By the induction hypothesis, we can construct M∗1 and M∗2 , both of which are k-fold adaptive compositions
of ε-BR mechanisms, such thatM∗1 achieves

(
εg−t∗, δA

k (εg−t∗)
)
-DP andM∗2 achieves

(
εg−t∗+ε, δA

k (εg−t∗+ε)
)
-DP.

One can verify that the following mechanism achieves
(
εg, δ

A
k+1(εg)

)
-DP:

On the input x, sample a bit b from Bern(pt∗). Run M∗1 (x) if b = 1 and M∗2 (x) otherwise.
On the input x′, sample a bit b from Bern(qt∗). Run M∗1 (x′) if b = 1 and M∗2 (x′) otherwise.

For completeness, the mechanism can run as if it had x′ when it is fed with an input other than x or x′. Since the first
step is ε-BR, it is by construction a k + 1-fold adaptive compositions of ε-BR mechanisms. This finishes the induction for
optimality, and hence finishes the proof of Theorem 3.

C. Proof of Lemma B.1
The goal of this section is to prove Lemma B.1 and hence finish the proof of Theorem 2. We need to simplify the expression

δoptNA
k (εg) = max

t∈[0,ε]k

∑
S⊆{1,...,k}

[∏
i/∈S

qti
∏
i∈S

(1− qti)− eεg
∏
i/∈S

pti
∏
i∈S

(1− pti)

]
+︸ ︷︷ ︸

δ(t,εg)

so that it agrees with δNA
k (εg). Here t = (t1, · · · , tk) ∈ [0, ε]k and δ : [0, ε]k ×R→ [0, 1] is our objective function (with a

slight abuse of notation). Written in this way, we have δoptNA
k (εg) = maxt∈[0,ε]k δ(t, εg). We have been using max instead

of sup and will continue to use it because obviously δ(t, εg) is continuous in t and t belongs to a compact domain [0, ε]k.

As we mentioned, the proof essentially involves solving a high dimensional, non-convex and non-smooth optimization
problem. The complete solution is relatively long, so we divide the section into four subsections: Appendix C.1 reduces
the dimension to one and Appendix C.2 solves the one-dimensional problem. Technical arguments for dimension reduction
is in Appendix C.3, and the heavy calculation involved in the one-dimensional optimization is in Appendix C.4.

C.1. Strong symmetry of maximizers

We first show that when εg /∈ (−kε, kε), then the choice of δ(t, εg) does not depend on t ∈ [0, ε]k. However, this region
for εg is not typically interesting in most DP applications.

Lemma C.1. For any t ∈ [0, ε]k, if εg 6 −kε then δ(t, εg) = 1− eεg , and if εg > kε then δ(t, εg) = 0.
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Proof. Using the fact that qt = etpt and (1− qt) = et−ε(1− pt), we equivalently have

δ(t, εg) =
∑

S⊆{1,...,k}

∏
i/∈S

pti
∏
i∈S

(1− pti) max
{

e
∑
ti−|S|ε − eεg , 0

}

If εg > kε then max{e
∑
ti−|S|ε − eεg , 0} = 0 for any S ⊆ {1, . . . , k}. Similarly, if εg 6 −kε then max{e

∑
ti−|S|ε −

eεg , 0} = e
∑
ti−|S|ε − eεg for any S ⊆ {1, . . . , k} and we get

δ(t, εg) =
∑

S⊆{1,...,k}

(∏
i/∈S

qti
∏
i∈S

(1− qti)− eεg
∏
i/∈S

pti
∏
i∈S

(1− pti)

)
= 1− eεg

For the remainder of our analysis, we will focus on the interesting setting where εg ∈ (−kε, kε). Despite the large domain
[0, ε]k of values to choose from in the maxt for δopt, we show that the maximizer must have strong symmetry, i.e. ti = t∗

for some t∗ for all i ∈ [k]. This result is crucial in simplifing δoptNA
k to δNA

k . We first give an easy condition on what the ti
must satisfy to optimize the δ parameter which will be important for proving a strict inequality in the subsequent claim.

Lemma C.2. If εg ∈ (−kε, kε) then for any t ∈ [0, ε]k such that δ(t, εg) = maxt∈[0,ε]k δ(t, εg), we must have

εg <

k∑
i=1

ti < εg + kε

Proof. Using the fact that qt = etpt and (1− qt) = et−ε(1− pt), we equivalently have

δ(t, εg) =
∑

S⊆{1,...,k}

∏
i/∈S

pti
∏
i∈S

(1− pti) max
{

e
∑
ti−|S|ε − eεg , 0

}

It then follows that if
∑
ti 6 εg we must have

max
{

e
∑
ti−|S|ε − eεg , 0

}
= 0

for any S and so δ(t, εg) = 0. However, if εg < kε, then there must exist t such that ti < ε for each i and
∑
ti > εg .

Setting S = ∅ we must have pti > 0 for all i and max{e
∑
ti − eεg , 0} > 0. Therefore, δoptNA

k (εg) > 0 and if
∑
ti 6 εg

we must have δ(t, εg) < δoptNA
k (εg).

Similarly, if
∑
ti > εg + kε we must have the following for any subset S

max
{

e
∑
ti−|S|ε − eεg , 0

}
= e

∑
ti−|S|ε − eεg

We then have the following,

δ(t, εg) =
∑

S⊆{1,...,k}

∏
i/∈S

pti
∏
i∈S

(1− pti)
(

e
∑
ti−|S|ε − eεg

)
=

∑
S⊆{1,...,k}

∏
i/∈S

qti
∏
i∈S

(1− qti)− eεg
∏
i/∈S

pti
∏
i∈S

(1− pti) = 1− eεg

By the same reasoning, we have δ(t, εg) > 1 − eεg if e
∑
ti−|S|ε − eεg < 0 for some S ⊆ {1, · · · , k} and all ti ∈ (0, ε),

which implies pti ∈ (0, 1) for all i. Accordingly, we have δ(t, εg) > 1−eεg if
∑
ti < εg+kε, and if εg > −kε, there must

exist positive ti such that
∑
ti < εg +kε. Therefore if

∑
ti > εg +kε, we must have δ(t, εg) < maxt∈[0,ε]k δ(t, εg).
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The next lemma shows that taking the average of some ti, tj can only increase the value of δ(t, εg). Further, this will
strictly increase the δ when the ti satisfy the condition of the lemma above. We will be able to easily conclude from this
that δ cannot be optimal if ti 6= tj for some i, j

Lemma C.3. For any εg ∈ R and t ∈ [0, ε]k,

δ(t, εg) 6 δ

((
t1 + t2

2
,
t1 + t2

2
, t3, ..., tk

)
, εg

)
Further, the inequality is strict whenever εg <

∑
ti < εg + kε and t1 6= t2.

The proof of this lemma will require quite a bit of technical detail which we relegate to Appendix C.3. We then have the
immediate corollary.

Corollary C.1. For any εg ∈ (−kε, kε) we must have the following for any t ∈ [0, ε]k such that there exists some ti 6= tj

δ(t, εg) < δoptNA
k (εg).

Proof. We will prove by contradiction and suppose δ(t, εg) = δoptNA
k (εg) and ti 6= tj for some pair of indices. Note that

δ(t, εg) is equal under permutation of the indices in t, so without loss of generality, we let t1 6= t2. From Lemma C.2, we
must have εg <

∑
ti < εg + kε. We then apply Lemma C.3 to get our contradiction

δ(t, εg) < δ

(
t1 + t2

2
,
t1 + t2

2
, t3, ..., tk

)
6 δoptNA

k (εg)

Using the strong symmetry of maximizers, we can reduce the high dimensional optimization to a one-dimensional one.

Lemma C.4. For any εg ∈ R and ε > 0

δoptNA
k (εg) = max

t∈[0,ε]

k∑
i=0

(
k

i

)
pk−it (1− pt)i max

{(
ekt−iε − eεg

)
, 0
}

(4)

Proof. From Corollary C.1 we know that for εg ∈ (−kε, kε),

δoptNA
k (εg) = max

t∈[0,ε]
δ(t, . . . , t, εg).

Furthermore, we know if εg > kε then δ(t, εg) = 0 for any t ∈ [0, ε]k, and also if εg 6 −kε then δ(t, εg) = 1 − eεg for
any t ∈ [0, ε]k. Therefore,

δoptNA
k (εg) = max

t∈[0,ε]

∑
S⊆{1,...,k}

∏
i/∈S

pt
∏
i∈S

(1− pt) max
{

ekt−|S|ε − eεg , 0
}

= max
t∈[0,ε]

∑
S⊆{1,...,k}

p
k−|S|
t (1− pt)|S|max

{
ekt−|S|ε − eεg , 0

}

For each i ∈ {0, 1, · · · , k} there are
(
k
i

)
subsets S ⊆ {1, . . . , k} such that |S| = i, and grouping these together gives our

desired equality.

C.2. Solving the one-dimensional optimization

Now that we have a much simpler one-dimensional optimization problem (4), it’s possible to explicitly solve for the
maximizer. Ultimately, we will show that there are only k different candidate values of t that maximizes δ((t, t, · · · , t), εg),
and give explicit expressions for these candidate values of t. These explicit expressions will also be necessary in later
sections when we show that there is a difference between the adaptive and nonadaptive setting.
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Since we no longer need to consider any t ∈ [0, ε]k where t is not a scalar times the all ones vector, we will simplify our
notation to be

δk(t, εg) :=

k∑
i=0

(
k

i

)
pk−it (1− pt)i max

{(
ekt−iε − eεg

)
, 0
}
. (5)

Given that we want to find the t which maximizes this expression, our goal will be to take the partial derivative of this
function with respect to t. The maximization within the expression will make this more difficult, however, because the
maximization is over a variable term and zero, we will always be able to write δk(t, εg) in terms of the following function
F` for some ` ∈ {0, · · · , k} that will depend on t.

F`(t, εg) :=
∑̀
i=0

(
k

i

)
pk−it (1− pt)i

(
ekt−iε − eεg

)
. (6)

This function is differentiable and we show its relation to δk(t, εg).

Lemma C.5. For any εg ∈ R, ε > 0, and t ∈ [0, ε], there must exist some ` ∈ [k] such that

δk(t, εg) = F`(t, εg).

Proof. Note that ekt−iε − eεg decreases as i increases, which implies that for any t ∈ [0, ε] there must exist some ` such
that max{ekt−iε − eεg , 0} = ekt−iε − eεg for all i 6 ` and max{ekt−iε − eεg , 0} = 0 for all i > `. Therefore, because pt
and (1− pt) are non-negative we have

δk(t, εg) = F`(t, εg).

It then follows that optimizing over t ∈ [0, ε] for δk(t, εg) can be reduced to optimizing over t ∈ [0, ε] for each F`(t, εg).

Corollary C.2. For any εg ∈ R and ε > 0,

δoptNA
k (εg) = max

06`6k
{max
t∈[0,ε]

F`(t, εg)}.

Proof. Follows immediately from Lemma C.5 and because for any εg and t ∈ [0, ε], by definition F`(t, εg) > δk(t, εg) for
all `.

We will now individually solve each maxt∈[0,ε] F`(t, εg), which does not contain a maximization term and is differentiable.
Our ultimate goal will be to solve ∂F`(t,εg)

∂t = 0, and we want explicit expressions for t, which will require a simple
formulation of the partial derivate with respect to t. These explicit expressions will also be necessary for proving that
there is a gap between the nonadaptive and adaptive settings. The proof for this will become quite involved with some
surprisingly nice cancellation, and we relegate the details to Appendix C.4.

Lemma C.6. For εg ∈ R, ε > 0, and 0 6 ` 6 k

∂F`(t, εg)

∂t
= (k − `)

(
k

`

)
pk−1−`t (1− pt)`

1

1− e−ε

(
eεg−t − ekt−(`+1)ε

)
.

In order to prove that there is a gap between composition of adaptive and nonadaptive BR mechanisms, we will further
utilize this exact characterization of the partial derivative to give a strict interpretation of the set of t that can achieve a
maximization of our full expression. However, for giving an efficiently computable expression for optimal composition,
the following simple corollary will suffice.
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Corollary C.3. For εg ∈ R, ε > 0, and 0 6 ` 6 k

arg max
t∈[0,ε]

F`(t, εg) ∈
{

0, ε,
εg + (`+ 1)ε

k + 1

}
.

Proof. Note that pt = 1 when t = 0 and pt = 0 when t = ε. Therefore ∂F`(t,εg)
∂t = 0 when t ∈ {0, ε} or when

εg − t = kt− (`+ 1)ε which evaluates to t =
εg+(`+1)ε

k+1 .

We can now prove Lemma B.1, which gives an efficient computation of optimal composition in the non-adaptive setting.

Proof. From Lemma C.4 we have

δoptNA
k (εg) = max

t∈[0,ε]
δk(t, εg)

From Lemma C.5 and Corollary C.2 we can restrict our consideration to values of t ∈ [0, ε] that maximize F`(t, εg) for
some ` ∈ [k]. Applying Corollary C.3 we can then restrict our consideration to t` for all ` ∈ [k], along with 0 and ε.
Note that pt = 1 when t = 0 and pt = 0 when t = ε, so it is straightforward to verify that δk(0, εg) = δk(ε, εg) =

max{1 − eεg , 0} for any εg . In the proof of Lemma C.2, we showed that δoptNA
k (εg) > 0 and δoptNA

k (εg) > 1 − eεg when
εg ∈ (−kε, kε), so it is irrelevant whether we include 0, ε in this setting. Finally, if εg /∈ (−kε, kε), then from Lemma C.1
we have δk(t, εg) = δoptNA

k (εg) = max{1− eεg , 0} for any t.

For the running time, first note that for any t we can compute pkt (ekt−eεg ) in O(k) time. Further, for any t, if we are given
the values

(
k
i

)
pk−it (1− pt)i and ekt−iε, then we can compute

(
k
i+1

)
p
k−(i+1)
t (1− pt)i+1 and ekt−(i+1)ε in O(1) time. Our

running time of O(k2) then immediately follows.

C.3. Proof of Lemma C.3

This lemma will be proven in two main sublemmas. First, we show that it holds for k = 2, then we show how we can
reduce the general case to k = 2 by conditioning outcomes other than the first and second terms.
Lemma C.7. For any εg ∈ R and t1, t2 ∈ [0, ε]

δ((t1, t2), εg) 6 δ

((
t1 + t2

2
,
t1 + t2

2

)
, εg

)
Further, the inequality is strict whenever εg < t1 + t2 < εg + 2ε and t1 6= t2.

Proof. Using the fact that qt = etpt and (1− qt) = et−ε(1− pt), we rewrite

δ((t1, t2), εg) =
∑

S⊆{1,2}

∏
i/∈S

pti
∏
i∈S

(1− pti) max
{

et1+t2−|S|ε − eεg , 0
}

We will then prove our desired inequality by considering four cases.

Case I (t1 + t2 6 εg): This implies that max{et1+t2−|S|ε − eεg , 0} = 0 for any subset S and

δ((t1, t2), εg) = δ

((
t1 + t2

2
,
t1 + t2

2

)
, εg

)
= 0.

Case II (t1 + t2 > εg + 2ε): This implies max{et1+t2−|S|ε − eεg , 0} = et1+t2−|S|ε − eεg for any S, which gives

δ((t1, t2), εg) =
∑

S⊆{1,2}

(∏
i/∈S

qti
∏
i∈S

(1− qti)− eεg
∏
i/∈S

pti
∏
i∈S

(1− pti)

)
= 1− eεg

and equivalently holds for δ(
(
t1+t2

2 , t1+t22

)
, εg).
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Case III (εg < t1 + t2 6 εg + ε): This implies that max{et1+t2−|S|ε − eεg , 0} = 0 for any S such that |S| > 0.
Therefore,

δ((t1, t2), εg) = pt1pt2
(
et1+t2 − eεg

)
Equivalently, we have

δ

((
t1 + t2

2
,
t1 + t2

2

)
, εg

)
= p2t1+t2

2

(
et1+t2 − eεg

)
We want strict inequality for this case, so it suffices to show pt1pt2 < p2t1+t2

2

. Plugging in the explicit formula for each pt
and performing some simple algebraic manipulations gives that this is equivalent to

2e−
t1+t2

2 < e−t1 + e−t2

which holds due to the strict-convexity of the exponential function.

Case IV (εg + ε 6 t1 + t2 < εg + 2ε): This implies that max{et1+t2−|S|ε − eεg , 0} = 0 when |S| = 2. Therefore,

δ((t1, t2), εg) = pt1pt2
(
et1+t2 − eεg

)
+ (pt1(1− pt2) + pt2(1− pt1))

(
et1+t2−ε − eεg

)
From Case II, we know ∑

S⊆{1,2}

∏
i/∈S

pti
∏
i∈S

(1− pti)
(

et1+t2−|S|ε − eεg
)

= 1− eεg

which yields
δ((t1, t2), εg) = 1− eεg − (1− pt1)(1− pt2)

(
et1+t2−2ε − eεg

)
.

This equivalently holds for δ(
(
t1+t2

2 , t1+t22

)
, εg) and because et1+t2−2ε − eεg < 0, we have

δ((t1, t2) , εg) < δ

((
t1 + t2

2
,
t1 + t2

2

)
, εg

)
⇔ (1− pt1)(1− pt2) <

(
1− p t1+t2

2

)2
.

Once again, we plug in the explicit formula for each pt and perform some simple algebraic manipulations to see that this
is also equivalent to

2e−
t1+t2

2 < e−t1 + e−t2

and this again holds due to the strict-convexity of the exponential function.

We now want to extend this to k > 2, which will be done by fixing an arbitrary subset of {3, · · · , k} and show that the
inequality holds when we restrict the summation to subsets of {1, · · · , k} that must contain that subset of {3, · · · , k}. This
will allow for easy cancellation. We will denote δU (t, εg, S) for a set U ⊆ [k] and S ⊆ U as

δU (t, εg, S) :=
∏

i∈U\S

pti
∏
i∈S

(1− pti)

·
∑

S′⊆[k]\U

max

{
e
∑
j∈U tj−|S|ε

∏
i/∈U∪S′

qti
∏
i∈S′

(1− qti)− eεg
∏

i/∈U∪S′
pti
∏
i∈S′

(1− pti), 0

}
.

Claim C.1. Let εg ∈ R. Then for any t ∈ [0, ε]k, we have for U = {3, · · · , k}

δ(t, εg) =
∑
S⊆U

δU (t, εg, S)
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Proof. We fix a set S ⊆ {3, · · · , k} = U . Using the fact that qt = etpt and (1− qt) = et−ε(1− pt), we have∏
i∈U\S

qti
∏
i∈S

(1− qti) = et3+···+tk−|S|ε
∏

i∈U\S

pti
∏
i∈S

(1− pti)

Therefore, we also have

δU (t, εg, S) =
∑

S′⊆{1,2}

max

{ ∏
i/∈S′∪S

qti
∏

i∈S′∪S
(1− qti)− eεg

∏
i/∈S′∪S

pti
∏

i∈S′∪S
(1− pti), 0

}

Summing over all S we can simply rewrite this summation over all subsets of {1, · · · , k}, giving our desired equality.

Lemma C.8. For any S ⊆ {3, ..., k} = U , we have the following inequality

δU (t, εg, S) 6 δU

((
t1 + t2

2
,
t1 + t2

2
, t3, ..., tk

)
, εg, S

)
Further, the inequality is strict if εg <

∑k
i=1 ti − |S|ε < εg + 2ε and t1 6= t2.

Proof. We fix S ⊆ {3, · · · , k}. Let ε′g = εg + |S|− t3−· · ·− tk, and then by cancelling non-negative like terms it suffices
to show

∑
S′⊆{1,2}

max

{∏
i/∈S′

qti
∏
i∈S′

(1− qti)− eε
′
g

∏
i/∈S′

pti
∏
i∈S′

(1− pti), 0

}

6
∑

S′⊆{1,2}

max

{∏
i/∈S′

qt′
∏
i∈S′

(1− qt′)− eε
′
g

∏
i/∈S′

pt′
∏
i∈S′

(1− pt′), 0

}

where t′ = t1+t2
2 . By definition, this is then equivalent to showing

δ((t1, t2), ε′g) 6 δ

((
t1 + t2

2
,
t1 + t2

2

)
, ε′g

)
which follows from Lemma C.7, and the strictness follows from the fact that ε′g = εg + |S| −

∑
j>2 tj .

With these we can now prove our main convexity lemma.

Proof of Lemma C.3. It immediately follows from Claim C.1 and Lemma C.8 that for any t ∈ [0, ε]k

δ(t, εg) 6 δ

((
t1 + t2

2
,
t1 + t2

2
, t3, ..., tk

)
, εg

)
Additionally, if we assume that t1 6= t2 and εg <

∑
ti < εg + kε, then there must exist some ` ∈ [0, k − 2] such that

εg + `ε <
∑
ti < εg +(`+2)ε, which implies that εg <

∑
ti− `ε < εg +2ε. Further, we know that for any ` ∈ [0, k−2]

there exists S ⊆ {3, · · · , k} such that |S| = `. Therefore, for one of these subsets the inequality is strict and the sum must
be a strict inequality as well.

C.4. Proof of Lemma C.6

Recall that we had the following definition, for which we wanted to compute the partial derivate with respect to t.

F`(t, εg) :=
∑̀
i=0

(
k

i

)
pk−it (1− pt)i

(
ekt−iε − eεg

)
(7)
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We further split each F`(t, εg) into the individual terms to more easily differentiate the full summation with respect to t.

f`(t, εg) :=

(
k

`

)
pk−`t (1− pt)`

(
ekt−`ε − eεg

)
In particular, giving a much simpler formulation for the partial derivative will rely upon an inductive proof, so this definition
will allow an even easier comparison between F`(t, εg) and F`+1(t, εg) that follows immediately from the definition.

Corollary C.4. For any ` ∈ [1, k]

F`(t, εg) = F`−1(t, εg) + f`(t, εg)

We first differentiate the simplest of these expressions F0(t, εg), and then we will ultimately use this as the base case for
proving a simplified formulation of derivative for the general case.

Lemma C.9.
∂F0(t, εg)

∂t
= kpk−1t

1

1− e−ε
(
eεg−t − ekt−ε

)
Proof. By definition

F0(t, εg) = pkt
(
ekt − eεg

)
=

(
e−t − e−ε

1− e−ε

)k (
ekt − eεg

)
Therefore, by basic differentiation rules

∂F0(t, εg)

∂t
=

(
−k e−t

1− e−ε

(
e−t − e−ε

1− e−ε

)k−1 (
ekt − eεg

))
+

(
e−t − e−ε

1− e−ε

)k
kekt

= kpk−1t

1

1− e−ε
(
−e−t

(
ekt − eεg

)
+
(
e−t − eε

)
ekt
)

which easily reduces to our desired term.

To apply an inductive claim to the general case, we will also need to evaluate the partial derivative of the last term for each
sum.

Lemma C.10. For 1 6 ` 6 k

∂f`(t, εg)

∂t
=

(
k

`

)
pk−1−`t (1− pt)`−1

(
1

1− e−ε

)2(
(k − `)

(
eεg−t + e(k−1)t−(`+1)ε

)
+ `
(

e(k−1)t−`ε + eεg−ε−t
)
− k

(
eεg−2t + ekt−(`+1)ε

))
Proof. By definition

f`(t, εg) =

(
k

`

)
pk−`t (1− pt)`

(
ekt−`ε − eεg

)
We can consider this then to instead be f`(t, εg) =

(
k
`

)
f(t) · g(t) · h(t) with f(t) = pk−`t , g(t) = (1 − pt)

`, and
h(t) = ekt−`ε − eεg . Applying basic differentiation rules and using the fact that pt = e−t−e−ε

1−e−ε , we obtain
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∂f`(t, εg)

∂t
=

(
k

`

)
(k − `)

(
−e−t

1− e−ε

)
pk−1−`t (1− pt)`

(
ekt−`ε − eεg

)
+

(
k

`

)
`

(
e−t

1− e−ε

)
pk−`t (1− pt)`−1

(
ekt−`ε − eεg

)
+

(
k

`

)
kekt−`εpk−`t (1− pt)`

We can pull out similar terms from each expression to achieve

∂f`(t, εg)

∂t
=

(
k

`

)
pk−1−`t (1− pt)`−1

(
1

1− e−ε

)2(
− (k − `)e−t(1− e−t)

(
ekt−`ε − eεg

)
+ `e−t(e−t − e−ε)

(
ekt−`ε − eεg

)
+ kekt−`ε

(
e−t − e−ε

) (
1− e−t

))
Further examination of the inner term by expanding each expression and cancelling like terms gives

− (k − `)e−t(1− e−t)
(
ekt−`ε − eεg

)
+ `e−t(e−t − e−ε)

(
ekt−`ε − eεg

)
+ kekt−`ε

(
e−t − e−ε

) (
1− e−t

)
= (k − `)

(
eεg−t + e(k−1)t−(`+1)ε

)
+ `
(

e(k−1)t−`ε + eεg−ε−t
)
− k

(
eεg−2t + ekt−(`+1)ε

)
This then implies our desired expression.

We now have the pieces to give a simpler evaluation of the partial derivative for the general case using an inductive
argument. Surprisingly, with a bit of combinatorial and algebraic massaging, the full partial derivative will reduce to a
rather simple expression.

Proof of Lemma C.6. The base case of ` = 0 is true from Lemma C.9. We then assume the claim for ` − 1, and by
Corollary C.4 we know F`(t, εg) = F`−1(t, εg) + f`(t, εg), which implies

∂F`(t, εg)

∂t
=
∂F`−1(t, εg)

∂t
+
∂f`(t, εg)

∂t

Applying our inductive claim and Lemma C.10 we then have

∂F`(t, εg)

∂t
= (k − (`− 1))

(
k

`− 1

)
p
k−1−(`−1)
t (1− pt)`−1

1

1− e−ε
(
eεg−t − ekt−`ε

)
+(

k

`

)
pk−1−`t (1− pt)`−1

(
1

1− e−ε

)2(
(k − `)

(
eεg−t + e(k−1)t−(`+1)ε

)
+ `
(

e(k−1)t−`ε + eεg−ε−t
)
− k

(
eεg−2t + ekt−(`+1)ε

))
We use the fact that (k − (`− 1))

(
k
`−1
)

= `
(
k
`

)
and this reduces to

∂F`(t, εg)

∂t
=

(
k

`

)
pk−1−`t (1− pt)`−1

(
1

1− e−ε

)2(
`
(
e−t − e−ε

) (
eεg−t − ekt−`ε

)
+

(k − `)
(

eεg−t + e(k−1)t−(`+1)ε
)

+ `
(

e(k−1)t−`ε + eεg−ε−t
)
− k

(
eεg−2t + ekt−(`+1)ε

))
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Further examination of the inner term by expanding each expression and cancelling like terms gives

`
(
e−t − e−ε

) (
eεg−t − ekt−`ε

)
+ (k − `)

(
eεg−t + e(k−1)t−(`+1)ε

)
+ `
(

e(k−1)t−`ε + eεg−ε−t
)
− k

(
eεg−2t + ekt−(`+1)ε

)
= (k − `)

(
eεg−t − eεg−2t + e(k−1)t−(`+1)ε − ekt−(`+1)ε

)
= (k − `)(1− e−t)

(
eεg−t − ekt−(`+1)ε

)
Substituting for this simplified expression and using the fact that 1− pt = 1−e−t

1−e−ε then gives our desired result.

D. Proof of Theorem 4
The goal of this section is to prove Theorem 4, which states that there is a gap between adaptive and non-adaptive compo-
sitions of BR mechanisms. In fact, the gap exists for all k > 2 and most εg . By optimality statements of Theorem 2 and 3,
it suffices to show that

δNA
k (εg) < δA

k (εg)

for the claimed parameter regime. The argument still requires a lot of careful work. We will execute main steps in
Appendix D.1 and then provide missing proofs in Appendix D.2.

D.1. Main steps

The general idea for proving the gap will be to also give the recursive definition for the non-adaptive optimal composition
that must fix t for each recursive call. The goal will then be to show that at some point within this recursion the summation
will strictly increase if the value for t is changed. This will require that we first fully characterize the possible values of
t for the non-adaptive optimal composition. Fortunately, most of the heavy lifting in this regard was done in the previous
section. With this characterization, we show that there is a gap when k = 2, and then further show that we can apply this
gap for k > 2.

Notations are inherited from the previous section. Recall δ(t, εg) is the optimization objective in non-adaptive composition,
i.e. δNA

k (εg) = maxt∈[0,ε]k δ(t, εg). From Corollary C.1, we know that any maximizer must look like (t, t, . . . , t) for some
t ∈ [0, ε]. So we introduced δk(t, εg) = δ

(
(t, t, . . . , t), εg

)
. Now we have δNA

k (εg) = maxt∈[0,ε] δ
k(t, εg). We are

interested in all possible maximizers, i.e. the set

topt(k, εg) = {t ∈ [0, ε] : δk(t, εg) = δNA
k (εg)}

Lemma D.1. Let ε > 0. If εg ∈ (−kε, kε), then

topt(k, εg) ⊆
{
εg + (`+ 1)ε

k + 1
: ` ∈ {0, · · · , k − 1}

}
∩ (0, ε).

Proof. From Lemma C.5 and Corollary C.2 we can restrict our consideration to values of t ∈ [0, ε] that maximize F`(t, εg)
for some ` ∈ [k]. Furthermore, F`(t, εg) can only maximized at the endpoints of the interval or whenever ∂F`(t,εg)

∂t = 0.
Thus, from Corollary C.3 we have

topt(k, εg) ⊆
{ εg + (`+ 1)ε

k + 1︸ ︷︷ ︸
t∗`

: ` ∈ {0, k}
}
∪ {0, ε}.

By definition, we can remove all values outside of [0, ε], so it then suffices to show that we can also remove {0, ε, t∗k}.
Note that pt = 1 when t = 0 and pt = 0 when t = ε and recall δk(t, εg) from (5), so it is straightforward to verify
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that δk(0, εg) = δk(ε, εg) = max{1 − eεg , 0} for any εg . In the proof of Lemma C.2, we showed that δNA
k (εg) > 0 and

δNA
k (εg) > 1− eεg when εg ∈ (−kε, kε), which implies 0, ε /∈ topt(k, εg).

It then suffices to show t∗k /∈ topt(k, εg). If εg > 0, then t∗k > ε, so we only need to consider εg 6 0. Note that
kt∗k = k(

εg
k+1 + ε), so for any i 6 k we have kt∗k − iε > k

k+1εg which implies

max
{

ekt
∗
k−iε − eεg , 0

}
= ekt

∗
k−iε − eεg .

Therefore, δk(t∗k, εg) = 1 − eεg and from above we know δNA
k (εg) > 1 − eεg when εg ∈ (−kε, kε), which implies

t∗k /∈ topt(k, εg) as desired.

We now want to show that we can write the optimal non-adaptive composition in a similar form as the adaptive composition.
This recursive formulation will then fix a value t throughout the recursion and δNA

k (εg) is then just the maximum value of
this recursion over all t ∈ [0, ε].

Corollary D.1. For k > 1 and for δk(t, εg) from (5), we have δ0(t, εg) = max{1− eεg , 0} and

δk(t, εg) = qtδ
k−1(t, εg − t) + (1− qt)δk−1(t, εg + ε− t).

We relegate the proof of this corollary to Appendix D.2. Now that the formulations are similar, we show the intuitive fact
that if at any point in the recursion either it is the case that either 1) switching the value of t, or 2) switching to the adaptive
setting, will strictly increase that δopt then there must be a gap between the non-adaptive and adaptive setting.

Lemma D.2. Fix the individual privacy parameter ε > 0, some global privacy parameter εg ∈ R and k > 2, along
with some t ∈ topt(k, εg), if there exist 0 6 `′ 6 ` < k such that either δNA

k−`(εg − `t + `′ε) < δA
k−`(εg − `t + `′ε) or

t /∈ topt(k − `, εg − `t+ `′ε), then we must have

δNA
k (εg) < δA

k (εg).

This lemma will actually require quite a bit of technical detail, so we instead give a proof in Appendix D.2. With this
property and our characterization of topt(k, εg), we now show that there is a gap for the base case of k = 2.

Lemma D.3. For any εg ∈ (−ε/2, ε/2) we have

δNA
2 (εg) < δA

2 (εg)

Proof. From Lemma D.1, we know that there exists and ` ∈ {0, 1} such that t` =
εg+(`+1)ε

3 ∈ topt(2, εg). Furthermore, if
both εg − t` and εg − t` + ε are in (−ε, ε), then we also must have topt(1, εg − t`) =

εg−t`+ε
2 and topt(1, εg − t` + ε) =

εg−t`+2ε
2 which implies topt(1, εg − t`) 6= topt(1, εg − t` + ε).

Therefore, by Lemma D.2 it suffices to show that both εg− t` and εg− t`+ε are in (−ε, ε), which is equivalent to showing
εg − t` ∈ (−ε, 0). Plugging in for t` we then have

εg −
εg + (`+ 1)ε

3
∈ (−ε, 0) ⇔ εg ∈

(
(`− 2)ε

2
,

(`+ 1)ε

2

)
which holds for ` ∈ {0, 1} by our assumption that εg ∈ (−ε/2, ε/2).

We will then apply this base case to the more general case for certain conditions by applying Lemma D.2.

Lemma D.4. Given some εg ∈ (−kε, kε) and t ∈ topt(k, εg). For k > 4, if εg−(k−2)t < ε/2 and εg−(k−2)t+(k−2)ε >
−ε/2, then

δNA
k (εg) < δA

k (εg).

We relegate the proof of this lemma to Appendix D.2 and will use this to show our desired result.
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Lemma D.5. For any εg ∈ [−(k − 3)ε, (k − 3)ε] and k > 4 we have

δNA
k (εg) < δA

k (εg).

Proof. We will prove for εg ∈ [0, (k − 3)ε] and the case of εg ∈ [−(k − 3)ε, 0] follows symmetrically. From Lemma D.1
we know that for any t ∈ topt(k, εg) we must have t =

εg+(`+1)ε
k+1 for some 0 6 ` 6 k − 1. The general idea will then be

to show that for any t` =
εg+(`+1)ε

k+1 , if t` ∈ topt(k, εg), then δA
k (εg) > δNA

k (εg). We will split this into three cases.

Case I: (` > 2) For this setting, we want to show that we can apply Lemma D.4 where we know εg+(k−2)(ε−t) > −ε/2
for any t because we are assuming εg > 0. It then suffices to show that εg − (k − 2)t` < ε/2. Plugging in for t` we have

εg − (k − 2)t` < ε/2 ⇔ 6εg < (2(k − 2)(`+ 1) + (k + 1)) ε.

By assumption, we know εg 6 (k − 3)ε, so for ` > 2, we have

6εg 6 6(k − 3)ε < (7k − 11)ε 6 (2(k − 2)(`+ 1) + (k + 1)) ε.

and therefore δA
k (εg) > δNA

k (εg) by Lemma D.4.

Case II: (` = 0) For this setting we have t0 =
εg+ε
k+1 . By our assumption that εg ∈ [−(k − 3)ε, (k − 3)ε],

we must have εg + ε − t0 ∈ (−(k − 1)ε, (k − 1)ε). From Lemma D.1 we then know topt(k − 1, εg + ε − t0) ⊆{
εg+ε−t0+(`′+1)ε

k : `′ ∈ {0, k − 2}
}

. We further see that for any `′ > 0,

εg + ε

k + 1
<
εg + ε

k
6
εg + ε− t0 + (`′ + 1)ε

k
.

This implies t0 /∈ topt(k − 1, εg + ε− t0) and so δA
k (εg) > δNA

k (εg) by Lemma D.2.

Case III: (` = 1) This will follow from the same argument as the previous case. For this setting we have t1 =
εg+2ε
k+1 .

Once again, we use our more restrictive assumption that εg ∈ [0, (k − 3)ε], and therefore εg + 2(ε − t1) > −(k − 2)ε.
Furthermore, we have

εg + 2

(
ε− εg + 2ε

k + 1

)
=
k − 1

k + 1
(εg + 2ε) 6

(k − 1)2

k + 1
ε < (k − 2)ε

where the last step follows because (k − 1)2 < (k + 1)(k − 2) for k > 1. Thus εg + 2(ε− t1) ∈ (−(k − 2)ε, (k − 2)ε)

and by Lemma D.1, topt(k − 2, εg + 2(ε− t1)) ⊆
{
εg+2(ε−t1)+(`′′+1)ε

k−1 : `′′ ∈ {0, k − 3}
}

. It then follows that

εg + 2ε

k + 1
=
εg + 2(ε− t1)

k − 1
<
εg + 2(ε− t1) + (`′′ + 1)ε

k − 1

for any `′′ > 0. This implies t1 /∈ topt(k − 2, εg + 2(ε− t1)) and so δA
k (εg) > δNA

k (εg) by Lemma D.2.

D.2. Proofs of lemmas

In this section we collect proofs of lemmas in the previous section.

Proof of Corollary D.1. Note that by our definition, qt = etpt and 1− qt = et−ε(1− pt), so we can equivalently write

δk(t, εg) =

k∑
i=0

(
k

i

)
qk−it (1− qt)i max

{(
1− eεg−kt+iε

)
, 0
}
.
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We then prove by induction. For k = 1, the base case,

δ1(t, εg) = qt max{1− eεg−t, 0}+ (1− qt) max{1− eεg−t+ε, 0},

and the claim follows by definition of δ0(t, εg). We can then apply our inductive hypothesis to get both

qt · δk−1(εg − t) =

k−1∑
i=0

(
k − 1

i

)
qk−it (1− qt)i max

{(
1− eεg−kt+iε

)
, 0
}
,

(1− qt) · δk−1(εg − t+ ε) =

k−1∑
i=0

(
k − 1

i

)
qk−1−it (1− qt)i+1 max

{(
1− eεg−kt+(i+1)ε

)
, 0
}

=

k∑
i=1

(
k − 1

i− 1

)
qk−it (1− qt)i max

{(
1− eεg−kt+iε

)
, 0
}
.

Our claim then follows from the fact that for any i ∈ [1, k − 1], we must have
(
k−1
i−1
)

+
(
k−1
i

)
=
(
k
i

)
.

Proof of Lemma D.2. We prove this inductively. For the base case k = 2, from Corollary D.1 and our definition of
topt(2, εg) we have

δNA
2 (εg) = qtδ

1(t, εg − t) + (1− qt)δ1(t, εg + ε− t)

If t /∈ topt(1, εg − t+ `′ε) for some `′ ∈ {0, 1}, then δNA
1 (εg − t+ `′ε) > δ1(t, εg − t+ `′ε). Applying Theorem 3,

δA
2 (εg) > qtδ

A
1 (εg − t) + (1− qt)δA

1 (εg − t+ ε)

> qtδ
1(t, εg − t) + (1− qt)δ1(t, εg + ε− t) = δNA

2 (εg)

This equivalently follows if δNA
1 (εg − t+ `′ε) < δA

1 (εg − t+ `′ε) for either `′ ∈ {0, 1}.

The inductive step will then follow equivalently. Once again, we have

δNA
k (εg) = qtδ

k−1(t, εg − t) + (1− qt)δk−1(t, εg + ε− t)

which similarly implies

δA
k (εg) > qtδ

A
k−1(εq − t) + (1− qt)δA

k−1(εg − t+ ε)

> qtδ
NA
k−1(εq − t) + (1− qt)δNA

k−1(εg − t+ ε)

> qtδ
k−1(t, εg − t) + (1− qt)δk−1(t, εg + ε− t) = δNA

k (εg)

The goal will then be to show that this inequality becomes strict if one of the conditions in the statement holds. First,
suppose t /∈ topt(k − 1, εg − t + `′ε) for either `′ ∈ {0, 1}, then δNA

k−1(εg − t + `′ε) > δk−1g (t, εg − t + `′ε) and the
inequality must be strict. On the other hand, if t ∈ topt(k − 1, εg − t+ `′ε) for both `′ ∈ {0, 1}, then this fits the condition
of our inductive hypothesis, and we will then use this to prove our claim for the remaining cases.

Let 0 6 `′ 6 ` < k be such that δA
k−`(εg− `t+ `′ε) > δNA

k−`(εg− `t+ `′ε), and if ` = 0, then the inequality holds trivially.
If ` > 1, then rewriting the inequality, we equivalently have both of the following inequalities,

δA
k−1−(`−1)(εg − t− (`− 1)t+ `′ε) > δNA

k−1−(`−1)(εg − t− (`− 1)t+ `′ε),

and δA
k−1−(`−1)(εg − t+ ε− (`− 1)t+ (`′ − 1)ε)

> δNA
k−1−(`−1)(εg − t+ ε− (`− 1)t+ (`′ − 1)ε).
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If ` > 1, then we must have either 0 6 `′ 6 (` − 1) < k − 1 or 0 6 (`′ − 1) 6 (` − 1) < k − 1. We can then apply our
inductive hypothesis to achieve δA

k−1(εg − t) > δNA
k−1(εg − t), or δA

k−1(εg − t+ ε) > δNA
k−1(εg − t+ ε), respectively, which

implies that our inequality is strict.

Similarly, let 0 6 `′ 6 ` < k be such that t /∈ topt(k − `, εg − `t + `′ε) By definition we cannot have ` = 0, and we
previously considered ` = 1, so we assume ` > 1 in order to apply our inductive claim. Rewriting the set topt, we must
then have both hold

t /∈ topt(k − 1− (`− 1), εg − t− (`− 1)t+ `′ε)

and t /∈ topt(k − 1− (`− 1), εg − t+ ε− (`− 1)t+ (`′ − 1)ε).

If ` > 1, then `− 1 > 0 and either 0 6 `′ 6 (`− 1) < k − 1 or 0 6 (`′ − 1) 6 (`− 1) < k − 1. Applying our inductive
hypothesis, we have either case hold, respectively

δA
k−1(εg − t) > δNA

k−1(εg − t),
or δA

k−1(εg − t+ ε) > δNA
k−1(εg − t+ ε).

This implies our inequality is strict.

In order to prove Lemma D.4, we will also need the following edge case.

Lemma D.6. topt(2,−3ε/2) ∩ topt(2, ε/2) = ∅ and topt(2,−ε/2) ∩ topt(2, ε/2) = ∅

Proof. For any εg ∈ {−3ε/2,−ε/2, ε/2, 3ε/2}, from Lemma D.1 that topt(2, εg) ⊆ { εg+(`+1)ε
3 } ∩ (0, ε) for ` ∈ {0, 1}.

This then implies that topt(2,−3ε/2) = ε/6, topt(2,−ε/2) ⊆ {ε/6, ε/2}, topt(2, ε/2) ⊆ {ε/2, 5ε/6}, and topt(2, 3ε/2) =
5ε/6. The claim then follows immediately.

Proof of Lemma D.4. By our assumptions, it immediately follows that either there exists 0 6 j 6 k−2 such that εg−(k−
2)t+ jε ∈ (−ε/2, ε/2), or we are in the edge case where there exists 0 6 j < k− 2 such that εg − (k− 2)t+ jε = −ε/2.
In first case, we know that δNA

2 (εg − (k − 2)t` + jε) < δA
2 (εg − (k − 2)t + jε) from Lemma D.3. In the second case

(the edge case), if j = 0 then we know j + 2 6 k − 2 because k > 4, and from Lemma D.6 we must either have
t /∈ topt(2, εg − (k − 2)t` + jε) or t /∈ topt(2, εg − (k − 2)t` + (j + 2)ε). Otherwise, if j > 0, then we again have from
Lemma D.6 that either t /∈ topt(2, εg − (k − 2)t` + (j − 1)ε) or t /∈ topt(2, εg − (k − 2)t` + (j + 1)ε).

In either case, we can immediately apply Lemma D.2 to achieve our desired inequality.

E. Proof of Proposition 4 and Theorem 5
In this section we prove Proposition 4 and Theorem 5, which are sub-optimal, but involves less computation. Because
we give up optimality, we can now deal with inhomogeneous composition, i.e. each step is εi-BR with different εi.
Both apply to adaptive composition, and hence also non-adaptive composition. In Appendix E.1 we summarize a general
approach for this kind of results, all of which employs tricks from standard concentration inequality. Appendix E.2 treats
BR mechanisms, prove Proposition 4 and Theorem 5 and compare with previous results. Appendix E.3 provides missing
proofs from Appendix E.2.

E.1. General approach from concentration inequality

Consider the adaptive composition of Mi : X × Y1 × · · · × Yi−1 → Yi, i = 1, 2, . . . , k. The output (y1, y2, . . . , yk) of the
composition M : X → Y1 × · · · × Yk satisfies

y1 = M1(x),

y2 = M2(x, y1),

· · ·
yk = Mk(x, y1, y2, . . . , yk−1).
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Fix a pair of neighboring datasets x, x′. Let Li be log likelihood ratio for the i-th mechanism, i.e.

Li(y1, . . . , yi) = ln
P [M(x′, y1, · · · , yi−1) = yi]

P [M(x, y1, · · · , yi−1) = yi]

Note that all these quantities depend on x and x′. Let δopt(M, ε) be the optimal δ such that M is (ε, δ)-DP. We have the
following lemma that bounds δopt(M, ε).

Lemma E.1. If we can find functions Ui : (0,+∞)→ R such that for all x, x′ the following holds

lnEQ[eλLi | y1, . . . , yi−1] 6 Ui(λ), ∀λ > 0.

Then
δopt(M, ε) 6 e− supλ>0{λε−

∑k
i=1 Ui(λ)}.

Proof. For a pair of neighboring datasets x, x′ let P = M(x) and Q = M(x′). Let L be the log likelihood ratio of P and
Q. With these notations we have L =

∑k
i=1 Li. By Lemma 4.2 we have

δopt(M, ε) = sup
x,x′

Q[L > ε]− eεP [L > ε]

6 sup
x,x′

Q[L > ε]

= sup
x,x′

Q
[
eλ

∑k
i=1 Li > eλε

]
6 sup

x,x′
e−λε · EQ

[
eλ

∑k
i=1 Li

]
We can use the tower rule of expectation to show that

E
[
eλ

∑k
i=1 Li

]
= E

[
eλ

∑k−1
i=1 Li · eλLk

]
= E

[
eλ

∑k−1
i=1 Li · E[eλLk | y1, . . . , yk−1]

]
6 eUk(λ) · E

[
eλ

∑k
i=1 Li

]
.

Continue doing this, we have
EQ
[
eλ

∑
Li
]
6 e

∑k
i=1 Ui(λ).

Furthermore, it holds for all neighboring x, x′, so

δopt(M, ε) 6 e−λε · e
∑k
i=1 Ui(λ).

It also holds for arbitrary λ > 0, so we can optimize over λ and get

δopt(M, ε) 6 e− supλ>0{λε−
∑k
i=1 Ui(λ)}.

E.2. Bounding Ui’s for bounded range mechanisms

For now on we assume the component mechanisms Mi is εi-BR, i = 1, 2, . . . , k. More precisely, we assume
Mi(·, y1, . . . , yi−1) is εi-BR for all y1 ∈ Y1, . . . , yi−1 ∈ Yi−1.

Lemma E.1 yields bounds on δA
k (εg). In fact, Different choices of Ui(λ) in Lemma E.1 result in different bounds on

δA
k (εg). For example, both Dwork et al. (2010) and Durfee and Rogers (2019) utilize the following lemma:

Lemma E.2 (Hoeffding’s lemma). If a random variable X ∈ [a, b] then lnE[eλX ] 6 1
8 (b− a)2λ2 + λEX .

We now walk through the following comparisons with previous work to highlight our improvement. Dwork et al. (2010)
only uses the fact that Li ∈ [−εi, εi] (which is weaker than ε-BR). It implies

(a) lnEQ[eλLi | y1, . . . , yi−1] 6 1
2ε

2
iλ

2 + λEQ[Li | y1, . . . , yi−1]
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(b) EQ[Li | y1, . . . , yi−1] 6 εi tanh εi
2 6 1

2ε
2
i .

For part (b), Dwork et al. (2010) used a much rougher estimate. The 1
2ε

2
i upper bound appears in (Bun and Steinke, 2016).

For the most refined bound in terms of hyperbolic tangent function, readers can refer to Lemma D.8 in (Dong et al., 2019).

Combining both (a) and (b), we have Ui(λ) = 1
2ε

2
i (λ

2 + λ), which we refer to as “Improved DRV10” in Figure 1.

Using the bounded range property from Durfee and Rogers (2019), we know that for ε-BR there is a ti ∈ [0, εi] such that
a = ti − εi, b = ti in Hoeffding’s lemma. A similar argument yields Ui(λ) = 1

2ε
2
i (

1
4λ

2 + λ), which we label as “DR19”
in Figure 1.

A straightforward improvement could come from a finer treatment of (b). In fact,

Lemma E.3. Let maxkl(ε) := ε
eε−1 − 1− ln ε

eε−1 . Then we have

(b′) EQ[Li | y1, . . . , yi−1] 6 maxkl(εi).

Combining (a) and (b′), we can use Ui(λ) = 1
8ε

2
iλ

2 +λ ·maxkl(εi), which we label as “KL-improved DR19” in Figure 1.
This observation on the expectation together with the Durfee and Rogers (2019) bound that uses Azuma-Hoeffding, but
with a weaker bound on the expectation term allows us to derive Proposition 4. We skip the algebra.

The finest analysis is stated in the following lemma, which basically says Ui(λ) can be taken as hεi(λ). Recall that h(λ; ε)
is defined to be supt∈[0,ε] λ(ε− t) + ln

(
1 + pε,t(e

−λε − 1)
)
. We label it as “General MGF” in Figure 1.

Lemma E.4.

lnEQ[eλLi | y1, . . . , yi−1] 6 hεi(λ).

Theorem 5 directly follows from this lemma and Lemma E.1.
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Figure 1. A unified view and comparison of composition theorems involving concentration inequalities. The figure shows graphs of
different U functions (see Lemma E.1) used in different results, such as from Dwork et al. (2010) (labeled “Improved DRV10”) and
Durfee and Rogers (2019) (labeled “DR19”). According to Lemma E.1, smaller function U yields tighter privacy result. Theorem 5 uses
the smallest U (labeled “General MGF”) among all and is hence the tightest. All curves use ε = 1.
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Numerical Issue We now point out a potential numeric issue in computing the function hε(λ). Note that it can be
simplified differently as

hε(λ) = sup
t∈[0,ε]

−λt+ ln
(
pε,t + eελ(1− pε,t)

)
.

For comparision, the expression we use in the definition is

hε(λ) = sup
t∈[0,ε]

λ(ε− t) + ln
(
1 + pε,t(e

−λε − 1)
)
.

At first glance it may appear that the above two expressions are equal. However, the one used in the theorem is far more
robust numerically, as in the optimization step, ελ can be large, which could make eελ beyond the range of floating point
numbers.

E.3. Proof of Lemmas E.3 and E.4

We do Lemma E.4 first.

Proof of Lemma E.4. In order to simplify notations (especially the subscripts), we assume k = 2. It will be clear that this
is without loss of generality. That is, M1 : X → Y is ε1-DP and M2 : X × Y → Z satisfy that M2(·, y) : X → Z
is ε2-DP for all y ∈ Y . Let M be their composition. For a fixed pair of x, x′, let P,Q be the distributions of M(x) and
M(x′) and L(y, z) = ln q(y,z)

p(y,z) be the log likelihood ratio. We are interested in

lnE
[(q(z|y)

p(z|y)

)λ∣∣∣y].
By Lemma 4.1, there is a t2 = t2(x, x′, y) such that a common randomized function Proc : {0, 1} → Z turns Bern(pε2,t2)
to p(·|y) and Bern(qε2,t2) to q(·|y). This means we can use a data processing inequality on the expectations. In fact, recall
that Rényi divergence of Q and P of order α > 1 is defined as

Dα(Q‖P ) = 1
α−1 lnEQ[(QP )α−1].

We see that lnE
[(

q(z|y)
p(z|y)

)λ∣∣∣y] = λDλ+1

(
q(·|y)‖p(·|y)

)
. Data processing inequality of Rényi divergence (see (Van Erven

and Harremos, 2014)) implies

λDλ+1

(
q(·|y)‖p(·|y)

)
6 λDλ+1

(
Bern(qε2,t2)‖Bern(pε2,t2)

)
.

We need to compute Rényi divergence of two Bernoullis. Making use of the following facts

qt = etpt, 1− qt = et−ε(1− pt),
qε−t = 1− pt, pε−t = 1− qt,

we have

λDλ+1

(
Bern(qt)‖Bern(pt)

)
= ln

(
qλ+1
t p−λt + (1− qt)λ+1(1− pt)−λ

)
= ln

(
qte

λt + (1− qt)eλ(t−ε)
)

= λt+ ln
(
qt + (1− qt)e−λε

)
= λt+ ln

(
1− pε−t + pε−te

−λε)
= λt+ ln

(
1 + pε−t(e

−λε − 1)
)︸ ︷︷ ︸

ψ(λ,ε,t)

.
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Recall that h(λ; ε) is defined to be supt∈[0,ε] λ(ε − t) + ln
(
1 + pε,t(e

−λε − 1)
)
. With this notation, we can do a change

of variable t′ = ε− t and have

h(λ; ε) = sup
t∈[0,ε]

λ(ε− t) + ln
(
1 + pε,t(e

−λε − 1)
)

= sup
t′∈[0,ε]

λt′ + ln
(
1 + pε,ε−t′(e

−λε − 1)
)

= sup
t∈[0,ε]

ψ(λ, ε, t).

This explains why h(λ; ε) is defined this way. In summary,

lnE
[(q(z|y)

p(z|y)

)λ∣∣∣y] = λDλ+1

(
q(·|y)‖p(·|y)

)
6 λDλ+1

(
Bern(qε2,t2)‖Bern(pε2,t2)

)
= ψ(λ, ε2, t2) 6 h(λ; ε2).

Clearly the argument carries over to general k.

Proof of Lemma E.3. Using the same “Lemma 4.1 + data processing inequality” argument, we have

EQ[Li | y1, . . . , yi−1] 6 KL
(
Bern(qεi,ti)‖Bern(pεi,ti)

)
= qεi,ti · ln

qεi,ti
pεi,ti

+ (1− qεi,ti) · ln
1− qεi,ti
1− pεi,ti

= tiqεi,ti + (ti − εi)(1− qεi,ti)

= ti −
εi

eεi − 1
(eti − 1).

A bit of calculus shows the above expression is maximized at ti = ln eεi−1
εi

, and the value is

εi
eεi − 1

− 1− ln
εi

eεi − 1
= maxkl(εi).
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