
Provable Smoothness Guarantees for Black-Box Variational Inference

Justin Domke
1

Abstract

Black-box variational inference tries to approx-
imate a complex target distribution through a
gradient-based optimization of the parameters of
a simpler distribution. Provable convergence guar-
antees require structural properties of the objec-
tive. This paper shows that for location-scale fam-
ily approximations, if the target is M-Lipschitz
smooth, then so is the “energy” part of the varia-
tional objective. The key proof idea is to describe
gradients in a certain inner-product space, thus
permitting the use of Bessel’s inequality. This
result gives bounds on the location of the optimal
parameters, and is a key ingredient for conver-
gence guarantees.

1. Introduction

Variational inference (VI) approximates a complex distribu-
tion with a simpler one. Take a target distribution p(z,x)

where x is observed data and z are latent variables. Let
qw(z) be a simpler distribution with parameters w. VI
algorithms minimize the (negative) “evidence lower bound”

� ELBO(w) = E
z⇠qw

[� log p(z,x)]

| {z }
Energy term l(w)

+ E
z⇠qw

[log qw(z)]
| {z }

Neg-Entropy term h(w)

,

(1)
equivalent to minimizing the KL-divergence from qw(z) to
p(z|x).

Traditionally, this was done with message-passing algo-
rithms. This requires that q and p be relatively simple,
essentially so that expectations of parts of log p can be com-
puted with respect to q (Ghahramani and Beal, 2001; Winn
and Bishop, 2005; Blei et al., 2017). Recent work (e.g.
Salimans and Knowles, 2013; Wingate and Weber, 2013;
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Ranganath et al., 2014; Regier et al., 2017a; Kucukelbir
et al., 2017) has focused on a “black box” model where
the algorithm can only evaluate log p(z,x) or its gradient
rz log p(z,x) at chosen points z. The key idea is that it is
still possible to create an unbiased estimator of the gradient
of ELBO, and therefore to optimize it through stochsatic
gradient methods. This strategy applies to a large range of
distributions, and is widely used.

It is important to know when black-box inference will work.
While often empirically successful, black-box VI can and
does fail to find the optimum (Yao et al., 2018; Regier et al.,
2017b; Fan et al., 2015). Stochastic optimization conver-
gence guarantees (Bottou et al., 2016) typically require two
types of assumptions:

• Gradient variance must be controlled. The variance
of VI gradient estimators has been studied (Fan et al.,
2015; Xu et al., 2018; Domke, 2019), leading to the
result that if log p is smooth, then the variance of repa-
rameterization gradient estimators can be controlled.
While an important step, these results alone cannot
fully explain convergence behavior.

• Structural properties of the objective itself are needed.
Fig. 1 shows an example where exact gradients are
available. While a careful step-size and initialization
appear to lead to convergence, other times there are
worrying “jumps”. Is any general guarantee possible?

The ultimate goal of the line of research in this paper is to
obtain full convergence guarantees for practical black-box
variational inference algorithms. The results in this paper
are a step towards that goal.
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Figure 1. Gradient descent on fires with various step-sizes, ini-
tialized with m = 0 and various C. Results are sensitive to both
initialization and the stepsize. Can this be explained?
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One very fundamental property is Lipschitz smoothness

which means the gradient cannot change too quickly. For-
mally, a function f is M -smooth in the l2 norm if krf(x)�
rf(y)k2  Mkx�yk2. For non-convex objectives, essen-
tially all convergence guarantees require smoothness, both
for regular stochastic gradient descent (SGD) (Lee et al.,
2016; Ge et al., 2015; Ghadimi and Lan, 2013), proximal
SGD (Ghadimi et al., 2016), or momentum or “acceler-
ated” SGD (Yang et al., 2016). Convergence guarantees
are possible for convex objectives with or without smooth-
ness(Bottou et al., 2016; Rakhlin et al., 2012).

Because this property is so fundamental, several works on
variational inference have assumed that the VI objective (or
part of it) is smooth. These include:

• Khan et al. (2015) Sec. 4

• Khan et al. (2016) Assumption A1

• Regier et al. (2017a) Condition 1

• Fan et al. (2016) Thm. 1

• Buchholz et al. (2018) Thm. 1

• Mohamad et al. (2018) Sec. 3.2

• Alquier and Ridgway (2017) Assumption 3.2.

Yet, to the best of our knowledge, no rigorous guarantees
that this is actually true are known. The purpose of this
paper is to fill that theoretical gap by providing conditions
under which smoothness provably holds.

1.1. Contributions

Smoothness of the energy: (Thm. 1) Our main result is
more general than variational inference: If f(z) is M -
smooth then Ez⇠qw f(z) is M -smooth over w, when
qw is in the location-scale family with a “standard-
ized” base distribution. In particular, if log p(z,x) is
M -smooth over z then the energy l(w) in Eq. (1) is
M -smooth. This requires no convexity assumptions.

Solution guarantees: (Thm. 7) Intuitively, structural prop-
erties of log p should imply properties of the optimal
parameters w. Using the above smoothness result,
we show that at the optimal w, all eigenvalues of the
covariance of q are at least 1/M . This is important
because the neg-entropy in Eq. (1) is non-smooth when
eigenvalues are very small.

Convergence considerations: Even if log p is smooth, the
ELBO is not smooth, due to the entropy. We propose
two solutions: a projected gradient descent scheme that
leverages the above solution guarantee and a proximal

scheme that uses the full structure of the entropy.

Understanding plain gradient descent: Given that the
full ELBO is non-smooth, why does plain gradient
descent sometimes succeed, and sometimes – even
with exact gradients – produce huge “jumps” as seen in
Fig. 1? We give insight into this using the smoothness
result.

As a minor contribution, we extend existing work (Challis
and Barber, 2013; Titsias and Lázaro-gredilla, 2014) to show
that if � log p(z,x) happens to be strongly-convex over z
then so is the energy term l(w) (Thm. 9). This gives another
parameter-space solution guarantee where essentially the
covariance of q cannot be too large (Thm. 10).

2. Preliminaries

A multivariate location-scale family (Geyer, 2011) is the
result of drawing a sample from a “base” distribution and
applying an affine transformation to it. Formally,

z ⇠ LocScale(m, C, s) () z
d
= Cu + m, u ⇠ s, (2)

where d
= indicates equality in distribution.

Black-box VI using these families was studied by Titsias
and Lázaro-gredilla (2014). A simple example is the mul-
tivariate Gaussian, for which LocScale(m, C,N (0, I)) =

N (m, CC>
). Many families are representable, e.g. el-

liptical distributions such as the multivariate Student-T or
Cauchy distributions. More generally, the base distribution
need not be symmetric.

Notation. Let w = (m, C) be a vector containing
all components of m and C. We write qw to denote
LocScale(m, C, s), leaving s implicit. Proofs use tw(u) =

Cu+m to denote the affine mapping determined by param-
eters w. A � B means that B �A is positive semidefinite.
We assume z 2 Rd. Sans-serif font (u, z) distinguishes
random variables.

Density. If the base distribution has a density and C
is invertible, then the location-scale distribution also has
a density, which is qw(z) = LocScale(z|m, C, s) =
1

|C|s
�
C�1

(z �m)
�
.

Entropy. The entropy of random variables under affine
transformations is Entropy[Au + b] = Entropy[u] +

log |detA| (Cover and Thomas, 2006, Sec. 8.6). Thus,
the neg-entropy is h(w) = �Entropy[s] � log |detC| ,
with gradient rh(w) =

�
0,�C�>�.

Standardized Representations. We say that s is “standard-
ized” if it has mean zero and unit variance, i.e. Eu⇠s u = 0

and Vu⇠s u = I . When s is standardized, the mean of the
location-scale distribution is m while the variance is CC>.
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A result we will use in Sec. 3.3 is that any location-scale fam-
ily can be represented using a standardized base distribution,
provided the variance exists: If s has mean µ and variance ⌃,
then s0

= LocScale(�⌃
�1/2µ,⌃�1/2, s), is standardized,

yet LocScale(m, C, s0
) and LocScale(m, C, s) index the

same set of distributions.

Bessel’s inequality states that if {a1, · · · ,ak} are orthonor-
mal in some inner-product h·, ·i with corresponding norm
k·k , then

kX

i=1

|hai,xi|2  kxk2 . (3)

This can be seen as a generalization of the Cauchy-Schwarz
inequality |hy,xi|2  kyk2 kxk2, which follows from us-
ing the singleton set {a1} = {y/ kyk} (Rooin and Bayat,
2012; Hasegawa and Karamakar).

2.1. Convergence Guarantees and Smoothness

It is impossible to review the vast optimization literature
relevant to solving Eq. (1): There are many algorithms (gra-
dient descent, stochastic gradient descent, momentum or
accelerated variants, proximal or mirror descent variants)
that can be analyzed with different hyper-parameters (step-
sizes, iterate averaging) yielding different types of guaran-
tees. These guarantees depend on properties of the target
objective being optimized. Different distributions p(x, z)

different properties for the objective (smoothness, convex-
ity, strong convexity) or gradient estimators of it (variance
bounds).

Still, at a very high level, the story is simple. To the best
of our knowledge, all existing convergence guarantees re-
quire either smoothness (to guarantee a stationary point)
or convexity (to guarantee a global optima), or both. For
concreteness, suppose f is only known to be smooth (and
possibly non-convex): Ghadimi and Lan (2013) analyze
the the iteration wn+1 = wn � �gn where g1, · · · gN are
independent and E gn = rf(wn). A simplified state-
ment of their result is as follows: If (i) f is M -smooth,
(ii) Ekgn � rf (wn) k2

2  �2, and (iii) the starting point
w1 obeys kw1 � w⇤k2  D, then with a step-size of
� = min(1/M,D/(�

p
N)),

1

N

NX

n=1

E krf(wn)k2  M2D2

N
+

2DM�p
N

, (4)

where the expectation is over all possible executation traces
w1, · · · ,wN .

Both the step-size and convergence rate depend on smooth-
ness. If there is noise (� > 0) the convergence is 1/

p
N.

With no noise (� = 0) convergence is 1/N . Similar rates
are known for proximal or projected stochastic gradient de-
scent (Ghadimi et al., 2016) and stochastic gradient descent

with momentum or Nesterov acceleration (Yang et al., 2016).
Recent work seeks to understand when these iterations will
converge to a (local) minima instead of a saddle point (Ge
et al., 2015; Lee et al., 2016); here too, smoothness is a key
assumption.

Similar guarantees are possible if the objective is convex
or strongly convex, without requiring smoothness (Rakhlin
et al., 2012; Bottou et al., 2016; Bubeck, 2015, Section
6.2). When gradients are stochastic, it may be helpful to
average “minibatches” of gradient estimates, both in the
convex (Bubeck, 2015, Section 6.2) and non-convex cases
(Ghadimi et al., 2016).

3. Smoothness of the energy

In this section, we set l(w) = Ez⇠qw f(z). The energy
l(w) in Eq. (1) is recovered when f(z) = � log p(z,x)

(since x is constant). This is done to simplify the notation
and because the results apply to general f and might be of
independent interest.

3.1. Main Result

The following is the main technical result of this paper.
It states that if qw is a location-scale family with a zero-
mean, unit variance base distribution and f(z) is M -smooth,
then l(w) is also M -smooth. We emphasize that f is not

assumed to be convex.
Theorem 1. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized base distribution s. If f(z)

is M -smooth, then l(w) = Ez⇠qw f(z) is also M -smooth.

Before proving this, we give four technical lemmas, all
proven in Sec. 9 (in the supplement). The idea is to define
a certain inner-product h·, ·is over functions and a set of
orthonormal functions {ai} such that derivatives l(w) can
be written as an inner-product of ai and rf � tw in h·, ·is,
where � indicates composition of functions.
Lemma 2. ha, bis = Eu⇠s a(u)

>b(u) is a valid inner-

product on squared-integrable a : Rd ! Rk
.

The proof consists of verifying each of the defining proper-
ties of an inner-product.
Lemma 3. Let ai(u) =

d
dwi

tw(u). This is independent of

w and
dl(w)
dwi

= hai,rf � twis.

This is proven by first verifying that both d
dCij

tw(u) and
d

dmi
tw(u) are independent of w, then calculating dl

dwi
and

performing some manipulations.
Lemma 4. If s is standardized, then the functions {ai} are

orthonormal in h·, ·is .

To prove this, note that the components ai have two “types”
namely d

dCij
tw(u) and d

dmi
tw(u). Thus, an inner-product
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hai,ajis reduces to the expected inner product of two such
terms. It can be shown that this inner-product is one when ai

and aj have the same type and indices, and zero otherwise.
Lemma 5. If s is standardized, then

Eu⇠s ktw(u) � tv(u)k2
2 = kw � vk2

2 .

This is shown by substituting the exact form of tw and tv.
Taking the expectation leads a result of k�Ck2

F +k�mk2
2 ,

where �m denotes the difference of the m components of
w and v, and similarly for �C. This is equivalent to the
squared Euclidean distance of w and v.

Proof of Thm. 1. Take two parameter vectors, w and v. Ap-
ply Lem. 3 to each component of the gradients rl(w) and
rl(v) to get that

krl(w) �rl(v)k2
2

=

X

i

(hai,rf � twis � hai,rf � tvis)
2

=

X

i

hai,rf � tw �rf � tvi2s .

Lem. 4 showed that the functions {ai} are orthonormal in
the inner-product h·, ·is. Thus, by Bessel’s inequality,

krl(w) �rl(v)k2
2  krf � tw �rf � tvk2

s , (5)

= E
u⇠s

krf (tw(u)) �rf (tv(u))k2
2

where k · ks denotes the norm corresponding to h·, ·is . Now
apply the smoothness of f to get that

krl(w) �rl(v)k2
2  M2 E

u⇠s
ktw(u) � tv(u)k2

2 (6)

= M2 kw � vk2
2 , (7)

where the last equality follows from Lem. 5.

Note that the only inequalities used in this proof are (i)
Bessel’s inequality and (ii) the bound on the difference
of gradients of f provided by the assumption that f is
M -smooth. Thus, the tightness of the final bound that
krl(w) �rl(v)k2  M kw � vk2 is determined by the
tightness of these two inequalities. It’s natural to ask when
this bound will be tight or loose. The following section
will show that it is tight when f is closer to an isotropic
quadratic. On the other hand, the starting assumption that f
is smooth krf(x) �rl(y)k2  M kx� yk2 might often
be loose, e.g. if f is much smoother in “some directions”
than others. In this case, the final bound on l will also be
loose due to looseness created in moving from Eq. (5) to
Eq. (6) (even M might still be the best possible smoothness

constant).

The idea of expressing the gradient using a fixed base dis-
tribution and a transformation tw(u) is also used in “repa-
rameterization” type estimators (Titsias and Lázaro-gredilla,
2014; Rezende et al., 2014; Kingma and Welling, 2014).
Smoothness, however, is a deterministic property of the
function l(w), independent of any method one might use
for estimating or optimizing it.

3.2. Unimprovability

This section gives an example function f(z) that is M -
smooth, but leads to a function l(w) that is M -smooth
(but not smoother), meaning that Thm. 1 is unimprovable.
Intuitively, smoothness is a quadratic upper-bound. So, it
is natural to suppose that f(z) is exactly quadratic. The
following shows that in this case, l(w) has a closed form.
Theorem 6. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized base distribution s and

let f(z) =
a
2 kz � z⇤k2

2 . Then l(w) = Ez⇠qw f(z) =
a
2 (km� z⇤k2

2 + kCk2
F ).

To see that Thm. 1 is unimprovable, define w̄ = (z⇤, 0d,d),
where 0d,d is a d⇥d matrix of zeros. Then, l(w) =

a
2kw�

w̄k2
2 . This is M -smooth for M = a, but not for any smaller

value.

3.3. Solution Guarantees

Intuitively, properties of the target distribution p(z|x) might
imply properties of the variational distribution qw⇤ at the op-
timal parameters w⇤. In particular, if log p(z,x) is smooth
over z, then it is “spread out” so we might expect that qw⇤

would also be. This section formalizes and proves a ver-
sion of this intuition. This will be used in Sec. 5 to give
a convergence guarantee for projected stochastic gradient
descent. The core idea is that the ELBO in Eq. (1) is poorly
conditioned for low-variance distributions. However, if we
can guarantee that the optimum lies in a well-conditioned
region, we can constrain optimization to that region.

We define WM to be the set of parameters where all singular
values of C are at least 1/

p
M, i.e.

WM =

⇢
(m, C)

��� �min(C) � 1p
M

�
. (8)

We could equivalently define WM to be the set of of pa-
rameters where all eigenvalues of CC> are at least 1

M , i.e.
CC> ⌫ 1

M I . Recall from Sec. 2 that for standardized s,
Vz⇠qw z = CC>, so this is the parameters with variance at
least 1

M I.

The following result shows that if minimizing the ELBO
with a smooth target distribution, the optimal parameters
must fall in WM , i.e. the variance cannot be smaller than
1
M I . This requires the stronger assumption that the base
distribution s is spherically symmetric.
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Theorem 7. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized and spherically symmetric

base distribution s. Suppose w minimizes l(w) + h(w)

from Eq. (1) and log p(z,x) is M -smooth over z. Then,

w 2 WM .

The proof of this theorem (in Sec. 11) first establishes the
following Lemma.

Lemma 8. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized and spherically symmetric

base distribution s. Let l(w) = Ez⇠qw f(z). Suppose C is

diagonal and f is M -smooth. Then, |dl(w)
dCii

|  M |Cii|.

The proof of Lem. 8 first shows that if Cii = 0, then dl
dCii

=

0, which uses that s is symmetric. Then, given an arbitrary
w, let w0 be w with Cii set to zero. Since we know from
Thm. 6 that l is M -smooth, we then get that |dl(w)/dCii| 
krl(w0

) �rl(w)k2  M |Cii|.

Now, the proof of Thm. 7 uses the fact that if w is a min-
imum, then rl(w) = �rh(w). If C happens to be diag-
onal, the result is easy to show using the previous lemma
along with the exact gradient of h. Given an arbitrary C,
we can use the singular value decomposition of C to define
another M -smooth function which must have a diagonal
solution.

4. Analogous Result for Convex Functions

Smoothness and strong convexity are complementary in
that they give upper and lower bounds on the eigenvalues
of the Hessian. As a minor contribution, we observe that
a guarantee complementary to Thm. 1 holds: if � log p is
(strongly) convex, then so is l(w). The example in Thm. 6
shows this result is also unimprovable.

Theorem 9. Let qw = LocScale(m, C, s) with parameters

w = (m, C). If f(z) is convex, then l(w) = Ez⇠qw f(z)
is also convex. If, in addition, s is standardized and f(z) is

c-strongly convex, then l(w) is also c-strongly convex.

Proof. (Convexity) Represent l as l(w) = Eu⇠s f (tw(u))

where tw(u) = Cu + m. For fixed u, tw(u) is linear in
w. Thus, given any two parameter vectors w and v and any
↵,� 2 (0, 1) with ↵+� = 1, since f is convex, l(↵w+�v)

is equal to

E
u⇠s

f (t↵w+�v(u)) = E
u⇠s

f (↵tw(u) + �tv(u))

 E
u⇠s

↵f (tw(u)) + �f (tv(u))

= ↵l(w) + �l(v).

(Strong convexity) If f is c-strongly convex then f(z) =

f0(z) +
c
2kzk

2
2 for some convex function f0. Thus, l(w) =

l0(w)+
c
2 Ez⇠qw kzk2

2, where l0(w) = Ez⇠qw f0(z) is con-
vex by the previous reasoning. Then, it isn’t too hard to show
that Ez⇠qw kzk2

2 = Eu⇠s kCu +mk2
2 = kCk2

F + kmk2
2 =

kwk2
2. Thus, we have that l(w) = l0(w) +

c
2 kwk2 is c-

strongly convex.

The convexity result (and proof) is essentially the same as
that of Titsias and Lázaro-gredilla (2014, Appendix, Propo-
sition 1). The strong-convexity result generalizes a previous
result due to Challis and Barber (2013, Sec. 3.2) who give a
strong-convexity guarantee for Gaussian variational distri-
butions applied to targets with Gaussian priors.

The following result gives a bound on the location of the
optimal parameters. The proof uses the fact that, at the opti-
mum, rl(w) = �rh(w), so the exact gradient is known.
However, strong convexity means that only certain gradients
are possible at a given part of parameter space. (This result
is complementary to Thm. 7.)
Theorem 10. Let qw = LocScale(m, C, s) with param-

eters w = (m, C) and a standardized and spherically

symmetric base distribution s. Suppose w minimizes

l(w) + h(w) from Eq. (1) and � log p(z,x) is c-strongly

convex over z. Then, kCk2
F + km � z⇤k2

2  d
c , where

z⇤
= argmaxz log(z,x).

5. Convergence Considerations

In optimizing the ELBO in Eq. (1), the negative entropy
term h creates complications. The gradient is rh(w) =

(0,�C�>
) (Sec. 2), which can change arbitrarily rapidly

when the singular values of C are close to zero. So h(w) is
not Lipschitz-smooth, posing a challenge for establishing
convergence guarantees for pure gradient descent applied to
the full ELBO. In this section, we consider two strategies
for coping with this: Projected gradient descent, and prox-

imal gradient descent. Finally, we seek to understand the
performance of regular gradient descent seen in Fig. 1.

The following result gives one way of dealing with the fact
that the negentropy is non-smooth. As in Sec. 3.3, this
requires the additional assumption that the base distribution
is spherically symmetric.
Theorem 11. Let qw = LocScale(m, C, s) with param-

eters w = (m, C) and a standardized and spherically

symmetric base distribution s. Suppose log p(z,x) is M -

smooth. Then ELBO(w) as in Eq. (1) is 2M smooth over

WM and if w⇤
is an optima of ELBO(w), then w⇤ 2 WM .

The proof (in Sec. 13) first shows that h is M -smooth over
WM by taking two arbitrary parameter vectors w,v 2 WM

and using a matrix norm inequality to bound the difference
of the gradients rh(w) and rh(v). Then, we combine our
main result that l is smooth (Thm. 1) with the bound on
the location of the optimum (Thm. 7) and the fact that h is
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smooth over WM . (By the triangle inequality, the sum of
two M -smooth functions is 2M smooth.)

Given this result, a natural approach to optimizing the ELBO
is to use projected (stochastic) gradient descent, i.e. to iter-
ate w0

= projWM
(w� �g) where g = rl(w) +rh(w) (or

a stochastic estimator) and projW is Euclidean projection.
Thm. 13 (in Sec. 13, supplement) shows that if w = (m, C),
and C has singular value decomposition C = USV >, then

projWM
(w) = argmin

v2WM

kw � vk2
2 = (m, UTV >

)

where T is a diagonal matrix with Tii = max(Sii, 1/
p
M).

Another way of dealing the fact that h is non-smooth is
to use proximal optimization (Beck and Teboulle, 2009;
Parikh, 2014; Bubeck, 2015; Ghadimi et al., 2016; Ghadimi
and Lan, 2012). Intuitively, the idea is as follows: With
a step-size � gradient descent on l + h gives the update
w0

= w � �(rl(w) + rh(w)), which can equivalently be
seen as minimizing a linear approximation of l + h at w,
with a quadratic penalty, i.e. setting

w0
= argmin

v
l(w) + h(w) + hrl(w) + rh(w),v � wi

+
1

2�
kv � wk2 , (9)

If h(w) is non-smooth, even if v is close to w, h(w) +

hrh(w),v � wi can be an arbitrarily poor approximation
of h(v). Thus, a natural idea is to leave h unapproximated,
i.e. to linearize l only. This would mean instead using

w0
= argmin

v
l(w) + hrl(w),v � wi + h(v)

+
1

2�
kv � wk2 . (10)

This is equivalent to

w0
= prox

�
[w � �rl(w)],

where

prox
�

[w] = argmin
v

h(v) +
1

2�
kv �wk2

2.

Thm. 13 shows that if w = (m, C) and C is triangular
with a positive diagonal, then prox�(w) = (m, C + �C),

where �C is diagonal with �Cii =
1
2 ((C2

ii+4�)
1/2�Cii).

Intuitively, this has the effect of keeping the diagonal entries

away from 0: If Cii is very small then �Cii ⇡ � while
if Cii is large, �Cii ⇡ 0. The proximal scheme has two
advantages over projection. First, convergence rates depend
on the smoothness constant of the linearized terms, which is
M rather than 2M . Second the proximal operator is faster
to compute. prox takes ⌦(d) time, while proj takes ⌦(d3

)

time, due to the need for a singular value decomposition.

6. Demonstration

To avoid complications related to stochastic gradients,
we consider two settings where l(w) and its gradi-
ent can be computed (nearly) exactly. Take a dataset
(x1, y1), · · · , (xN , yN ) and let X be a matrix with xn on
row n and y a vector of the values (y1, · · · yn). We model
p(z,y|X) = p(z)

QN
n=1 p(yn|xn, z). The prior p(z) is

a standard Gaussian. We consider both linear regression
with p(yn|xn, z) = N (yn|µ = z>xn,�2

= 1) and bi-
nary logistic regression with p(yn|xn, z) = �(ynx>

n z).
It can be shown that log p(z,y|X) is M -smooth with
M = 1 + �max(XX>

) for linear regression and M =

1 +
1
4�max(XX>

) for logistic regression.

For linear regression data (boston, fires), l has a
closed form. For logistic regression (australian,
ionosphere), we compute l via a redution to a set of
pre-computed one dimensional integrals: Observe that for
all w, Ez⇠qw log p(y|x, z) = g(yx>m, kC>xk2), where
g(a, b) = Et⇠N (0,1) log �(a+bt). By pre-computing g over
a grid of inputs (a, b) we can quickly evaluate l(w) and its
gradient via spline interpolation.

We initialize m to zero and C = ⇢I for a range of scaling
constants ⇢. Fig. 2 shows example results on two datasets.
For projected or proximal gradient descent, simply initializ-
ing C = 0 is fine. For naive gradient descent, initialization
is subtle, since too small a ⇢ leads to an enormous entropy
gradient (and thus “jumps”), while for large ⇢, all algorithms
converge slowly.

Fig. 3 systematically varies ⇢ on various datasets. There are
two seemingly strange behaviors for naive gradient descent.
First, it performs very similarly to proximal gradient descent
for large ⇢. To understand this, note that when C is large,
the entropy is locally nearly linear, and so a proximal step
is similar to a naive step. Second, there is a near-symmetry
between small and large ⇢. Here, observe that if naive gradi-
ent descent is initialized with small ⇢, the huge gradient of
the entropy term will send the parameters to a correspond-
ingly large C in the second iteration. In these examples, a
carefully chosen ⇢ performs well, though this may be hard
to find and there is no guarantee in general.

These results confirm the theory developed above. First, we
see that proximal gradient descent always converges with
a step-size of � = 1/M . Thus suggests that M as derived
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Figure 2. Naive optimization can work well, but is sensitive to initialization. Looseness of the objective obtained by naive gradient
descent (� = 1/M ), projected gradient descent (� = 1/(2M)) and proximal gradient descent (� = 1/M ). Optimization starts with
m = 0 and C = ⇢I where ⇢ is a scaling factor. Initializing C = 0 is fine for proximal or projected gradient descent, but naive gradient
descent requires careful initialization. Results for other datasets in Sec. 8 (supplement).
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Figure 3. Naive optimization is similar to proximal for large initial C, but worse for small C. Results of optimizing the ELBO with
different scaling factors ⇢ on four different datasets. The two right columns show results after enough iterations for proximal optimization
to converge to less than ⇡ 10�1. The left column shows results after 1

10 -th as many iterations. Proximal optimization starting with C ⇡ 0
always performs well. Projected gradient descent requires more iterations. Naive optimization can work well, but is not guaranteed and
requires careful initialization.

in Thm. 1 is correct. Second, projected gradient descent
always converges with a step-size of 1/(2M). This suggests
that Thm. 11 is correct to assert that the optimal parameters
w⇤2 WM and that the ELBO is 2M -smooth over WM .
Finally, naive gradient “descent” truly can ascend when
the parameters w start in the region where h(w) is non-
smooth, but behaves similarly to proximal gradient descent
otherwise, confirming the discussion in Sec. 5.

7. Discussion

The primary contribution of this paper is to show that for
VI with location-scale families, smoothness of log p(z,x)

implies smoothness of the free energy. This fills a theoretical
gap relevant to many existing works (Khan et al., 2015;
2016; Khan and Lin, 2017; Regier et al., 2017a; Fan et al.,
2016; Buchholz et al., 2018; Mohamad et al., 2018; Alquier
and Ridgway, 2017). We also showed that result gives
parameter-space guarantees on the location of the optimal
parameters. As a minor contribution, we also give analogous
guarantees for strong-convexity. Convergence guarantees
for gradient-based optimization require either smoothness
or convexity. Thus, at a very high level, this paper shows that
if log p(z,x) has the structure needed to guarantee finding
z⇤

= argmax log p(z,x), then it also has the structure to

guarantee that VI with a location-scale family will converge.

While motivated by VI, the main results for smoothness
(Thm. 1) and (strong) convexity (Thm. 9) are general proper-
ties of expectations parameterized by location-scale families,
and so may be of independent interest.

There are several issues to consider when gauging the im-
mediate practical impact of this work. Most importantly, the
smoothness guarantee in this paper was already true, even
if was not known. Thus, real-world black-box VI methods
already benefit from it. Second, rl(w) typically must be
estimated, and convergence guarantees need bounds on the
fluctuations of the estimator. Finding better gradient estima-
tors (and bounds) is an active research topic (Domke, 2019).
Finally, the theory for projected and proximal gradient opti-
mization is still evolving, particularly for non-convex objec-
tives. It seems to be an open question if the “minibatches”
of gradient estimates that current bounds (Ghadimi et al.,
2016) use are truly required.

A result conceptually related to this paper’s smoothness
guarantee is used in variational boosting (Guo et al., 2016;
Locatello et al., 2018): The functional gradient for non-
parametric q is smooth if q is bounded below by a positive
constant. While similar in spirit, this does not address tradi-
tional parametric VI.
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