Provable Smoothness Guarantees for Black-Box Variational Inference

8. Additional Demonstration Plots



Provable Smoothness Guarantees for Black-Box Variational Inference

australian, scaling=2"14° australian, scaling=2"12:0 australian, scaling=2"10-

> 4 —
2 10" ] ]
©
£ 4
B 2 e~ e~ e~
8- 10 7 ..'.\.\\ 1 ..'\.\\ ] ...\'\\
= TN RIS ERE
@ TR~ RSSO RS~
0| == roj .'.\'\ i .'..\ ] .'..\
8 10 gaiéle \\ ‘\ \\
- . ) \
australian, scaling=2-8° australian, scaling=27%° australian, scaling=2~4?
> 4
2 10 ] ]
©
£
= 2 | Tt e T S
% 10 7 i"n‘.\\ ] ."T_x\ T "-T.s\
S L~ s eSS
(?J ..'\'T.N\ ...\'-\N\ .'hT\\
O 10°- ~J~ . IS 1 IS
M N, N, N,
_I “ ‘Q ..
u “ “ “
an2
australian, scaling=272-C australian, scaling=29%9 australian, scaling=22°
> 4
2 10* ] ]
@© e
g e TR ..'\'-\.\\
8 1024 TTSaal : X3 : .
3 N SO N
a ~so S NS
e} 0 .'T-\\ ."-\\\ N \\
- S E "~ k N\
9 10 .\\’ “l.\\ \
Lu 0" \‘ ‘-
10_2 T o T
10 10 10 10 10 10 10 10 10 10 10 10
iters iters iters
australian (150 iters) australian (1500 iters)
=, 4 = = proj .
= 10 naive ,
é 'EER prox /.,
Q. 2 /Yy
o 10 T V/4 T /
_Q F 4
> —— e ——— —_———d /
n o | PTE NSRS RE=D /7
O 10 1 1 7 7
m —— e —————— -—- f
1 /
L -2 R B e e e e e e e e e
10 _|11 I_6 I—1 I4 —I11 l6 I_1 I4
2 2 2 2 2 2 2 2
scaling scaling

Figure 4. Looseness of the objective obtained by naive gradient descent (y = 1/M), projected gradient descent (y = 1/(2M)) and

proximal gradient descent (y = 1/M). Optimization starts with m = 0 and C' = pI where p is a scaling factor.
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Figure 5. Looseness of the objective obtained by naive gradient descent (y = 1/M), projected gradient descent (v = 1/(2M)) and
proximal gradient descent (y = 1/M). Optimization starts with m = 0 and C' = pI where p is a scaling factor.



Provable Smoothness Guarantees for Black-Box Variational Inference

ELBO suboptimality ELBO suboptimality

ELBO suboptimality

Figure 6. Looseness of the objective obtained by naive gradient descent (y = 1/M), projected gradient descent (v = 1/(2M)) and

N
o

-
o

ES

-
o
o

A
b

- -
o o

-
o

N

N

N

o

a
b}
N

-
o
i

N N
o o
o N

N
o
N

ELBO suboptimality

boston, scaling=27"14-0

boston, scaling=2"120

boston, scaling=27100

. \".s - s".~ - s".~
..~'-‘\ .hr.‘\ .ﬁ".~~
e, ™~ T, ™~ N
.'.T.N\N .'.T.N\\ '~.7.~\\
] ==proj IRERYOLN - RN - ™SS
naive S NS NN
prox R
boston, scaling=2"8° boston, scaling=2-% boston, scaling=2~4?
N ‘.'.'T~ 1 \’.-\5 b \?-‘5
'-7.5 "-7‘5 "-T‘~
"\-:\N "\.?\\ "\..\\\
S~ ."-?\\ .."?\\
_ '.. \\ i “~. \\ | ~. \\
O O NN
boston, scaling=2"2"° boston, scaling=2°° boston, scaling=22-°
S
1 1 E -'T.T\
~—— ":\\
ST SO
Ty SIS N
- '..r.~\ - ... \ - 0. \
~O. O, N \\
oS NS N
~— N~ “ S \
-~ ~ . N \
-1 '-.'\\ b \o. \ T t-
‘..k. k\‘
AT T T T T T
10 10 10 10 10 10 10 10 10
iters iters iters
boston (20 iters) boston (200 iters)
. *
4 == proj 7, | |
10 naive /
| BN B BN ' 4
prox //..
2 r 4
10 T //'Q. - //
___——————_’0. / »
HEEEEE N FNaleiieee g .. / ..
0 i VA
10 -— e - - — ————#/ 0.
‘.'
- N
10 11 "6 "1 4 1 "6 " 4
2 2 2 2 2 2 2 2
scaling scaling

proximal gradient descent (y = 1/M). Optimization starts with m = 0 and C' = pI where p is a scaling factor.
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Figure 7. Looseness of the objective obtained by naive gradient descent (y = 1/M), projected gradient descent (y = 1/(2M)) and
proximal gradient descent (y = 1/M). Optimization starts with m = 0 and C' = pI where p is a scaling factor.
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9. Proofs for Technical Lemmas

This section gives proofs for the technical lemmas used
in the main result. Firstly, we show that (-,-), is a valid
inner-product.

Lemma 2. (a,b), = E,. a(u)"b(u) is a valid inner-
product on squared-integrable a : R? — R

Proof. The space of square integrable functions is
{a:RY 5 R¥| Eyosai(u)? < oo Vi€ {l,....k}}.

Since each component a;(u) and b;(u) is square-integrable
with respect to s(u) we know (by Cauchy-Schwarz) that
Euos a;(u)bi(u) < \/]EUNS ai(u)Q\/IEUNS b;(u) is finite
and real. Therefore, we have by linearity of expectation that

k
Z UIES a;(u)b;(u) =

k
UIES Z a;(u)b;(u

i=1 i=1

= E a(u)"bu)

u~s

= <a’ b>s
is finite and real for all @, b € V. To show that (Vg, (-,-),)
is a valid inner-product space, it is easy to establish all the
necessary properties of the inner-product, namely for all
a,b,ceV,

(a,b) = (b,a)
fa,b) =0 (a,b) for € R
a+b, c) (a,c) + (b, c)

a,a) >

(
(
(
(a,a) = 0 < a = 0.(Where 0(g) is a function that always

returns a vector of k zeros.) ]

Next, we give three technical Lemmas, which do most of
the work of the proof.

Lemma 3. Let a;(u) = ﬁtw (w). This is independent of
dl(w)

w and =(a;, Vfoty),

Proof. Now, we can write [(w) as

w) = B f(z)= E_f(tulv).

Since t,,(u) = Cu + m is an affine function, it’s easy to
see that both 7£—1,,(u) and —%t,,(u) are independent of

w. Therefore, the gradient of I(w) can be written as
Villw) = Vi, E f(tw(w)
= E Vatu(0) VS (t(v)).
= (a;,Vfoty),.

Lemma 4. If s is standardized, then the functions {a;} are
orthonormal in (-, -)_ .

Proof. 1t is easy to calculate that

d
d
@tw (’LL) = €Uy,

where e; is the indicator vector in the 7-th component. There-
fore, we have that

(o) ()

=E eiT
unrvs

— 1]i = j]

2 (i) (ate)

= E uje;-rek
un~s

€j

:I[i:kj] E uj
=0

(since zero mean)

2 (i) (i)

:Eujule?ek
=1I[i=k] E uju

= 1li = K11 = 1

(since unit variance and zero mean)

These three identities are equivalent to stating that {a; } are

orthonormal in (-, ). O

Lemma 5. If S is standardized, then
2 2

Eyns [[tw(u) — tv(U)HQ = |lw - UH2 .

Proof. Let Am and AS denote the difference of the m and
S parts of w, respectively. We want to calculate

to(u)]3
= E |ACe + Am)|;

E tuw(u) -

- & (||(A0)u||§ +2AmT ACu + HAmH;) .

It is easy to see that the expectation of the middle term is
zero, and the last is a constant. The expectation of the first
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term is

E [(AC); = E u"(AC)T(AC)u
= E tr(u' (AC)T(AC)u)
= E tr((AC)T(AC)uu")

= ((A0)T(AC)) = |IVOII%-

(since zero mean and unit variance)

Putting this together gives that

2 2 2
E tw(u) = to(u)]; IAC]E + [Am];

2
[w =l
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10. Proof for Example Function

Theorem 6. Let ¢,, = LocScale(m, C, s) with parameters
w = (m,C) and a standardized base distribution s and
let f(z) = §|= —z*||§. Then l(w) = E,q, f(z) =
5(lm — 2"z + ICl%).

Proof. For a general distribution, we have that

Ef@) = ZEllz—Efz)+E[]- ="
= ZE(lz—ERI;

+2 (2~ El2)) " (Efg) - =*) + B[] — "I

2 (b Vi + 1Bl - = 13)

Now, if ¢y, is a location-scale family, we have that z =

Cu + m. Thus,
trViz] = trV[Cu+ m)]
= trV[Cu]
= trCV[uCT
= trCC" Vul.
Meanwhile, we have that
|E[z] — 2*; = [E[Cu+m]—z"||;

= [CEW] +m ="}
Thus,
a T |2
Ef(2) =5 (trCV[u]C +||CE[u] +m — 2 ||2) .
The case where s is standardized follows from substituting

E[u] = 0and V[u] = I and applying the fact that tr CC' T =
2
IC1p - -



Provable Smoothness Guarantees for Black-Box Variational Inference

11. Proofs for Solution Guarantees

Lemma 8. Let g, = LocScale(m, C, s) with parameters
w = (m, C) and a standardized and spherically symmetric
base distribution s. Let l(w) = Ezwqw f ( ). Suppose Cis

Proof. Define w’ to be w but with Cy; set to zero. We will
first show that dl(w ) = 0. Using the definition of ¢,, and

the fact that dcq,j tw( ) = e;u; gives that

)= E L
an‘l(w )= uIEs dciif(tw’(“)) (11)
= E uie] Vf(tw () (12)
=0. (13)

The final equality above follows from the facts that Eu; = 0
and u; | e Vf(ty (u)) (Since t, (u) ignores u;) so the
expectation in Eq. (11) is over two independent random
variables, one with mean zero. Now, by Thm. 1, [ is also
M -smooth, thus

di(w)| _ |dl(w')  dl(w)
dCyi | | dCy dCy;
< |Vi(w') = Vi(w)],
< Mljw' — w,
= M|Cy].

O

Theorem 7. Let q,, = LocScale(m, C, s) with parameters
w = (m, C) and a standardized and spherically symmetric
base distribution s. Suppose w minimizes l(w) + h(w)
from Eq. (1) and log p(z,x) is M-smooth over z. Then,
w € Wyy.

Proof. First, suppose that C' is diagonal. Since w minimizes

I+ h, Vli(w) = —=Vh(w). The gradient of h with respect
T dl(W) _

to C'is =C~ . Thus, |G| = dc” \ = |C - But by

Lem. 8, \dl(w)| <M |C”| This establishes the claim for

diagonal C.

Now, consider some non-diagonal C'. Let the singular value
decomposition be C = USV' ". Define fy(z) = f(Uz)
and define Iy with respect to fy. Let w’ = (S,U " m).
Then, the following statements are equivalent to w €
argmin,, {(w) + h(w):

(C,m) € argmin E f(Cu+m) —

log|C|
(C,m) u~s

< (S,m) € argmin E f (USVTU +m) — log |USVT|
(S;m) u~s

& (S,m) € argmin E f(USu+ m) —log|S]|
(S,m) un~s

& (S,m) € argmin E fy (Su+U"m) —log|S|

(8;m) U~°

& w' € argminly (w) + h(w).

Thus, w minimizing [ + & is equivalent to w’ minimizing

ly + h. Since fy is M-smooth and S is diagonal, we know
o> L

that S;; > NaTi for all . O
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12. Proofs with Convexity

Theorem 10. Let ¢, = LocScale(m, C, s) with param-
eters w = (m,C) and a standardized and spherically
symmetric base distribution s. Suppose w minimizes
l(w) 4+ h(w) from Eq. (1) and —log p(z, x) is c-strongly
Cl% + |lm — 2*||3 < £, where

convex over z. Then,
z* = argmax, log(z, ).

It’s easy to see that [ is minimized by w = (2*,04x4). By
Thm. 9, I(w) is ¢-strongly convex. Thus applying a standard
inner-product result on strong convexity (Nesterov, 2014,
Thm. 2.1.9),

cllw — w5 < (Vi(w) — Vi(w), w — )
(since [ is strongly convex)
= (Vi(w),w — w)
(since VI(w) = 0)
=— (Vh(w),w — w)
(since VI(w) + Vh(w) = 0)
=tr (C~'0)
(since Voh(w) = —C~ T\ V,h(w) = 0).
=trl =d.

The result follows from observing that ||w — 1I)||§ =
2 |2
IC1[E + llm = 273 -
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13. Convergence Considerations

Lemma 12. Ler q,, = LocScale(m, C, s) with parameters
w = (m,C). Then, h(w) = E,qy, [10g quw(z)] is M-
smooth over Wyy.

Proof. Take w = (C,m) € Wy and v = (B,n) € Wy
We write h(C') since (w) is independent of m. The
gradient is VA(C) = C~T. Now, use that [[AX | <
1Al [ X] - to get that

IVA(B) = VR(C)|p = B~ = C7H|
=B~ (B~

<[IB7, lle™" ], 1B = Cllp-

But, since w € Wy, ||C’71H2 = %(C) < /M and sim-
ilarly for C. This establishes that | VA(B) — VA(C)|| <
M ||B — C| i, equivalent to the result.

Theorem 13. Suppose h(w) corresponds to a location-
scale family with a standardized s, and w = (m, C).

o If C has singular value decomposition C = USV T,
then projyy,, (w) = (m,UTV' "), where T is a diag-

onal matrix with T;; = max (S“, W)

o If C is triangular with a positive diagonal, then
prox, (w) = (m,C + AC), where AC'is a diago-

nal matrix with ACy; = % ( CZ +4y— Ci,i) .

Proof. (Proximal Operator) We know that h(w) =
Const. — log |C]. Write w = (m,C) and v = (n, B).
Then, we can write the proximal operator as

1
prox(w) = argmln —log |B| + oy Hv w||§
A
Now, assuming that C'is triangular, the solution will leave
all entries of w other than the diagonal entries of C' un-
changed. Then, we will have that log | B| = Zle log B;;.

Since
1 VY2 44
argmin — logz + —(z —y)? = yrvymtea
>0 2\ 2

The solution is to set

_1 2
Bii=3 <C +4/C2 +4)\)
— 1 /2

(Projection Operator) Von-Neumann’s trace inequality
states that [tr AT B| < 3, 04(A)o;(B). Consider any can-
didate solution B with SVD QTP . Then, we can write
that
tr(B—-C)' (B-0)

2 2
1B — 2tx(BTC) +[|C1

ITIF =2 TS+ ) S:
> (T — Su)?.

i

2
1B =Clr

Y

We can minimize this lower bound by choosing
T;; = max(1/v/M,S;;), with a corresponding value of
>, max(0,1/v/M — S;;)2. Thus any valid solution will
have || B — C’H?7 at least this large.

However, suppose we choose B = U T,V with T;; as
above. Then,

|B=Cllf. = |JuTvT —UsvT[;

_§ ZL_ LZ7

so this value B is optimal. O



