8. Additional Demonstration Plots

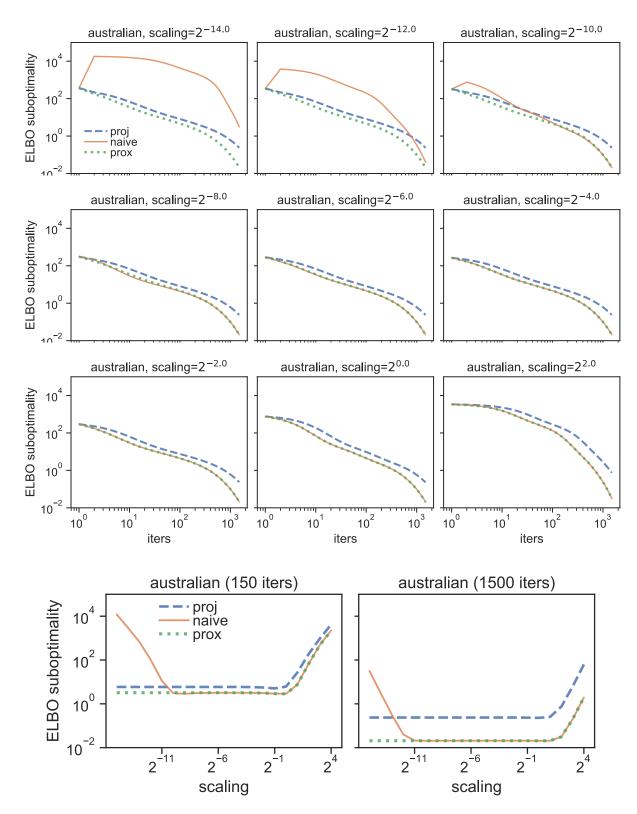


Figure 4. Looseness of the objective obtained by naive gradient descent ($\gamma=1/M$), projected gradient descent ($\gamma=1/(2M)$) and proximal gradient descent ($\gamma=1/M$). Optimization starts with $\boldsymbol{m}=0$ and $C=\rho I$ where ρ is a scaling factor.

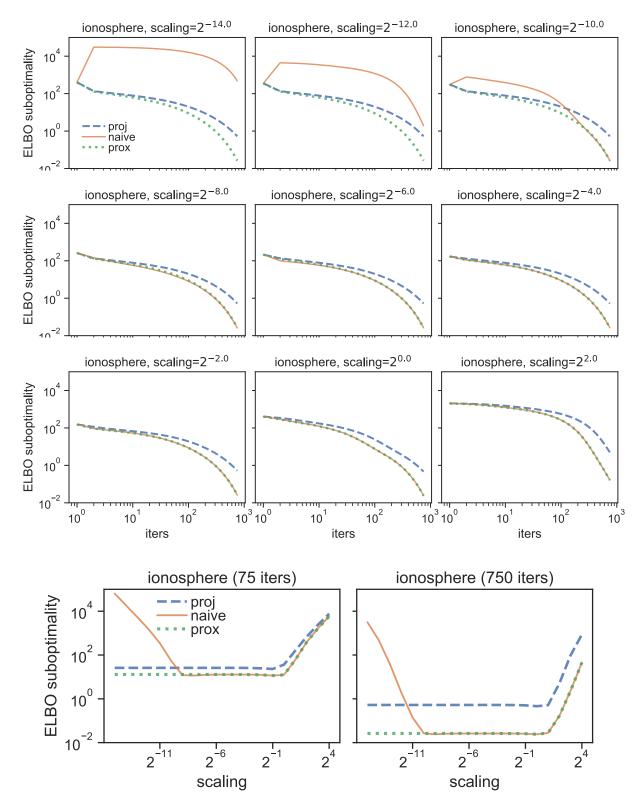


Figure 5. Looseness of the objective obtained by naive gradient descent ($\gamma=1/M$), projected gradient descent ($\gamma=1/(2M)$) and proximal gradient descent ($\gamma=1/M$). Optimization starts with $\boldsymbol{m}=0$ and $C=\rho I$ where ρ is a scaling factor.

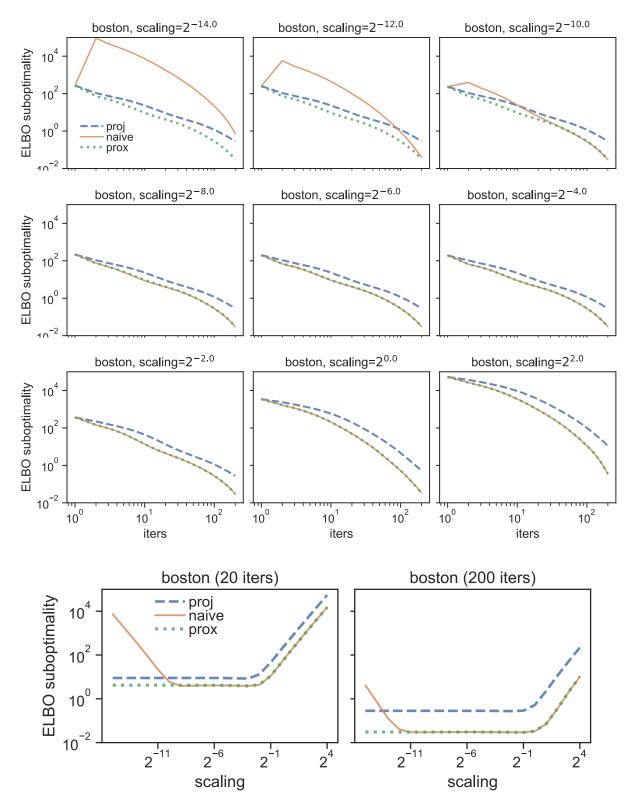


Figure 6. Looseness of the objective obtained by naive gradient descent ($\gamma=1/M$), projected gradient descent ($\gamma=1/(2M)$) and proximal gradient descent ($\gamma=1/M$). Optimization starts with m=0 and $C=\rho I$ where ρ is a scaling factor.

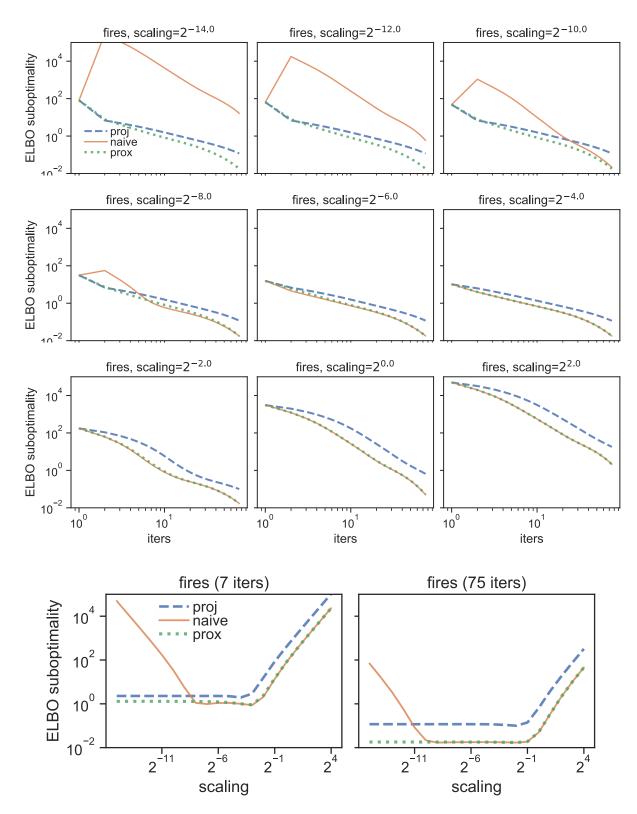


Figure 7. Looseness of the objective obtained by naive gradient descent ($\gamma=1/M$), projected gradient descent ($\gamma=1/(2M)$) and proximal gradient descent ($\gamma=1/M$). Optimization starts with m=0 and $C=\rho I$ where ρ is a scaling factor.

9. Proofs for Technical Lemmas

This section gives proofs for the technical lemmas used in the main result. Firstly, we show that $\langle\cdot,\cdot\rangle_s$ is a valid inner-product.

Lemma 2. $\langle a, b \rangle_s = \mathbb{E}_{u \sim s} a(u)^{\top} b(u)$ is a valid inner-product on squared-integrable $a : \mathbb{R}^d \to \mathbb{R}^k$.

Proof. The space of square integrable functions is $\left\{ \boldsymbol{a} : \mathbb{R}^d \to \mathbb{R}^k \mid \mathbb{E}_{\mathbf{u} \sim s} \ a_i(\mathbf{u})^2 \leq \infty \ \forall i \in \{1,...,k\} \right\}$. Since each component $a_i(\boldsymbol{u})$ and $b_i(\boldsymbol{u})$ is square-integrable with respect to $s(\boldsymbol{u})$ we know (by Cauchy-Schwarz) that $\mathbb{E}_{\mathbf{u} \sim s} \ a_i(\mathbf{u}) b_i(\mathbf{u}) \leq \sqrt{\mathbb{E}_{\mathbf{u} \sim s} \ a_i(\mathbf{u})^2} \sqrt{\mathbb{E}_{\mathbf{u} \sim s} \ b_i(\mathbf{u})}$ is finite and real. Therefore, we have by linearity of expectation that

$$\begin{split} \sum_{i=1}^k \mathop{\mathbb{E}}_{\mathbf{u} \sim s} a_i(\mathbf{u}) b_i(\mathbf{u}) &= \mathop{\mathbb{E}}_{\mathbf{u} \sim s} \sum_{i=1}^k a_i(\mathbf{u}) b_i(\mathbf{u}) \\ &= \mathop{\mathbb{E}}_{\mathbf{u} \sim s} \mathbf{a}(\mathbf{u})^\top \mathbf{b}(\mathbf{u}) \\ &= \langle \mathbf{a}, \mathbf{b} \rangle_{\mathfrak{s}} \end{split}$$

is finite and real for all $a, b \in V_s$. To show that $(V_s, \langle \cdot, \cdot \rangle_s)$ is a valid inner-product space, it is easy to establish all the necessary properties of the inner-product, namely for all $a, b, c \in V_s$,

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{b}, \boldsymbol{a} \rangle$$
 $\langle \boldsymbol{\theta} \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{\theta} \langle \boldsymbol{a}, \boldsymbol{b} \rangle \text{ for } \boldsymbol{\theta} \in \mathbb{R}$
 $\langle \boldsymbol{a} + \boldsymbol{b}, \boldsymbol{c} \rangle = \langle \boldsymbol{a}, \boldsymbol{c} \rangle + \langle \boldsymbol{b}, \boldsymbol{c} \rangle$
 $\langle \boldsymbol{a}, \boldsymbol{a} \rangle \geq 0$
 $\langle \boldsymbol{a}, \boldsymbol{a} \rangle = 0 \Leftrightarrow \boldsymbol{a} = \mathbf{0}$. (Where $\mathbf{0}(\boldsymbol{\varepsilon})$ is a function that always returns a vector of k zeros.)

Next, we give three technical Lemmas, which do most of the work of the proof.

Lemma 3. Let $a_i(u) = \frac{d}{dw_i} t_w(u)$. This is independent of w and $\frac{dl(w)}{dw_i} = \langle a_i, \nabla f \circ t_w \rangle_s$.

Proof. Now, we can write l(w) as

$$l(\boldsymbol{w}) = \mathop{\mathbb{E}}_{\mathbf{z} \sim q_{\boldsymbol{w}}} f(\mathbf{z}) = \mathop{\mathbb{E}}_{\mathbf{u} \sim s} f\left(\boldsymbol{t}_{\boldsymbol{w}}(\mathbf{u})\right).$$

Since $t_w(u) = Cu + m$ is an affine function, it's easy to see that both $\frac{d}{dC_{ij}}t_w(u)$ and $\frac{d}{dm_i}t_w(u)$ are independent of w. Therefore, the gradient of l(w) can be written as

$$\begin{split} \nabla_{w_i} l(\boldsymbol{w}) &= & \nabla_{w_i} \mathop{\mathbb{E}}_{\mathbf{u} \sim s} f\left(\boldsymbol{t_w}(\mathbf{u})\right) \\ &= & \mathop{\mathbb{E}}_{\mathbf{u} \sim s} \nabla_{w_i} \boldsymbol{t_w}(\mathbf{u})^\top \nabla f\left(\boldsymbol{t_w}(\mathbf{u})\right). \\ &= & \left\langle \boldsymbol{a}_i, \nabla f \circ \boldsymbol{t_w} \right\rangle_s. \end{split}$$

Lemma 4. If s is standardized, then the functions $\{a_i\}$ are orthonormal in $\langle \cdot, \cdot \rangle_s$.

Proof. It is easy to calculate that

$$\frac{d}{dm_i} \boldsymbol{t}_{\boldsymbol{w}}(\boldsymbol{u}) = \boldsymbol{e}_i$$

$$\frac{d}{dC_{ij}} \boldsymbol{t}_{\boldsymbol{w}}(\boldsymbol{u}) = \boldsymbol{e}_i u_j,$$

where e_i is the indicator vector in the i-th component. Therefore, we have that

 $\mathbb{E}_{\mathsf{u} \sim s} \left(\frac{d}{dm_i} \boldsymbol{t}_{\boldsymbol{w}}(\mathsf{u}) \right)^{\top} \left(\frac{d}{dm_i} \boldsymbol{t}_{\boldsymbol{w}}(\mathsf{u}) \right)$

$$\begin{split} &= \underset{\mathsf{u} \sim s}{\mathbb{E}} \, \mathbf{e}_i^\top \mathbf{e}_j \\ &= I[i=j] \\ &\mathbb{E} \left(\frac{d}{dC_{ij}} \boldsymbol{t}_{\boldsymbol{w}}(\mathsf{u}) \right)^\top \left(\frac{d}{dm_k} \boldsymbol{t}_{\boldsymbol{w}}(\mathsf{u}) \right) \\ &= \underset{\mathsf{u} \sim s}{\mathbb{E}} \, \mathsf{u}_j \boldsymbol{e}_i^\top \boldsymbol{e}_k \\ &= I[i=k] \, \underset{\mathsf{u} \sim s}{\mathbb{E}} \, \mathsf{u}_j \\ &= 0 \\ &\text{(since zero mean)} \\ &\mathbb{E} \left(\frac{d}{dC_{ij}} \boldsymbol{t}_{\boldsymbol{w}}(\mathsf{u}) \right)^\top \left(\frac{d}{dC_{kl}} \boldsymbol{t}_{\boldsymbol{w}}(\mathsf{u}) \right) \\ &= \mathbb{E} \, \mathsf{u}_j \mathsf{u}_l \boldsymbol{e}_i^\top \boldsymbol{e}_k \\ &= I[i=k] \, \underset{\mathsf{u} \sim s}{\mathbb{E}} \, \mathsf{u}_j \mathsf{u}_l \\ &= I[i=k]I[j=l] \\ &\text{(since unit variance and zero mean)} \end{split}$$

These three identities are equivalent to stating that $\{a_i\}$ are orthonormal in $\langle \cdot, \cdot \rangle_s$.

Lemma 5. If
$$s$$
 is standardized, then $\mathbb{E}_{\mathsf{u} \sim s} \left\| \boldsymbol{t_w}(\mathsf{u}) - \boldsymbol{t_v}(\mathsf{u}) \right\|_2^2 = \left\| \boldsymbol{w} - \boldsymbol{v} \right\|_2^2$.

Proof. Let Δm and ΔS denote the difference of the m and S parts of w, respectively. We want to calculate

$$\begin{split} & \underset{\mathbf{u} \sim s}{\mathbb{E}} \left\| \boldsymbol{t_w}(\mathbf{u}) - \boldsymbol{t_v}(\mathbf{u}) \right\|_2^2 \\ & = \underset{\mathbf{u} \sim s}{\mathbb{E}} \left\| \Delta C \boldsymbol{\varepsilon} + \Delta \boldsymbol{m} \right\|_2^2 \\ & = \underset{\mathbf{u} \sim s}{\mathbb{E}} \left(\left\| (\Delta C) \mathbf{u} \right\|_2^2 + 2 \Delta \boldsymbol{m}^\top \Delta C \mathbf{u} + \left\| \Delta \boldsymbol{m} \right\|_2^2 \right). \end{split}$$

It is easy to see that the expectation of the middle term is zero, and the last is a constant. The expectation of the first term is

$$\begin{split} \mathbb{E}_{\mathbf{u} \sim s} \left\| (\Delta C) \mathbf{u} \right\|_2^2 &= \mathbb{E}_{\mathbf{u} \sim s} \mathbf{u}^\top (\Delta C)^\top (\Delta C) \mathbf{u} \\ &= \mathbb{E}_{\mathbf{u} \sim s} \operatorname{tr} \left(\mathbf{u}^\top (\Delta C)^\top (\Delta C) \mathbf{u} \right) \\ &= \mathbb{E}_{\mathbf{u} \sim s} \operatorname{tr} \left((\Delta C)^\top (\Delta C) \mathbf{u} \mathbf{u}^\top \right) \\ &= \operatorname{tr} \left((\Delta C)^\top (\Delta C) \right) = \left\| \nabla C \right\|_F^2. \\ & (\text{since zero mean and unit variance}) \end{split}$$

Putting this together gives that

$$\begin{split} \underset{\mathbf{u} \sim s}{\mathbb{E}} \left\| \boldsymbol{t}_{\boldsymbol{w}}(\mathbf{u}) - \boldsymbol{t}_{\boldsymbol{v}}(\mathbf{u}) \right\|_2^2 &= \|\Delta C\|_F^2 + \|\Delta \boldsymbol{m}\|_2^2 \\ &= \|\boldsymbol{w} - \boldsymbol{v}\|_2^2 \,. \end{split}$$

10. Proof for Example Function

Theorem 6. Let $q_{\boldsymbol{w}} = \operatorname{LocScale}(\boldsymbol{m}, C, s)$ with parameters $\boldsymbol{w} = (\boldsymbol{m}, C)$ and a standardized base distribution s and let $f(\boldsymbol{z}) = \frac{a}{2} \|\boldsymbol{z} - \boldsymbol{z}^*\|_2^2$. Then $l(\boldsymbol{w}) = \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{w}}} f(\mathbf{z}) = \frac{a}{2} (\|\boldsymbol{m} - \boldsymbol{z}^*\|_2^2 + \|C\|_F^2)$.

Proof. For a general distribution, we have that

$$\begin{split} \mathbb{E}\,f(\mathbf{z}) &= \frac{a}{2}\,\mathbb{E}\,\|\mathbf{z} - \mathbb{E}[\mathbf{z}] + \mathbb{E}[\mathbf{z}] - \boldsymbol{z}^*\|_2^2 \\ &= \frac{a}{2}\,\mathbb{E}\Big(\|\mathbf{z} - \mathbb{E}[\mathbf{z}]\|_2^2 \\ &\quad + 2\,(\mathbf{z} - \mathbb{E}[\mathbf{z}])^\top\,(\mathbb{E}[\mathbf{z}] - \boldsymbol{z}^*) + \|\mathbb{E}[\mathbf{z}] - \boldsymbol{z}^*\|_2^2\Big) \\ &= \frac{a}{2}\,\Big(\mathrm{tr}\,\mathbb{V}[\mathbf{z}] + \|\mathbb{E}[\mathbf{z}] - \boldsymbol{z}^*\|_2^2\Big)\,. \end{split}$$

Now, if q_w is a location-scale family, we have that $\mathbf{z} = C\mathbf{u} + \mathbf{m}$. Thus,

$$\begin{array}{rcl} \operatorname{tr} \mathbb{V}[\mathbf{z}] & = & \operatorname{tr} \mathbb{V}[C\mathbf{u} + \boldsymbol{m}] \\ & = & \operatorname{tr} \mathbb{V}[C\mathbf{u}] \\ & = & \operatorname{tr} C \mathbb{V}[\mathbf{u}]C^{\top} \\ & = & \operatorname{tr} CC^{\top} \mathbb{V}[\mathbf{u}]. \end{array}$$

Meanwhile, we have that

$$\begin{aligned} \left\| \mathbb{E}[\mathbf{z}] - \boldsymbol{z}^* \right\|_2^2 &= & \left\| \mathbb{E}[C\mathbf{u} + \boldsymbol{m}] - \boldsymbol{z}^* \right\|_2^2 \\ &= & \left\| C \, \mathbb{E}[\mathbf{u}] + \boldsymbol{m} - \boldsymbol{z}^* \right\|_2^2 \end{aligned}$$

Thus,

$$\mathbb{E}\,f(\mathbf{z}) = \frac{a}{2} \left(\operatorname{tr} C \, \mathbb{V}[\mathbf{u}] C^\top + \|C \, \mathbb{E}[\mathbf{u}] + \boldsymbol{m} - \boldsymbol{z}^* \|_2^2 \right).$$

The case where s is standardized follows from substituting $\mathbb{E}[\mathsf{u}] = 0$ and $\mathbb{V}[\mathsf{u}] = I$ and applying the fact that $\operatorname{tr} CC^\top = \|C\|_F^2$.

11. Proofs for Solution Guarantees

Lemma 8. Let $q_{\boldsymbol{w}} = \operatorname{LocScale}(\boldsymbol{m}, C, s)$ with parameters $\boldsymbol{w} = (\boldsymbol{m}, C)$ and a standardized and spherically symmetric base distribution s. Let $l(\boldsymbol{w}) = \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{w}}} f(\mathbf{z})$. Suppose C is diagonal and f is M-smooth. Then, $|\frac{dl(\boldsymbol{w})}{dC_{ii}}| \leq M|C_{ii}|$.

Proof. Define w' to be w but with C_{ii} set to zero. We will first show that $\frac{dl(w')}{dC_{ii}} = 0$. Using the definition of t_w and the fact that $\frac{d}{dC_{ii}}t_w(u) = e_iu_j$ gives that

$$\frac{d}{dC_{ii}}l(\boldsymbol{w}') = \underset{\mathbf{u} \sim s}{\mathbb{E}} \frac{d}{dC_{ii}}f(\boldsymbol{t}_{\boldsymbol{w}'}(\mathbf{u})) \tag{11}$$

$$= \underset{\mathsf{u} \sim s}{\mathbb{E}} \mathsf{u}_i \boldsymbol{e}_i^{\top} \nabla f(\boldsymbol{t}_{\boldsymbol{w}'}(\mathsf{u})) \tag{12}$$

$$=0. (13)$$

The final equality above follows from the facts that $\mathbb{E} \, \mathbf{u}_i = 0$ and $\mathbf{u}_i \perp \boldsymbol{e}_i^\top \nabla f(\boldsymbol{t}_{\boldsymbol{w}'}(\mathbf{u}))$ (Since $\boldsymbol{t}_{\boldsymbol{w}'}(\boldsymbol{u})$ ignores \boldsymbol{u}_i) so the expectation in Eq. (11) is over two independent random variables, one with mean zero. Now, by Thm. 1, l is also M-smooth, thus

$$\left| \frac{dl(\boldsymbol{w})}{dC_{ii}} \right| = \left| \frac{dl(\boldsymbol{w}')}{dC_{ii}} - \frac{dl(\boldsymbol{w})}{dC_{ii}} \right|$$

$$\leq \|\nabla l(\boldsymbol{w}') - \nabla l(\boldsymbol{w})\|_{2}$$

$$\leq M \|\boldsymbol{w}' - \boldsymbol{w}\|_{2}$$

$$= M |C_{ii}|.$$

Theorem 7. Let $q_w = \operatorname{LocScale}(\boldsymbol{m}, C, s)$ with parameters $\boldsymbol{w} = (\boldsymbol{m}, C)$ and a standardized and spherically symmetric base distribution s. Suppose \boldsymbol{w} minimizes $l(\boldsymbol{w}) + h(\boldsymbol{w})$ from Eq. (1) and $\log p(\boldsymbol{z}, \boldsymbol{x})$ is M-smooth over \boldsymbol{z} . Then, $\boldsymbol{w} \in \mathcal{W}_M$.

Proof. First, suppose that C is diagonal. Since w minimizes l+h, $\nabla l(w)=-\nabla h(w)$. The gradient of h with respect to C is $-C^{-\top}$. Thus, $|\frac{dl(w)}{dC_{ii}}|=|\frac{dh(w)}{dC_{ii}}|=\frac{1}{|C_{ii}|}$. But by Lem. 8, $|\frac{dl(w)}{dC_{ii}}| \leq M|C_{ii}|$. This establishes the claim for diagonal C.

Now, consider some non-diagonal C. Let the singular value decomposition be $C = USV^{\top}$. Define $f_U(z) = f(Uz)$ and define l_U with respect to f_U . Let $w' = (S, U^{\top}m)$. Then, the following statements are equivalent to $w \in \operatorname{argmin}_{w} l(w) + h(w)$:

$$(C, \boldsymbol{m}) \in \underset{(C, \boldsymbol{m})}{\operatorname{argmin}} \underset{\mathsf{u} \sim s}{\mathbb{E}} f\left(C\mathsf{u} + \boldsymbol{m}\right) - \log |C|$$

$$\Leftrightarrow (S, \boldsymbol{m}) \in \underset{(S, \boldsymbol{m})}{\operatorname{argmin}} \underset{\mathsf{u} \sim s}{\mathbb{E}} f\left(USV^{\top}\mathsf{u} + \boldsymbol{m}\right) - \log |USV^{\top}|$$

$$\Leftrightarrow (S, \boldsymbol{m}) \in \underset{(S, \boldsymbol{m})}{\operatorname{argmin}} \underset{\mathsf{u} \sim s}{\mathbb{E}} f\left(US\mathsf{u} + \boldsymbol{m}\right) - \log |S|$$

$$\Leftrightarrow (S, \boldsymbol{m}) \in \underset{(S, \boldsymbol{m})}{\operatorname{argmin}} \underset{\mathsf{u} \sim s}{\mathbb{E}} f_{U}\left(S\mathsf{u} + U^{\top}\boldsymbol{m}\right) - \log |S|$$

$$\Leftrightarrow \boldsymbol{w}' \in \underset{\boldsymbol{w}}{\operatorname{argmin}} l_{U}(\boldsymbol{w}) + h(\boldsymbol{w}).$$

Thus, w minimizing l+h is equivalent to w' minimizing l_U+h . Since f_U is M-smooth and S is diagonal, we know that $S_{ii} \geq \frac{1}{\sqrt{M}}$ for all .

12. Proofs with Convexity

Theorem 10. Let $q_{\boldsymbol{w}} = \operatorname{LocScale}(\boldsymbol{m}, C, s)$ with parameters $\boldsymbol{w} = (\boldsymbol{m}, C)$ and a standardized and spherically symmetric base distribution s. Suppose \boldsymbol{w} minimizes $l(\boldsymbol{w}) + h(\boldsymbol{w})$ from Eq. (1) and $-\log p(\boldsymbol{z}, \boldsymbol{x})$ is c-strongly convex over \boldsymbol{z} . Then, $\|C\|_F^2 + \|\boldsymbol{m} - \boldsymbol{z}^*\|_2^2 \leq \frac{d}{c}$, where $\boldsymbol{z}^* = \operatorname{argmax}_{\boldsymbol{z}} \log(\boldsymbol{z}, \boldsymbol{x})$.

It's easy to see that l is minimized by $\bar{w} = (z^*, \mathbf{0}_{d \times d})$. By Thm. 9, l(w) is c-strongly convex. Thus applying a standard inner-product result on strong convexity (Nesterov, 2014, Thm. 2.1.9),

$$\begin{split} c \left\| \boldsymbol{w} - \bar{\boldsymbol{w}} \right\|_2^2 & \leq \langle \nabla l(\boldsymbol{w}) - \nabla l(\bar{\boldsymbol{w}}), \boldsymbol{w} - \bar{\boldsymbol{w}} \rangle \\ & \text{(since } l \text{ is strongly convex)} \\ & = \langle \nabla l(\boldsymbol{w}), \boldsymbol{w} - \bar{\boldsymbol{w}} \rangle \\ & \text{(since } \nabla l(\bar{\boldsymbol{w}}) = 0) \\ & = -\langle \nabla h(\boldsymbol{w}), \boldsymbol{w} - \bar{\boldsymbol{w}} \rangle \\ & \text{(since } \nabla l(\boldsymbol{w}) + \nabla h(\boldsymbol{w}) = 0) \\ & = \operatorname{tr} \left(C^{-\top} C \right) \\ & \text{(since } \nabla_C h(\boldsymbol{w}) = -C^{-\top}, \nabla_{\boldsymbol{m}} h(\boldsymbol{w}) = 0). \\ & = \operatorname{tr} I = d. \end{split}$$

The result follows from observing that $\| {m w} - \bar{{m w}} \|_2^2 = \| C \|_F^2 + \| {m m} - {m z}^* \|_2^2$.

13. Convergence Considerations

Lemma 12. Let $q_{\boldsymbol{w}} = \operatorname{LocScale}(\boldsymbol{m}, C, s)$ with parameters $\boldsymbol{w} = (\boldsymbol{m}, C)$. Then, $h(\boldsymbol{w}) = \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{w}}} [\log q_{\boldsymbol{w}}(\mathbf{z})]$ is M-smooth over \mathcal{W}_M .

Proof. Take $\mathbf{w} = (C, \mathbf{m}) \in \mathcal{W}_M$ and $\mathbf{v} = (B, \mathbf{n}) \in \mathcal{W}_M$. We write h(C) since $h(\mathbf{w})$ is independent of \mathbf{m} . The gradient is $\nabla h(C) = C^{-T}$. Now, use that $\|AX\|_F \leq \|A\|_2 \|X\|_F$ to get that

$$\begin{split} \|\nabla h(B) - \nabla h(C)\|_F &= \left\|B^{-1} - C^{-1}\right\|_F \\ &= \left\|B^{-1}(B - C)C^{-1}\right\|_F \\ &\leq \left\|B^{-1}\right\|_2 \left\|C^{-1}\right\|_2 \left\|B - C\right\|_F. \end{split}$$

But, since $\boldsymbol{w} \in \mathcal{W}_M$, $\left\|C^{-1}\right\|_2 = \frac{1}{\sigma_{\min}(C)} \leq \sqrt{M}$ and similarly for C. This establishes that $\left\|\nabla h(B) - \nabla h(C)\right\|_F \leq M \left\|B - C\right\|_F$, equivalent to the result. \square

Theorem 13. Suppose h(w) corresponds to a location-scale family with a standardized s, and w = (m, C).

- If C has singular value decomposition $C = USV^{\top}$, then $\operatorname{proj}_{\mathcal{W}_M}(\boldsymbol{w}) = (\boldsymbol{m}, UTV^{\top})$, where T is a diagonal matrix with $T_{ii} = \max\left(S_{ii}, \frac{1}{\sqrt{M}}\right)$.
- If C is triangular with a positive diagonal, then $\operatorname{prox}_{\gamma}(\boldsymbol{w}) = (\boldsymbol{m}, C + \Delta C)$, where ΔC is a diagonal matrix with $\Delta C_{ii} = \frac{1}{2} \left(\sqrt{C_{ii}^2 + 4\gamma} C_{ii} \right)$.

Proof. (**Proximal Operator**) We know that $h(w) = \text{Const.} - \log |C|$. Write w = (m, C) and v = (n, B). Then, we can write the proximal operator as

$$\operatorname{prox}_{\lambda}(\boldsymbol{w}) = \operatorname{argmin}_{\boldsymbol{v}} - \log|B| + \frac{1}{2\lambda} \|\boldsymbol{v} - \boldsymbol{w}\|_{2}^{2}$$

Now, assuming that C is triangular, the solution will leave all entries of w other than the diagonal entries of C unchanged. Then, we will have that $\log |B| = \sum_{i=1}^d \log B_{ii}$. Since

$$\underset{x>0}{\operatorname{argmin}} - \log x + \frac{1}{2\lambda} (x - y)^2 = \frac{y + \sqrt{y^2 + 4\lambda}}{2}$$

The solution is to set

$$\begin{split} B_{ii} &= \frac{1}{2} \left(C_{ii} + \sqrt{C_{ii}^2 + 4\lambda} \right) \\ &= C_{ii} + \frac{1}{2} \left(\sqrt{C_{ii}^2 + 4\lambda} - C_{ii} \right). \end{split}$$

(**Projection Operator**) Von-Neumann's trace inequality states that $\left|\operatorname{tr} A^{\top} B\right| \leq \sum_{i} \sigma_{i}(A)\sigma_{i}(B)$. Consider any candidate solution B with SVD QTP^{\top} . Then, we can write that

$$||B - C||_F^2 = \operatorname{tr}(B - C)^\top (B - C)$$

$$= ||B||_F^2 - 2\operatorname{tr}(B^\top C) + ||C||_F^2$$

$$\geq ||T||_F^2 - 2\sum_i T_{ii}S_{ii} + \sum_i S_{ii}^2$$

$$= \sum_i (T_{ii} - S_{ii})^2.$$

We can minimize this lower bound by choosing $T_{ii} = \max(1/\sqrt{M}, S_{ii})$, with a corresponding value of $\sum_i \max(0, 1/\sqrt{M} - S_{ii})^2$. Thus any valid solution will have $||B - C||_F^2$ at least this large.

However, suppose we choose $B = UT_{ii}V^{\top}$ with T_{ii} as above. Then,

$$||B - C||_F^2 = ||UTV^\top - USV^\top||_F^2 = \sum_i (T_{ii} - S_{ii})^2,$$

so this value B is optimal.