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8. Additional Demonstration Plots
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Figure 4. Looseness of the objective obtained by naive gradient descent (� = 1/M ), projected gradient descent (� = 1/(2M)) and
proximal gradient descent (� = 1/M ). Optimization starts with m = 0 and C = ⇢I where ⇢ is a scaling factor.
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Figure 5. Looseness of the objective obtained by naive gradient descent (� = 1/M ), projected gradient descent (� = 1/(2M)) and
proximal gradient descent (� = 1/M ). Optimization starts with m = 0 and C = ⇢I where ⇢ is a scaling factor.
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Figure 6. Looseness of the objective obtained by naive gradient descent (� = 1/M ), projected gradient descent (� = 1/(2M)) and
proximal gradient descent (� = 1/M ). Optimization starts with m = 0 and C = ⇢I where ⇢ is a scaling factor.
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Figure 7. Looseness of the objective obtained by naive gradient descent (� = 1/M ), projected gradient descent (� = 1/(2M)) and
proximal gradient descent (� = 1/M ). Optimization starts with m = 0 and C = ⇢I where ⇢ is a scaling factor.
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9. Proofs for Technical Lemmas

This section gives proofs for the technical lemmas used
in the main result. Firstly, we show that h·, ·is is a valid
inner-product.
Lemma 2. ha, bis = Eu⇠s a(u)

>b(u) is a valid inner-

product on squared-integrable a : Rd ! Rk
.

Proof. The space of square integrable functions is�
a : Rd ! Rk | Eu⇠s ai(u)

2  1 8i 2 {1, ..., k}
 
.

Since each component ai(u) and bi(u) is square-integrable
with respect to s(u) we know (by Cauchy-Schwarz) that
Eu⇠s ai(u)bi(u) 

p
Eu⇠s ai(u)2

p
Eu⇠s bi(u) is finite

and real. Therefore, we have by linearity of expectation that

kX

i=1

E
u⇠s

ai(u)bi(u) = E
u⇠s

kX

i=1

ai(u)bi(u)

= E
u⇠s

a(u)
>b(u)

= ha, bis
is finite and real for all a, b 2 Vs. To show that (Vs, h·, ·is)
is a valid inner-product space, it is easy to establish all the
necessary properties of the inner-product, namely for all
a, b, c 2 Vs,

ha, bi = hb,ai

h✓a, bi = ✓ ha, bi for ✓ 2 R

ha + b, ci = ha, ci + hb, ci

ha,ai � 0

ha,ai = 0 , a = 0. (Where 0(") is a function that always
returns a vector of k zeros.)

Next, we give three technical Lemmas, which do most of
the work of the proof.
Lemma 3. Let ai(u) =

d
dwi

tw(u). This is independent of

w and
dl(w)
dwi

= hai,rf � twis.

Proof. Now, we can write l(w) as

l(w) = E
z⇠qw

f(z) = E
u⇠s

f (tw(u)) .

Since tw(u) = Cu + m is an affine function, it’s easy to
see that both d

dCij
tw(u) and d

dmi
tw(u) are independent of

w. Therefore, the gradient of l(w) can be written as

rwi l(w) = rwi E
u⇠s

f (tw(u))

= E
u⇠s

rwitw(u)
>rf (tw(u)) .

= hai,rf � twis .

Lemma 4. If s is standardized, then the functions {ai} are

orthonormal in h·, ·is .

Proof. It is easy to calculate that

d

dmi
tw(u) = ei

d

dCij
tw(u) = eiuj ,

where ei is the indicator vector in the i-th component. There-
fore, we have that

E
u⇠s

✓
d

dmi
tw(u)

◆> ✓
d

dmj
tw(u)

◆

= E
u⇠s

e>
i ej

= I[i = j]

E
u⇠s

✓
d

dCij
tw(u)

◆> ✓
d

dmk
tw(u)

◆

= E
u⇠s

uje
>
i ek

= I[i = k] E
u⇠s

uj

= 0

(since zero mean)

E
u⇠s

✓
d

dCij
tw(u)

◆> ✓
d

dCkl
tw(u)

◆

= E ujule
>
i ek

= I[i = k] E
u⇠s

ujul

= I[i = k]I[j = l]

(since unit variance and zero mean)

These three identities are equivalent to stating that {ai} are
orthonormal in h·, ·is.

Lemma 5. If s is standardized, then

Eu⇠s ktw(u) � tv(u)k2
2 = kw � vk2

2 .

Proof. Let �m and �S denote the difference of the m and
S parts of w, respectively. We want to calculate

E
u⇠s

ktw(u) � tv(u)k2
2

= E
u⇠s

k�C" + �mk2
2

= E
u⇠s

⇣
k(�C)uk2

2 + 2�m>
�Cu + k�mk2

2

⌘
.

It is easy to see that the expectation of the middle term is
zero, and the last is a constant. The expectation of the first
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term is

E
u⇠s

k(�C)uk2
2 = E

u⇠s
u>

(�C)
>

(�C)u

= E
u⇠s

tr
�
u>

(�C)
>

(�C)u
�

= E
u⇠s

tr
�
(�C)

>
(�C)uu>�

= tr
�
(�C)

>
(�C)

�
= krCk2

F .

(since zero mean and unit variance)

Putting this together gives that

E
u⇠s

ktw(u) � tv(u)k2
2 = k�Ck2

F + k�mk2
2

= kw � vk2
2 .
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10. Proof for Example Function

Theorem 6. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized base distribution s and

let f(z) =
a
2 kz � z⇤k2

2 . Then l(w) = Ez⇠qw f(z) =
a
2 (km� z⇤k2

2 + kCk2
F ).

Proof. For a general distribution, we have that

E f(z) =
a

2
E kz � E[z] + E[z] � z⇤k2

2

=
a

2
E
⇣
kz � E[z]k2

2

+2 (z � E[z])>
(E[z] � z⇤

) + kE[z] � z⇤k2
2

⌘

=
a

2

⇣
trV[z] + kE[z] � z⇤k2

2

⌘
.

Now, if qw is a location-scale family, we have that z =

Cu + m. Thus,

trV[z] = trV[Cu + m]

= trV[Cu]

= trC V[u]C>

= trCC> V[u].

Meanwhile, we have that

kE[z] � z⇤k2
2 = kE[Cu + m] � z⇤k2

2

= kC E[u] + m� z⇤k2
2

Thus,

E f(z) =
a

2

⇣
trC V[u]C>

+ kC E[u] + m� z⇤k2
2

⌘
.

The case where s is standardized follows from substituting
E[u] = 0 and V[u] = I and applying the fact that trCC>

=

kCk2
F .
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11. Proofs for Solution Guarantees

Lemma 8. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized and spherically symmetric

base distribution s. Let l(w) = Ez⇠qw f(z). Suppose C is

diagonal and f is M -smooth. Then, |dl(w)
dCii

|  M |Cii|.

Proof. Define w0 to be w but with Cii set to zero. We will
first show that dl(w0)

dCii
= 0. Using the definition of tw and

the fact that d
dCij

tw(u) = eiuj gives that

d

dCii
l(w0

) = E
u⇠s

d

dCii
f(tw0(u)) (11)

= E
u⇠s

uie
>
i rf(tw0(u)) (12)

= 0. (13)

The final equality above follows from the facts that E ui = 0

and ui ? e>
i rf(tw0(u)) (Since tw0(u) ignores ui) so the

expectation in Eq. (11) is over two independent random
variables, one with mean zero. Now, by Thm. 1, l is also
M -smooth, thus

����
dl(w)

dCii

���� =

����
dl(w0

)

dCii
� dl(w)

dCii

����

 krl(w0
) �rl(w)k2

 M kw0 �wk2

= M |Cii| .

Theorem 7. Let qw = LocScale(m, C, s) with parameters

w = (m, C) and a standardized and spherically symmetric

base distribution s. Suppose w minimizes l(w) + h(w)

from Eq. (1) and log p(z,x) is M -smooth over z. Then,

w 2 WM .

Proof. First, suppose that C is diagonal. Since w minimizes
l + h, rl(w) = �rh(w). The gradient of h with respect
to C is �C�>. Thus, |dl(w)

dCii
| = |dh(w)

dCii
| =

1
|Cii| . But by

Lem. 8, |dl(w)
dCii

|  M |Cii|. This establishes the claim for
diagonal C.

Now, consider some non-diagonal C. Let the singular value
decomposition be C = USV >. Define fU (z) = f(Uz)

and define lU with respect to fU . Let w0
= (S,U>m).

Then, the following statements are equivalent to w 2
argminw l(w) + h(w):

(C,m) 2 argmin

(C,m)
E

u⇠s
f (Cu + m) � log |C|

, (S,m) 2 argmin

(S,m)
E

u⇠s
f
�
USV >u + m

�
� log

��USV >��

, (S,m) 2 argmin

(S,m)
E

u⇠s
f (USu + m) � log |S|

, (S,m) 2 argmin

(S,m)
E

u⇠s
fU

�
Su + U>m

�
� log |S|

, w0 2 argmin
w

lU (w) + h(w).

Thus, w minimizing l + h is equivalent to w0 minimizing
lU + h. Since fU is M -smooth and S is diagonal, we know
that Sii � 1p

M
for all .
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12. Proofs with Convexity

Theorem 10. Let qw = LocScale(m, C, s) with param-

eters w = (m, C) and a standardized and spherically

symmetric base distribution s. Suppose w minimizes

l(w) + h(w) from Eq. (1) and � log p(z,x) is c-strongly

convex over z. Then, kCk2
F + km � z⇤k2

2  d
c , where

z⇤
= argmaxz log(z,x).

It’s easy to see that l is minimized by w̄ = (z⇤,0d⇥d). By
Thm. 9, l(w) is c-strongly convex. Thus applying a standard
inner-product result on strong convexity (Nesterov, 2014,
Thm. 2.1.9),

c kw � w̄k2
2 hrl(w) �rl(w̄),w � w̄i

(since l is strongly convex)
= hrl(w),w � w̄i

(since rl(w̄) = 0)
= � hrh(w),w � w̄i

(since rl(w) + rh(w) = 0)

= tr
�
C�>C

�

(since rCh(w) = �C�>,rmh(w) = 0).
= tr I = d.

The result follows from observing that kw � w̄k2
2 =

kCk2
F + km� z⇤k2

2 .
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13. Convergence Considerations

Lemma 12. Let qw = LocScale(m, C, s) with parameters

w = (m, C). Then, h(w) = Ez⇠qw [log qw(z)] is M -

smooth over WM .

Proof. Take w = (C,m) 2 WM and v = (B,n) 2 WM .
We write h(C) since h(w) is independent of m. The
gradient is rh(C) = C�T . Now, use that kAXkF 
kAk2 kXkF to get that

krh(B) �rh(C)kF =
��B�1 � C�1

��
F

=
��B�1

(B � C)C�1
��
F


��B�1

��
2

��C�1
��

2
kB � CkF .

But, since w 2 WM ,
��C�1

��
2

=
1

�min(C) 
p
M and sim-

ilarly for C. This establishes that krh(B) �rh(C)kF 
M kB � CkF , equivalent to the result.

Theorem 13. Suppose h(w) corresponds to a location-

scale family with a standardized s, and w = (m, C).

• If C has singular value decomposition C = USV >,
then projWM

(w) = (m, UTV >
), where T is a diag-

onal matrix with Tii = max

⇣
Sii,

1p
M

⌘
.

• If C is triangular with a positive diagonal, then

prox�(w) = (m, C + �C), where �C is a diago-

nal matrix with �Cii =
1
2

⇣p
C2

ii + 4� � Cii

⌘
.

Proof. (Proximal Operator) We know that h(w) =

Const. � log |C| . Write w = (m, C) and v = (n, B).
Then, we can write the proximal operator as

prox
�

(w) = argmin
v

� log |B| + 1

2�
kv �wk2

2

Now, assuming that C is triangular, the solution will leave
all entries of w other than the diagonal entries of C un-
changed. Then, we will have that log |B| =

Pd
i=1 logBii.

Since

argmin
x>0

� log x +
1

2�
(x� y)2 =

y +
p
y2 + 4�

2

The solution is to set

Bii =
1

2

✓
Cii +

q
C2

ii + 4�

◆

= Cii +
1

2

✓q
C2

ii + 4�� Cii

◆
.

(Projection Operator) Von-Neumann’s trace inequality
states that

��trA>B
�� 

P
i �i(A)�i(B). Consider any can-

didate solution B with SVD QTP>. Then, we can write
that

kB � Ck2
F = tr (B � C)

>
(B � C)

= kBk2
F � 2 tr(B>C) + kCk2

F

� kTk2
F � 2

X

i

TiiSii +

X

i

S2
ii

=

X

i

(Tii � Sii)
2 .

We can minimize this lower bound by choosing
Tii = max(1/

p
M,Sii), with a corresponding value ofP

i max(0, 1/
p
M � Sii)

2. Thus any valid solution will
have kB � Ck2

F at least this large.

However, suppose we choose B = UTiiV > with Tii as
above. Then,

kB � Ck2
F =

��UTV > � USV >��2

F
=

X

i

(Tii � Sii)
2,

so this value B is optimal.


