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Theorem 2. Let W™ be the solution of (6), and T be the total number of training iterations. Further, let the pruning be
performed as described above, p be a starting probability of weight duplication, and 0 < 8 < 1 is a multiplicative factor
that reduces p after every weight duplication. Then,
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Proof. The proof closely follows the proof of Theorems 1 and 3 from (Wang et al., 2011). First, we rewrite the update rule

of SGD with the pruning step as W+ « WO — p09®  where 8 = v 4 E®_ and E®) = E;fﬁune + Et(i'u),pl

where we can see that the weight matrix degradation at the ¢ training iteration E(*) is equal to the sum of weight matrix

degradation Eé?une due to pruning and weight matrix degradation ESZ ; due to weight duplication. Clearly, Eﬁ,r)?me =0

if no pruning is used, and E(t) ; = 0 if no duplication is used at the " training iteration. Note that, in contrast to (Wang
etal., 2011), we also included the weight duplication degradation. The relative progress towards the optimal solution W*
at the t™ round D® can be lower bounded as
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where h = p/(1 — /3). For the second term in the r.h.s. of the inequality in (2), we first bounded || W) || as
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where, in contrast to (Wang et al., 2011), we added the ||AduplW(t_1) || term equal to the norm of the duplicated weight.
This term is upper bounded by (2 4 ¢)/A, as the norm of any weight is upper bounded by the weight matrix norm when
weight duplication is not used during training (Wang et al., 2011). The duplication probability p drops by a factor of 3
whenever the weight duplication is performed, introducing the multiplication factor of ZZ:OI p/3t to the total weight matrix
norm degradation due to duplication, where the sum of geometric sequence of duplication probabilities is upper bounded
by h = p/(1 — (). We then use triangle inequality to bound |[W®) — W*|| < (2 + ¢)(1 + h)/\ + 2/ by using the fact
that ||[W*|| < 2/ according to the result in (Kivinen et al., 2002). Lastly, the third term in the r.h.s. of the inequality in
(2) was obtained using function £*) (W(t))’s A-strong convexity (Shalev-Shwartz & Singer, 2007).

Dividing both sides of inequality (2) by 217(*) and rearranging, we obtain
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Summing over all ¢ and dividing by 7', we obtain
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We bound the first and second terms in the r.h.s. of inequality (5) as
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In =1, the first and second terms vanish after plugging in n; = 1/(At).
Next, we bound the third term in the r.h.s. of inequality (5) as follows,
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In <; we bound the terms in the parentheses according to the divergence rate of the harmonic series, as well as according
to upper bounds on the sum of low-order power series.

Next, we bound the fourth term in the r.h.s. of inequality (5) as follows,
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We bounded ||E,(,tr)une|| using the bound on ||AW(t) du || using the bound on |[W®)||. We obtain
(1) by combining inequality (5) with inequalities (6), (7), and (8). O]

Theorem 3. Let F be a class of functions that MM can implement, and w.l.o.g. ||x|| < 1. Then, with probability of at least
1 — 9, the risk of any function f € F is bounded from above as
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where K = Y b; >_ bj, and b; is the number of weights for the i class.
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Proof. The proof closely follows the proof of Theorem 6 from (Guermeur, 2010). For the clarity of notation, we introduce
fi(x) = g(i,x) = max; w] X, and f; ;(x) = w],x,i € {1,...,M},j € {1,...,b;}. Then, let F stand for the product
space FM, so that (f1(-),..., fu (")) € F. Addltlonally, in order to retain the generality of the Theorem and its proof,
in the following we use x to denote a kernel function as in (Guermeur, 2010), and ®(x) to denote a kernel mapping from
the original input space to the feature space induced by the kernel function x. However, note that the MM model, although
being non-linear classifier, uses a linear kernel to compare each weight w; ; to a new data point, and in the following we
can also set ®(x) = x. Further, let [/ < A, andlet Vx € RP, ||x|| < Aggp).

It follows,
vf € F.R(f) < R(f)- (10)
Consequently,
vF € F.R(F) < Bx(D) + sup (R() — Bn (D). (an
feF

The rest of the proof consists in the computation of an upper bound on the supremum of the empirical process appearing in
(11). Let Z denote a random pair (X, Y") and Z; its copies which constitute the N-sample Dy : Dy = (Z;)1<i<n. After
simplifying notation this way, the bounded differences inequality can be applied to the supremum of interest by setting
n =N, (T)izicn = Dy (e T = Z), and f(T,...,T,) = supjcz (E(?) _ EN(?)). The functions F € F take
their values in the interval [— B+, B;]M , with B = A, Ag(x). Consequently, the loss function associated with the risk

R takes its values in the interval [0, K=]. We can then get the following result (Guermeur, 2010): With probability of at
least 1 — 6,
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In order to address the specific case of the considered MM model, we will introduce a different definition of cat than in the
proof of Theorem 6 in (Guermeur, 2010). For n € N*, let 2" = (@i, ¥i))i<i<n € (RP x )™ and let cat be a mapping
from F x RP x Yinto {1,..., M}? x N2 such that

(12)

Further, it can be shown that
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V(f,z,y) € F x RP x Y, cat(f,x,y) =(k,l,p,q) = (k=y) Al #y) A (fz(x) = Iggj{fi(x))
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The rest of the proof is straightforward modification of the proof of Theorem 6 in (Guermeur, 2010). By construction of
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the mapping cat,
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Then, let ITy be the set of all mappings 7y from {1,..., N} into (k,l,p,q) € {1,..., M}? x N2, such that for all values
of ¢, the pair (k, ) is always made up of two different values, while p € {1,...,b;} and ¢ € {1,...,b;}. It follows

ALE, | sup Z Z oik(xi, )| | < Ay Z E, | sup Z oik(xg, )| | - (16)
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Consequently, to complete the derivation of the bound, it suffices to find a uniform upper bound on the expressions of the
form

Eo || Y oir(xi, )H : (17)
1€ETN
where Zy is a subset of {1,..., N}. By applying Jensen’s inequality and using the fact that x(x;,x;) > 0, a uniform

upper bound of the above expression can be shown to be equal to
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By substitution in the right-hand side of (16), and then in the right-hand side of (15), we get
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In the case of MM, it is easy to see that K& = 1 + Au,A@(RD). Also, due to the assumptions of the Theorem, we can set
Agpmpy = 1 and A, = [[W]|. Finally, combining inequalities (11), (12), (13), and (20) produces the bound (9), which
concludes the proof.

As a concluding remark, we note that the main difference between proofs of Theorem 6 from (Guermeur, 2010) and the
proof of Theorem 4 is in the definition of cat mapping. Unlike in (Guermeur, 2010), where the image of cat mapping is
of cardinality M - (M — 1), the image of cat mapping for MM is of cardinality K, due to a larger number of weights per
class. O
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