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Abstract
In real world, our datasets often contain outliers.
Most existing algorithms for handling outliers
take high time complexities (e.g. quadratic or cu-
bic complexity). Coreset is a popular approach
for compressing data so as to speed up the opti-
mization algorithms. However, the current coreset
methods cannot be easily extended to handle the
case with outliers. In this paper, we propose a new
variant of coreset technique, layered sampling, to
deal with two fundamental robust optimization
problems: k-median/means clustering with out-
liers and linear regression with outliers. This new
coreset method is in particular suitable to speed
up the iterative algorithms (which often improve
the solution within a local range) for those robust
optimization problems.

1. Introduction
Coreset is a widely studied technique for solving many
optimization problems (Phillips, 2016; Bachem et al., 2017;
Munteanu et al., 2018; Feldman, 2020). The (informal)
definition is as follows. Given an optimization problem with
the objective function ∆, denote by ∆(P,C) the objective
value determined by a dataset P and a solution C; a small
set S is called a coreset if

∆(P,C) ≈ ∆(S,C) (1)

for any feasible solution C. Roughly speaking, the coreset
is a small set of data approximately representing a much
larger dataset, and therefore existing algorithm can run on
the coreset (instead of the original dataset) so as to reduce
the complexity measures like running time, space, and com-
munication. In the past years, the coreset techniques have
been successfully applied to solve many optimization prob-
lems, such as clustering (Chen, 2009; Feldman & Langberg,
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2011; Huang et al., 2018), logistic regression (Huggins et al.,
2016; Munteanu et al., 2018), linear regression (Dasgupta
et al., 2009; Drineas et al., 2006), and Gaussian mixture
model (Lucic et al., 2017; Karnin & Liberty, 2019).

A large part of existing coreset construction methods are
based on the theory of sensitivity which was proposed by
(Langberg & Schulman, 2010). Informally, each data point
p ∈ P has the sensitivity φ(p) (in fact, we just need to
compute an appropriate upper bound of φ(p)) to measure
its importance to the whole instance P over all possible
solutions, and Φ(P ) =

∑
p∈P φ(p) is called the total sen-

sitivity. The coreset construction is a simple sampling pro-
cedure where each point p is drawn i.i.d. from P propor-
tional to φ(p)

Φ(P ) ; each sampled point p is assigned a weight

w(p) = Φ(P )
mφ(p) wherem is the sample size depending on the

“pseudo-dimension” of the objective function ∆ ((Feldman
& Langberg, 2011; Li et al., 2001)); eventually, the set of
weighted sampled points form the desired coreset S.

In real world, datasets are noisy and contain outliers. More-
over, outliers could seriously affect the final results in data
analysis (Chandola et al., 2009; Goodfellow et al., 2018).
However, the sensitivity based coreset approach is not ap-
propriate to handle robust optimization problems involving
outliers (e.g., k-means clustering with outliers). For exam-
ple, it is not easy to compute the sensitivity φ(p) because
the point p could be inlier or outlier for different solutions;
moreover, it is challenging to build the relation, such as (1),
between the original instance P and the coreset S (e.g., how
to determine the number of outliers for the instance S?).

1.1. Our Contributions

In this paper, we consider two important robust optimization
problems: k-median/means clustering with outliers and lin-
ear regression with outliers. Their quality guaranteed algo-
rithms exist but often have high complexities that seriously
limit their applications in real scenarios (see Section 1.2 for
more details). We observe that these problems can be often
efficiently solved by some heuristic algorithms in practice,
though they only guarantee local optimums in theory. For
example, (Chawla & Gionis, 2013) proposed the algorithm
k-means- - to solve the problem of k-means clustering with
outliers, where the main idea is an alternating minimization
strategy. The algorithm is an iterative procedure, where it
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Figure 1. The red point represents the initial solution C̃, and our
goal is to guarantee (2) for a local range around C̃.

alternatively updates the outliers and the k cluster centers
in each iteration; eventually the solution converges to a lo-
cal optimum. The alternating minimization strategy is also
widely used for solving the problem of linear regression
with outliers, e.g., (Shen & Sanghavi, 2019). A common
feature of these methods is that they usually start from an
initial solution and then locally improve the solution round
by round. Therefore, a natural question is

can we construct a “coreset” only for a local range in the
solution space?

Using such a coreset, we can substantially speed up those it-
erative algorithms. Motivated by this question, we introduce
a new variant of coreset method called layered sampling.
Given an initial solution C̃, we partition the given data set
P into a consecutive sequence of “layers” surrounding C̃
and conduct the random sampling in each layer; the union
of the samples, together with the points located in the out-
ermost layer, form the coreset S. Actually, our method
is partly inspired by the coreset construction method of
k-median/means clustering (without outliers) proposed by
(Chen, 2009). However, we need to develop significantly
new idea in theory to prove its correctness for the case with
outliers. The purpose of layered sampling is not to guaran-
tee the approximation quality (as (1)) for any solution C,
instead, it only guarantees the quality for the solutions in
a local range L in the solution space (the formal definition
is given in Section 1.3). Informally, we need to prove the
following result to replace (1):

∀C ∈ L,∆(P,C) ≈ ∆(S,C) (2)

See Figure 1 for an illustration. In other words, the new
method can help us to find a local optimum faster. Our main
results are shown in Theorem 1 and 2. The construction
algorithms are easy to implement.

1.2. Related Works

k-median/means clustering (with outliers). k-
median/means clustering are two popular center-based
clustering problems (Awasthi & Balcan, 2014). It has
been extensively studied for using coreset techniques to
reduce the complexities of k-median/means clustering
algorithms (Chen, 2009; Har-Peled & Kushal, 2007;

Fichtenberger et al., 2013; Feldman et al., 2013); in
particular, (Feldman & Langberg, 2011) proposed a
unified coreset framework for a set of clustering problems.
However, the research on using coreset to handle outliers is
still quite limited. Recently, (Huang et al., 2018) showed
that a uniform independent sample can serve as a coreset
for clustering with outliers in Euclidean space; however,
such uniform sampling based method often misses some
important points and therefore introduces an unavoidable
error on the number of outliers. (Gupta, 2018) also studied
the uniform random sampling idea but under the assumption
that each optimal cluster should be large enough. Partly
inspired by the method of (Mettu & Plaxton, 2004), (Chen
et al., 2018) proposed a novel summary construction
algorithm to reduce input data size which guarantees an
O(1) factor of distortion on the clustering cost.

In theory, the algorithms with provable guarantees for k-
median/means clustering with outliers (Chen, 2008; Kr-
ishnaswamy et al., 2018; Friggstad et al., 2018) have high
complexities and are difficult to be implemented in prac-
tice. The heuristic but practical algorithms have also been
studied before (Chawla & Gionis, 2013; Ott et al., 2014).
By using the local search method, (Gupta et al., 2017) pro-
vided a 274-approximation algorithm of k-means clustering
with outliers but needing to discard more than the desired
number of outliers; to improve the running time, they also
used k-means++ (Arthur & Vassilvitskii, 2007) to seed the
“coreset” that yields an O(1) factor approximation. Based
on the idea of k-means++, (Bhaskara et al., 2019) proposed
an O(log k)-approximation algorithm.

Linear regression (with outliers). Several coreset meth-
ods for ordinary linear regression (without outliers) have
been proposed (Drineas et al., 2006; Dasgupta et al., 2009;
Boutsidis et al., 2013). For the case with outliers, which is
also called “Least Trimmed Squares linear estimator (LTS)”,
a uniform sampling approach was studied by (Mount et al.,
2014; Ding & Xu, 2014). But similar to the scenario of
clustering with outliers, such uniform sampling approach
introduces an unavoidable error on the number of outliers.

(Mount et al., 2014) also proved that it is impossible to
achieve even an approximate solution for LTS within poly-
nomial time under the conjecture of the hardness of affine
degeneracy (Erickson & Seidel, 1995), if the dimensionality
d is not fixed. Despite of its high complexity, several practi-
cal algorithms were proposed before and most of them are
based on the idea of alternating minimization that improves
the solution within a local range, such as (Rousseeuw, 1984;
Rousseeuw & van Driessen, 2006; Hawkins, 1994; Mount
et al., 2016; Bhatia et al., 2015; Shen & Sanghavi, 2019).
(Klivans et al., 2018) provided another approach based on
the sum-of-squares method.
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1.3. Preliminaries

Below, we introduce several important definitions.

i. k-Median/Means Clustering with Outliers. Suppose P
is a set of n points in Rd. Given two integers 1 ≤ z, k < n,
the problem of k-median clustering with z outliers is to
find a set of k points C = {c1, · · · , ck} ⊂ Rd and a subset
P ′ ⊂ P with |P ′| = n−z, such that the following objective
function

K−z1 (P,C) =
1

n− z
∑
p∈P ′

min
1≤j≤k

||p− cj || (3)

is minimized. Similarly, we have the objective function

K−z2 (P,C) =
1

n− z
∑
p∈P ′

min
1≤j≤k

||p− cj ||2, (4)

for k-means clustering with outliers. The setC is also called
a solution of the instance P . Roughly speaking, given a
solution C, the farthest z points to C are discarded, and
the remaining subset P ′ is partitioned into k clusters where
each point is assigned to its nearest neighbor of C.

ii. Linear Regression with Outliers. Given a vector
h = (h1, h2, · · · , hd) ∈ Rd, the linear function defined
by h is y =

∑d−1
j=1 hjxj + hd for d − 1 real variables

x1, x2, · · · , xd−1. Thus the linear function can be repre-
sented by the vector h. From geometric perspective, the
linear function can be viewed as a (d− 1)-dimensional hy-
perplane in the space. Let z be an integer between 1 and n,
and P = {p1, p2, · · · , pn} be a set of n points in Rd, where
each pi = (xi,1, xi,2, · · · , xi,d−1, yi) for 1 ≤ i ≤ n; the
objective is to find a subset P ′ ⊂ P with |P ′| = n−z and a
(d−1)-dimensional hyperplane, represented as a coefficient
vector h = (h1, h2, · · · , hd) ∈ Rd, such that

LR−z1 (P ′, h) = 1
n−z

∑
pi∈P ′

∣∣Res(pi, h)
∣∣ (5)

or LR−z2 (P ′, h) = 1
n−z

∑
pi∈P ′

(
Res(pi, h)

)2
(6)

is minimized. Res(pi, h) = yi −
∑d−1
j=1 hjxi,j − hd is the

“residual” of pi to h. The objective functions (5) and (6) are
called the “least absolute error” and “least squared error”,
respectively.
Remark 1. All the above problems can be extended to
weighted case. Suppose each point p has a non-negative
weight w(p), then the (squared) distance ||p − cj || (||p −
cj ||2) is replaced by w(p) · ||p − cj || (w(p) · ||p − cj ||2);
we can perform the similar modification on

∣∣Res(pi, h)
∣∣

and
(
Res(pi, h)

)2
for the problem of linear regression with

outliers. Moreover, the total weights of the outliers should
be equal to z. Namely, we can view each point p as w(p)
unit-weight overlapping points.

Solution range. To analyze the performance of our layered
sampling method, we also need to define the “solution range”

for the clustering and linear regression problems. Consider
the clustering problems first. Given a clustering solution
C̃ = {c̃1, · · · , c̃k} ⊂ Rd and L > 0, we use “C̃ ± L” to
denote the range of solutions L ={
C = {c1, · · · , ck} | ||c̃j − cj || ≤ L,∀1 ≤ j ≤ k

}
. (7)

Next, we define the solution range for linear regression with
outliers. Given an instance P , we often normalize the values
in each of the first d−1 dimensions as the preprocessing step;
without loss of generality, we can assume that xi,j ∈ [0, D]
with someD > 0 for any 1 ≤ i ≤ n and 1 ≤ j ≤ d−1. For
convenience, denote by RD the region {(s1, s2, · · · , sd) |
0 ≤ sj ≤ D,∀1 ≤ j ≤ d− 1} and thus P ⊂ RD after the
normalization. It is easy to see that the regionRD actually
is a vertical square cylinder in the space. Given a coefficient
vector (hyperplane) h̃ = (h̃1, h̃2, · · · , h̃d) ∈ Rd and L > 0,
we use “h̃± L” to denote the range of hyperplanes L ={

h = (h1, h2, · · · , hd) |

|Res(p, h̃)−Res(p, h)| ≤ L,∀p ∈ RD
}
. (8)

To understand the range defined in (8), we can imagine
two linear functions h̃+ = (h̃1, h̃2, · · · , h̃d + L) and h̃− =
(h̃1, h̃2, · · · , h̃d − L); if we only consider the region RD,
the range (8) contains all the linear functions “sandwiched”
by h̃+ and h̃−.

For both the clustering and regression problems, we also
say that the size of the solution range L is |L| = L.

2. The Layered Sampling Framework
We present the overview of our layered sampling framework.
For the sake of completeness, we first introduce the core-
set construction method for the ordinary k-median/means
clustering proposed by (Chen, 2009).

Suppose α and β ≥ 1. A “bi-criteria (α, β)-approximation”
means that it contains αk cluster centers, and the induced
clustering cost is at most β times the optimum. Usually, find-
ing a bi-criteria approximation is much easier than achiev-
ing a single-criterion approximation. For example, one can
obtain a bi-criteria approximation for k-median/means clus-
tering in linear time with α = O(1) and β = O(1) (Chen,
2009). Let T = {t1, t2, · · · , tαk} ⊂ Rd be the obtained
(α, β)-approximate solution of the input instance P . For
convenience, we use B(c, r) to denote the ball centered
at a point c with radius r > 0. At the beginning of
Chen’s coreset construction algorithm, it takes two care-
fully designed values r > 0 and N = O(log n), and parti-
tions the space into N + 1 layers H0, H1, · · · , HN , where
H0 = ∪αkj=1B(tj , r) and Hi =

(
∪αkj=1 B(tj , 2

ir)
)
\
(
∪αkj=1

B(tj , 2
i−1r)

)
for 1 ≤ i ≤ N . It can be proved that P is
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covered by ∪Ni=0Hi; then the algorithm takes a random sam-
ple Si from each layer P ∩Hi, and the union ∪Ni=0Si forms
the desired coreset S satisfying the condition (1).

However, this approach cannot directly solve the case with
outliers. First, it is not easy to obtain a bi-criteria approxi-
mation for the problem of k-median/means clustering with
outliers (e.g., in linear time). Moreover, it is challenging
to guarantee the condition (1) for any feasible solution C,
because the set of outliers could change when C changes
(this is also the major challenge for proving the correctness
of our method later on). We propose a modified version
of Chen’s coreset construction method and aim to guar-
antee (2) for a local range of solutions. We take the k-
median clustering with outliers problem as an example. Let
C̃ = {c̃1, · · · , c̃k} ⊂ Rd be a given solution. Assume ε > 0
andN ∈ Z+ are two pre-specified parameters. With a slight
abuse of notations, we still use H0, H1, · · · , HN to denote
the layers surrounding C̃, i.e.,

H0 = ∪kj=1B(c̃j , r); (9)

Hi =
(
∪kj=1 B(c̃j , 2

ir)
)
\
(
∪kj=1 B(c̃j , 2

i−1r)
)

for 1 ≤ i ≤ N. (10)

In addition, let

Hout = Rd \
(
∪kj=1 B(c̃j , 2

Nr)
)
. (11)

Here, we set the value r to satisfy the following condition:∣∣∣P ∩Hout

∣∣∣ = (1 +
1

ε
)z. (12)

That is, the union of the layers ∪Ni=0Hi covers n− (1 + 1
ε )z

points of P and excludes the farthest (1 + 1
ε )z. Obviously,

such a value r always exists. Suppose P ′ is the set of n− z
inliers induced by C̃, and then we have

2Nr ≤ ε

z

∑
p∈P ′

min
1≤j≤k

||p− c̃j ||

=
ε

z
(n− z)K−z1 (P, C̃) (13)

via the Markov’s inequality. Our new coreset contains the
following N + 2 parts:

S = S0 ∪ S1 ∪ · · · ∪ SN ∪ Sout, (14)

where Si is still a random sample from P ∩Hi for 0 ≤ i ≤
N , and Sout contains all the (1 + 1

ε )z points in Hout. In
Section 3, we will show that the coreset S of (14) satisfies
(2) for the k-median clustering with outliers problem (and
similarly for the k-means clustering with outliers problem).

For the linear regression with outliers problem, we apply the
similar layered sampling framework. Define S(h, r) to be
the slab centered at a (d−1)-dimensional hyperplane h with

Algorithm 1 LAYERED SAMPLING FOR k-MED-OUTLIER

Input: An instance P ⊂ Rd of k-median clustering
with z outliers, a solution C̃ = {c̃1, · · · , c̃k}, and two
parameters ε, η ∈ (0, 1).

1. Let γ = z/(n− z) and N = dlog 1
γ e. Compute the

value r satisfying (12).

2. As described in (9), (10), and (11), the space is
partitioned into N + 2 layers H0, H1, · · · , HN and
Hout.

3. Randomly sample min
{
O( 1

ε2 kd log d
ε log N

η ), |P ∩
Hi|
}

points, denoted by Si, from P ∩Hi for 0 ≤
i ≤ N .

4. For each point p ∈ Si, set its weight to be |P ∩
Hi|/|Si|; let SH = ∪Ni=0Si.

Output S = SH ∪ (P ∩Hout).

r > 0, i.e., S(h, r) = {p ∈ Rd | −r ≤ Res(p, h) ≤ r}.
Let P be an instance, and h̃ = (h̃1, · · · , h̃d) ∈ Rd be a
given hyperplane. We divide the space into N + 2 layers
H0, H1, · · · , HN , Hout, where

H0 = S(h̃, r); (15)
Hi = S(h̃, 2ir) \ S(h̃, 2i−1r) for 1 ≤ i ≤ N ;(16)

Hout = Rd \ S(h̃, 2Nr). (17)

Similar to (12), we also require the value r to satisfy the
following condition:∣∣∣P ∩Hout

∣∣∣ =
∣∣∣P \ S(h̃N , 2

Nr)
∣∣∣ = (1 +

1

ε
)z. (18)

And consequently, we have

2Nr ≤ ε

z
(n− z)LR−z1 (P, h̃). (19)

Then, we construct the coreset for linear regression with
outliers by the same manner of (14).

3. k-Median/Means Clustering with Outliers
In this section, we provide the details on applying our lay-
ered sampling framework to the problem of k-median clus-
tering with outliers. See Algorithm 1. The algorithm and
analysis can be easily modified to handle k-means clustering
with outliers, where the only difference is that we need to

replace (13) by “ 2Nr ≤
√

ε
z (n− z)K−z2 (P, C̃) ”.

Theorem 1. Algorithm 1 returns a point set S having the
size |S| = Õ1( 1

ε2 kd)+(1+ 1
ε )z. Moreover, with probability

1The asymptotic notation Õ(f) = O
(
f · polylog( d

γεη
)
)
.
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at least 1− η, for any L > 0 and any solution C ∈ C̃ ± L,
we have

K−z1 (S,C) ∈ K−z1 (P,C)± ε
(
K−z1 (P, C̃) + L

)
. (20)

Here, S is a weighted instance of k-median clustering with
outliers, and the total weight of outliers is z (see Remark 1).

Remark 2. (1) The running time of Algorithm 1 is O(knd).
For each point p ∈ P , we compute its shortest distance to
C̃, min1≤j≤k ||p− c̃j ||; then select the farthest (1 + 1/ε)z
points and compute the value r by running the linear time
selection algorithm (Blum et al., 1973); finally, we obtain
the N + 1 layers Hi with 0 ≤ i ≤ N and take the samples
S0, S1, · · · , SN from them.

(2) Comparing with the standard coreset (1), our result
contains an additive error ε

(
K−z1 (P, C̃) + L

)
in (20) that

depends on the initial objective value K−z1 (P, C̃) and the
size L of the solution range. In particular, the smaller the
range size L, the lower the error of our coreset.

(3) The algorithm of (Chen et al., 2018) also returns a
summary for compressing the input data. But there are
two major differences comparing with our result. First,
their summary guarantees a constant factor of distortion
on the clustering cost, while our error approaches 0 if ε is
small enough. Second, their construction algorithm (called

“successive sampling” from (Mettu & Plaxton, 2004)) needs
to scan the data multiple passes, while our Algorithm 1 is
much simpler and only needs to read the data in one-pass.
We also compare these two methods in our experiments.

To prove Theorem 1, we first show that SH is a good ap-
proximation of P \ Hout. Fixing a solution C ∈ C̃ ± L,
we view the distance from each point p ∈ P to C, i.e.,
min1≤j≤k ||p− cj ||, as a random variable xp. For any point
p ∈ P ∩Hi with 0 ≤ i ≤ N , we have the following bounds
for xp. Suppose p is covered by B(c̃j1 , 2

ir). Let the nearest
neighbor of p in C be cj2 . Then, we have the upper bound

xp = ||p− cj2 || ≤ ||p− cj1 ||
≤ ||p− c̃j1 ||+ ||c̃j1 − cj1 ||
≤ 2ir + L. (21)

Similarly, we have the lower bound

xp ≥ max{2i−1r − L, 0} if i ≥ 1;
xp ≥ 0 if i = 0.

}
(22)

Therefore, we can take a sufficiently large random
sample Ŝi from P ∩ Hi, such that 1

|Ŝi|

∑
p∈Ŝi

xp ≈
1

|P∩Hi|
∑
p∈P∩Hi

xp with certain probability. Specifically,
combining (21) and (22), we have the following lemma
through the Hoeffding’s inequality.

Lemma 1. Let η ∈ (0, 1). If we randomly sample
O( 1

ε2 log 1
η ) points, denote by Ŝi, from P ∩Hi, then with

probability 1− η,

∣∣ 1

|Ŝi|
∑
p∈Ŝi

xp −
1

|P ∩Hi|
∑

p∈P∩Hi

xp
∣∣ ≤ ε(2ir + 2L).

Lemma 1 is only for a fixed solution C. To guarantee
the result for any C ∈ C̃ ± L, we discretize the range
C̃ ± L. Imagine that we build a grid inside each B(c̃j , L)
for 1 ≤ j ≤ k, where the grid side length is ε√

d
L. Denote by

Gj the set of grid points inside each B(c̃j , L), and then G =

G1 ×G2 × · · · ×Gk contains O
((

2
√
d
ε

)kd)
k-tuple points

of C̃ ± L in total. We increase the sample size in Lemma 1
via replacing η by η

N ·|G| in the sample size “O( 1
ε2 log 1

η )”.
As a consequence, through taking the union bound for the
success probability, we have the following result.

Lemma 2. Si is the sample obtained from P ∩Hi in Step 3
of Algorithm 1 for 0 ≤ i ≤ N . Then with probability 1− η,

∣∣ 1

|Si|
∑
p∈Si

xp −
1

|P ∩Hi|
∑

p∈P∩Hi

xp
∣∣ ≤ ε(2ir + 2L).

for each i = {0, 1, · · · , N} and any C ∈ G.

Next, we show that for any C ∈ C̃ ± L (in particular the
solutions in

(
C̃±L

)
\G), Lemma 2 is true. For any solution

C = {c1, · · · , ck} ∈ C̃ ± L, let C ′ = {c′1, · · · , c′k} be its
nearest neighbor in G, i.e., c′j is the grid point of the cell
containing cj in Gj , for 1 ≤ j ≤ k. Also, denote by x′p the
distance min1≤j≤k ||p − c′j ||. Then we consider to bound
the error

∣∣ 1
|Si|
∑
p∈Si

xp − 1
|P∩Hi|

∑
p∈P∩Hi

xp
∣∣ through

C ′. By using the triangle inequality, we have

∣∣ 1

|Si|
∑
p∈Si

xp −
1

|P ∩Hi|
∑

p∈P∩Hi

xp
∣∣ (23)

≤
∣∣ 1

|Si|
∑
p∈Si

xp −
1

|Si|
∑
p∈Si

x′p
∣∣

︸ ︷︷ ︸
(a)

+
∣∣ 1

|Si|
∑
p∈Si

x′p −
1

|P ∩Hi|
∑

p∈P∩Hi

x′p
∣∣

︸ ︷︷ ︸
(b)

+
∣∣ 1

|P ∩Hi|
∑

p∈P∩Hi

x′p −
1

|P ∩Hi|
∑

p∈P∩Hi

xp
∣∣

︸ ︷︷ ︸
(c)

.

In (23), the term (b) is bounded by Lemma 2 since C ′ ∈ G.
To bound the terms (a) and (c), we study the difference
|xp − x′p| for each point p. Suppose the nearest neighbor of
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p in C (resp., C ′) is cj1 (resp., c′j2 ). Then,

xp = ||p− cj1 || ≤ ||p− cj2 ||
≤ ||p− c′j2 ||+ ||c′j2 − cj2 ||
≤ ||p− c′j2 ||+ εL = x′p + εL, (24)

where the last inequality comes from the fact that c′j2 and
cj2 are in the same grid cell with side length ε√

d
L. Similarly,

we have x′p ≤ xp + εL. Overall, |xp − x′p| ≤ εL. As a
consequence, the terms (a) and (c) in (23) are both bounded
by εL. Overall, (23) becomes

∣∣ 1

|Si|
∑
p∈Si

xp −
1

|P ∩Hi|
∑

p∈P∩Hi

xp
∣∣

≤ O(ε)(2ir + L). (25)

For convenience, we use PH to denote the set ∪Ni=0(P ∩Hi).

Lemma 3. Let S0, S1, · · · , SN be the samples obtained in
Algorithm 1. Then, with probability 1− η,

1

n− z
∣∣ N∑
i=0

|P ∩Hi|
|Si|

∑
p∈Si

xp −
∑
p∈PH

xp
∣∣

≤ O(ε)
(
K−z1 (P, C̃) + L

)
(26)

for any C ∈ C̃ ± L.

Proof. For convenience, let Erri =
∣∣ 1
|Si|
∑
p∈Si

xp −
1

|P∩Hi|
∑
p∈P∩Hi

xp
∣∣ for 0 ≤ i ≤ N . We directly have

Erri ≤ O(ε)(2ir + L) from (25). Moreover, the left hand-
side of (26) = 1

n−z
∑N
i=0 |P ∩Hi| · Erri

≤ O(ε)

n− z
N∑
i=0

|P ∩Hi| · (2ir + L)

= O(ε) ·
N∑
i=0

|P ∩Hi|
n− z 2ir +O(ε)L. (27)

It is easy to know that the term
∑N
i=0

|P∩Hi|
n−z 2ir of (27)

is at most 1
n−z (|P ∩ H0|r + 2

∑
p∈PH\H0

xp) ≤ r +

2K−z1 (P, C̃). Note we set N = dlog 1
γ e in Algorithm 1.

Together with (13), we know r ≤ εK−z1 (P, C̃) and thus∑N
i=0

|P∩Hi|
n−z 2ir ≤ O(1)K−z1 (P, C̃). So (26) is true.

Below, we always assume that (26) is true and consider to
prove (20) of Theorem 1. The set P is partitioned into two
parts: PCin and PCout byC, where PCout is the z farthest points
to C (i.e., the outliers) and PCin = P \ PCout. Similarly, the
coreset S is also partitioned into two parts SCin and SCout by

C, where SCout is the set of outliers with total weights z. In
other words, we need to prove∑

p∈SC
in

w(p)xp ≈
∑
p∈PC

in

xp. (28)

Consider two cases: (i) PH \PCin = ∅ and (ii) PH \PCin 6= ∅.
Intuitively, the case (i) indicates that the set PCin occupies the
whole region ∪Ni=0Hi; the case (ii) indicates that the region
∪Ni=0Hi contains some outliers from PCout. In the following
subsections, we prove that (20) holds for both cases. For
ease of presentation, we use w(U) to denote the total weight
of a weighted point set U (please be not confused with |U |,
which is the number of points in U ).

3.1. Case (i): PH \ PCin = ∅
We prove the following key lemma first.
Lemma 4. If PH \ PCin = ∅, SCin = SH ∪ (PCin \ PH) and
SCout = PCout (recall SH = ∪Ni=0Si from Algorithm 1).

Proof. First, the assumption PH \ PCin = ∅ implies

PH ⊂ PCin; (29)
|PCin \ PH | = |PCin| − |PH |. (30)

In addition, since SH ⊂ PH , we have SH ⊂ PCin from (29).
Consequently, the set SH ∪ (PCin \ PH) ⊂ PCin. Therefore,
for any p ∈ SH ∪ (PCin \ PH) and any q ∈ PCout, xp ≤ xq.

Moreover, the set S \
(
SH ∪ (PCin \ PH)

)
=

(
SH ∪ (P \ PH)

)
\
(
SH ∪ (PCin \ PH)

)
= (P \ PH) \ (PCin \ PH)

=︸︷︷︸
by (29)

P \ PCin = PCout. (31)

Note |PCout| = z. As a consequence, SCin should be exactly
the set SH ∪ (PCin \ PH), and SCout = PCout.

Lemma 5. If PH \ PCin = ∅, (20) is true.

Proof. Because the set SCin is equal to SH ∪ (PCin \
PH) from Lemma 4, the objective value K−z1 (S,C) =

1
n−z

(∑
p∈SH

w(p)xp +
∑
p∈PC

in\PH
xp

)
=

1

n− z
( N∑
i=0

|P ∩Hi|
|Si|

∑
p∈Si

xp +
∑

p∈PC
in\PH

xp

)
. (32)

From Lemma 3, the value of (32) is no larger than

≤ 1

n− z
( ∑
p∈PH

xp +O(ε)(n− z)(K−z1 (P, C̃) + L)

+
∑

p∈PC
in\PH

xp

)
. (33)
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Note that PH \ PCin = ∅, and thus the sum of the two
terms

∑
p∈PH

xp and
∑
p∈PC

in\PH
xp in (33) is

∑
p∈PC

in
xp.

Therefore, K−z1 (S,C) ≤

1

n− z
∑
p∈PC

in

xp +O(ε)(K−z1 (P, C̃) + L)

= K−z1 (P,C) +O(ε)(K−z1 (P, C̃) + L). (34)

Similarly, we have K−z1 (S,C) ≥ K−z1 (P,C) −
O(ε)(K−z1 (P, C̃) + L). Thus, (20) is true.

3.2. Case (ii): PH \ PCin 6= ∅
Since S \PH = P \PH are the outermost (1+1/ε)z points
to C̃, we have the following claim first.

Claim 1. Either SCin \ PH ⊆ PCin \ PH or PCin \ PH ⊆
SCin \ PH is true.

Lemma 6. If PH \ PCin 6= ∅, we have xp ≤ 2Nr + L for
any p ∈ SCin ∪ PCin ∪ PH .

Proof. We consider the points in the three parts PH , PCin,
and SCin separately.

(1) Due to (21), we have xp ≤ 2Nr + L for any p ∈ PH .

(2) Arbitrarily select one point p0 from PH \ PCin. By (21)
again, we have xp0 ≤ 2Nr+L. Also, because PH \ PCin ⊂
PCout, we directly have xp ≤ xp0 for any p ∈ PCin. Namely,
xp ≤ 2Nr + L for any p ∈ PCin.

(3) Below, we consider the points in SCin. If w(SCin∩PH) >∣∣PCin ∩ PH ∣∣, i.e., PH contains more inliers of S than that of
P , then the outer region Hout should contain less inliers of
S than that of P . Thus, from Claim 1, we have SCin \ PH ⊆
PCin \ PH . Hence, SCin = (SCin \ PH) ∪ (SCin ∩ PH) ⊆
(PCin \ PH) ∪ PH = PCin ∪ PH . From (1) and (2), we know
xp ≤ 2Nr + L for any p ∈ SCin.

Else, w(SCin ∩ PH) ≤
∣∣PCin ∩ PH ∣∣. Then w(SCin ∩ SH) ≤∣∣PCin∩PH ∣∣ since SCin∩PH = SCin∩SH . Because w(SH) =

|PH |, we have

w(SH \ SCin) ≥ |PH \ PCin|. (35)

Also, the assumption PH \PCin 6= ∅ implies w(SH \SCin) ≥
|PH \ PCin| > 0, i.e.,

SH \ SCin 6= ∅. (36)

Arbitrarily select one point p0 from SH \ SCin. We know
xp0 ≤ 2Nr + L since p0 ∈ SH \ SCin ⊂ PH . Also, for any
point p ∈ SCin, we have xp ≤ xp0 because p0 ∈ SH \SCin ⊂
SCout. Therefore xp ≤ 2Nr + L.

Lemma 7. If PH \ PCin 6= ∅, (20) is true.

Proof. We prove the upper bound of K−z1 (S,C) first. We
analyze the clustering costs of the two parts SCin ∩ SH and
SCin \ SH separately.

K−z1 (S,C) =
1

n− z
( ∑
p∈SC

in∩SH

w(p)xp

︸ ︷︷ ︸
(a)

+
∑

p∈SC
in\SH

xp

︸ ︷︷ ︸
(b)

)
.

Note the points of SCin \ SH have unit-weight (since SCin \
SH ⊆ P \ PH are the points from the outermost (1 + 1

ε )z
points of P ). Obviously, the part (a) is no larger than

∑
p∈SH

w(p)xp =

N∑
i=0

|P ∩Hi|
|Si|

∑
p∈Si

xp

≤
∑
p∈PH

xp +O(ε)(n− z)(K−z1 (P, C̃) + L) (37)

from Lemma 3. The set PH consists of two parts PH ∩ PCin
and PH \ PCin. From Lemma 6 and the fact |PH \ PCin| ≤
|PCout| = z, we know

∑
p∈PH\PC

in
xp ≤ z(2Nr + L). Thus,

the upper bound of the part (a) becomes∑
p∈PH∩PC

in
xp + z(2Nr + L) +

O(ε)(n− z)(K−z1 (P, C̃) + L). (38)

To bound the part (b), we consider the size |SCin\SH |. Since
the total weight of outliers is z, w

(
SH ∩ SCin

)
= w(SH)− w

(
SH ∩ SCout

)
≥ w(SH)− z
=

∣∣PH ∣∣− z
≥

∣∣PH ∩ PCin∣∣− z. (39)

Together with the fact w
(
SH ∩SCin

)
+
∣∣SCin \SH ∣∣ =

∣∣PH ∩
PCin
∣∣+
∣∣PCin \ PH ∣∣ = n− z, we have∣∣SCin \ SH ∣∣ ≤ ∣∣PCin \ PH ∣∣+ z. (40)

Therefore
∣∣∣(SCin \ SH) \ (PCin \ PH)∣∣∣ ≤ z from Claim 1.

Through Lemma 6 again, we know that the part (b) is no
larger than

∑
p∈PC

in\PH
xp +

∣∣∣(SCin \ SH) \ (PCin \ PH)∣∣∣ ·
(2Nr + L)

≤
∑

p∈PC
in\PH

xp + z(2Nr + L). (41)

Putting (38) and (41) together, we have K−z1 (S,C) ≤

K−z1 (P,C) +O(ε)(K−z1 (P, C̃) + L)

+
2z

n− z (2Nr + L). (42)
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Recall γ = z/(n− z) in Algorithm 1. If γ ≥ ε, the size of
our coreset S is at least (1 + 1/ε)z ≥ n; that is, S contains
all the points of P . For the other case ε > γ, together with
(13), the term 2z

n−z (2Nr + L) in (42) is at most

O(ε)(K−z1 (P, C̃) + L). (43)

Overall,K−z1 (S,C) ≤ K−z1 (P,C)+O(ε)(K−z1 (P, C̃)+L)
via (42). So we complete the proof for the upper bound.

Now we consider the lower bound of K−z1 (S,C). Denote
by X = SH ∪ (PCin \ PH) and Y = X \ SCin. Obviously,

K−z1 (S,C) ≥ 1

n− z
(∑
p∈X

w(p)xp︸ ︷︷ ︸
(c)

−
∑
p∈Y

w(p)xp︸ ︷︷ ︸
(d)

)
.

From Lemma 3, the part (c) is at least∑
p∈PH

xp −O(ε)(K−z1 (P, C̃) + L) +
∑

p∈PC
in\PH

xp

≥
∑
p∈PC

in

xp −O(ε)(K−z1 (P, C̃) + L). (44)

Further, since w(Y ) ≤ z and Y ⊆ X ⊆ PCin ∪ PH , the part
(d) is no larger than z(2Nr + L) from Lemma 6. Using the
similar manner for proving the upper bound, we know that
K−z1 (S,C) ≥ K−z1 (P,C)−O(ε)(K−z1 (P, C̃) + L).

4. Linear Regression with Outliers
In this section, we consider the problem of linear regres-
sion with outliers. Our algorithm and analysis are for the
objective function LR−z1 , and the ideas can be extended to
handle the objective function LR−z2 .

Theorem 2. Algorithm 2 returns a point set S having the
size |S| = Õ( 1

ε2 d) + (1 + 1
ε )z. Moreover, with probability

at least 1− η, for any L > 0 and any solution h ∈ h̃± L,
we have

LR−z1 (S, h) ∈ LR−z1 (P, h)± ε
(
LR−z1 (P, h̃) + L

)
. (45)

Here, S is a weighted instance of linear regression with
outliers, and the total weight of outliers is z (see Remark 1).

We still use PH to denote the set ∪Ni=0(P ∩ Hi). First,
we need to prove that SH is a good approximation of PH .
Given a hyperplane h, we define a random variable xp =
|Res(p, h)| for each p ∈ P . If p ∈ Hi for 0 ≤ i ≤ N ,
similar to (21) and (22), we have the following bounds for
xp: xp ≤ 2ir + L; xp ≥ max{2i−1r − L, 0} if i ≥ 1 and
xp ≥ 0 if i = 0.

Then, we can apply the similar idea of Lemma 3 to obtain
the following lemma, where the only difference is about

Algorithm 2 LAYERED SAMPLING FOR LIN1-OUTLIER

Input: An instance P ⊂ Rd of linear regression with z
outliers, a solution h̃ = (h̃1, · · · , h̃k), and two parame-
ters ε, η ∈ (0, 1).

1. Let γ = z/(n− z) and N = dlog 1
γ e. Compute the

value r satisfying (18).

2. As described in (15), (16), and (17), the space is
partitioned into N + 2 layers H0, H1, · · · , HN and
Hout.

3. Randomly sample min
{
O( 1

ε2 d log d
ε log N

η ), |P ∩
Hi|
}

points, denoted by Si, from P ∩Hi for 0 ≤
i ≤ N .

4. For each point p ∈ Si, set its weight to be |P ∩
Hi|/|Si|; let SH = ∪Ni=0Si.

Output S = SH ∪ (P ∩Hout).

the discretization on h̃± L. Recall that h̃ is defined by the
coefficients h̃1, · · · , h̃d and the input set P is normalized
within the regionRD. We build a grid inside each vertical
segment ljuj for 0 ≤ j ≤ d−1, where l0 = (0, · · · , 0, h̃d−
L), u0 = (0, · · · , 0, h̃d + L), and

lj = (0, · · · , 0, D︸︷︷︸
j−th

, 0, · · · , 0, h̃jD + h̃d − L), (46)

uj = (0, · · · , 0, D︸︷︷︸
j−th

, 0, · · · , 0, h̃jD + h̃d + L) (47)

for j 6= 0; the grid length is ε
2dL. Denote by Gj the set

of grid points inside the segment ljuj . Obviously, G =
G0 ×G1 × · · · ×Gd−1 contains ( 4d

ε )d d-tuple points, and
each tuple determines a (d− 1)-dimensional hyperplane in
h̃± L; moreover, we have the following claim.

Claim 2. For each h ∈ h̃ ± L, there exist a hyper-
plane h′ determined by a d-tuple points from G, such that
|Res(p, h)−Res(p, h′)| ≤ εL for any p ∈ P .

Lemma 8. Let S0, S1, · · · , SN be the samples obtained in
Algorithm 2. Then, with probability 1− η,

1

n− z
∣∣ N∑
i=0

|P ∩Hi|
|Si|

∑
p∈Si

xp −
∑
p∈PH

xp
∣∣

≤ O(ε)
(
LR−z1 (P, h̃) + L

)
(48)

for any h ∈ h̃± L.

We fix a solution h ∈ h̃ ± L. Similar to the proof of
Theorem 1 in Section 3, we also consider the two parts
Phin and Phout of P partitioned by h, where Phout is the z
farthest points to the hyperplane h (i.e., the outliers) and
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Phin = P \ Phout. Similarly, S is also partitioned into two
parts Shin and Shout by h, where Shout is the set of outliers
with total weights z. For case (i) PH \Phin = ∅ and case (ii)
PH \ Phin 6= ∅, we can apply almost the identical ideas in
Section 3.1 and 3.2 respectively to prove (45).

5. Conclusion
To reduce the time complexities of existing algorithms for
clustering and linear regression with outliers, we propose
a new variant of coreset method which can guarantee the
quality for any solution in a local range surrounding the
given initial solution. Due to the space limit, we leave
the complete experimental results to our supplement. In
future, it is worth considering to apply our framework to
a broader range of robust optimization problems, such as
logistic regression with outliers and Gaussian mixture model
with outliers.

A. Proof of Claim 1
Since SCin is the set of inliers to C, there must exist some
value rS > 0 such that

SCin = {p | p ∈ S, min
1≤j≤k

||p− cj || ≤ rS}. (49)

And therefore

SCin \ PH = {p | p ∈ S \ PH , min
1≤j≤k

||p− cj || ≤ rS}. (50)

Similarly, there exists some value rP > 0 such that

PCin \ PH = {p | p ∈ P \ PH , min
1≤j≤k

||p− cj || ≤ rP }. (51)

Note S\PH = P \PH . So, if rS ≤ rP , we have SCin\PH ⊆
PCin \ PH . Otherwise, PCin \ PH ⊆ SCin \ PH .

B. Proof of Claim 2
Let h = (h1, · · · , hd), and suppose h′ = (h′1, · · · , h′d)
is h’s nearest neighbor in G, i.e., |h′d − hd| ≤ ε

2dL and
|Dh′j + h′d −Dhj − hd| ≤ ε

2dL for 1 ≤ j ≤ d− 1. Then,

|h′j − hj | ≤
1

D
(
ε

2d
L+ |h′d − hd|)

≤ ε

Dd
L (52)

for 1 ≤ j ≤ d− 1. For any p = (x1, · · · , xd) ∈ RD,

|Res(p, h)−Res(p, h′)|

≤
d−1∑
j=1

|h′j − hj | · |xj |+ |h′d − hd|

≤
d−1∑
j=1

|h′j − hj | ·D + |h′d − hd|

≤ εL. (53)
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Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn,
C., and Sohler, C. Bico: Birch meets coresets for k-means
clustering. In European Symposium on Algorithms, pp.
481–492. Springer, 2013.

Friggstad, Z., Khodamoradi, K., Rezapour, M., and
Salavatipour, M. R. Approximation schemes for clus-
tering with outliers. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 398–414. SIAM, 2018.

Goodfellow, I. J., McDaniel, P. D., and Papernot, N. Mak-
ing machine learning robust against adversarial inputs.
Commun. ACM, 61(7):56–66, 2018.

Gupta, S. Approximation algorithms for clustering and
facility location problems. PhD thesis, University of
Illinois at Urbana-Champaign, 2018.

Gupta, S., Kumar, R., Lu, K., Moseley, B., and Vassilvit-
skii, S. Local search methods for k-means with outliers.
Proceedings of the VLDB Endowment, 10(7):757–768,
2017.

Har-Peled, S. and Kushal, A. Smaller coresets for k-median
and k-means clustering. Discrete & Computational Ge-
ometry, 37(1):3–19, 2007.

Hawkins, D. M. The feasible solution algorithm for least
trimmed squares regression. Computational Statistics and
Data Analysis, 17, 1994. doi: 10.1016/0167-9473(92)
00070-8.

Huang, L., Jiang, S., Li, J., and Wu, X. Epsilon-coresets
for clustering (with outliers) in doubling metrics. In
2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 814–825. IEEE, 2018.

Huggins, J., Campbell, T., and Broderick, T. Coresets for
scalable bayesian logistic regression. In Advances in
Neural Information Processing Systems, pp. 4080–4088,
2016.

Karnin, Z. S. and Liberty, E. Discrepancy, coresets, and
sketches in machine learning. CoRR, abs/1906.04845,
2019.

Klivans, A. R., Kothari, P. K., and Meka, R. Efficient
algorithms for outlier-robust regression. In Conference
On Learning Theory, COLT 2018, Stockholm, Sweden,
6-9 July 2018, pp. 1420–1430, 2018.

Krishnaswamy, R., Li, S., and Sandeep, S. Constant ap-
proximation for k-median and k-means with outliers via
iterative rounding. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
646–659. ACM, 2018.

Langberg, M. and Schulman, L. J. Universal ε-
approximators for integrals. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algo-
rithms, pp. 598–607. SIAM, 2010.

Li, Y., Long, P. M., and Srinivasan, A. Improved bounds on
the sample complexity of learning. Journal of Computer
and System Sciences, 62(3):516–527, 2001.

Lucic, M., Faulkner, M., Krause, A., and Feldman, D. Train-
ing gaussian mixture models at scale via coresets. The
Journal of Machine Learning Research, 18(1):5885–5909,
2017.



Layered Sampling for Robust Optimization Problems

Mettu, R. R. and Plaxton, C. G. Optimal time bounds for
approximate clustering. Machine Learning, 56(1-3):35–
60, 2004.

Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silver-
man, R., and Wu, A. Y. On the least trimmed squares
estimator. Algorithmica, 69(1):148–183, 2014. doi:
10.1007/s00453-012-9721-8.

Mount, D. M., Netanyahu, N. S., Piatko, C. D., Wu, A. Y.,
and Silverman, R. A practical approximation algorithm
for the LTS estimator. Computational Statistics and Data
Analysis, 99:148–170, 2016. doi: 10.1016/j.csda.2016.01.
016.

Munteanu, A., Schwiegelshohn, C., Sohler, C., and
Woodruff, D. On coresets for logistic regression. In
Advances in Neural Information Processing Systems, pp.
6561–6570, 2018.

Ott, L., Pang, L., Ramos, F. T., and Chawla, S. On integrated
clustering and outlier detection. In Advances in neural
information processing systems, pp. 1359–1367, 2014.

Phillips, J. M. Coresets and sketches. Computing Research
Repository, 2016.

Rousseeuw, P. and van Driessen, K. Computing LTS regres-
sion for large data sets. Data Min. Knowl. Discov., 12(1):
29–45, 2006. doi: 10.1007/s10618-005-0024-4.

Rousseeuw, P. J. Least median of squares regression. Jour-
nal of the American Statistical Association, 79, 12 1984.
doi: 10.1080/01621459.1984.10477105.

Shen, Y. and Sanghavi, S. Iterative least trimmed squares
for mixed linear regression. In Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada, pp.
6076–6086, 2019.


