Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features

Supplementary Material
9. Proof of Theorem 1

The kernel function

k(z,y) = p(min{z, y})g(max{z, y}),
is in fact the Green’s function of the Sturm-Liouville opera-
tor (Zaitsev & Polyanin, 2002)

Thus, the inner product induced by k is

1
(f. ghk = /0 fLgdz.

For any [ € N and 7 # j, the supports of ¢;; and ¢, ;
are [(i — 1)271, (i + 1)27 ] and [(j — 1)27%, (5 + 1)271),
respectively. These two supports are disjoint because both ¢
and j are odd so (¢, ¢ ;) = 0if i # j. Forany I,n € N
and any 1, j, the supports supt[¢; ;| and supt[¢,, ;] are either
disjoint or nested. If they are disjoint, then (¢, ;, ¢n i)k =
0. If they are nested, without loss of generality assume
I >nandi < j2'~™, then because both p and ¢ satisfy

we have
<¢l,i7 ¢n,]>k
(i4+1)27"
= / ¢n,j£¢17id$
(i—1)2-!
(i4+1)27! o ‘
= / (b jﬁp(m)thfl Q(I)pz,lfl dx
(i-1)27 Puidli—1 — q1,iPLi—1
=0.

As a result, we have

(D15, D)k = AMiO(1),(ng)s

where )\; ; is a function of [ and ¢.

10. Proof of Theorem 3

We need the following lemmas.

Lemma 1. Denote fy; = argmingcz, || fo — fllx. Then
we have
R(far) — R(fo) < CM~21og*”~* M| fol12.

for some constant C.

Proof. According to Assumption 2, we can see that
R(far) = R(fo) = Elmy(u*)(far(z) = fo(2))?].
In view of Assumption 3, it suffices to prove
1far = foll72 = CM~210g* ™ M| fo I3,

for any fo € Hji we then can finish the proof. Let M =

{(1,i) : |1] < n,i € Bi}|. According to theorem 2, we
have the following expansion:
| far = follr
B PLi é1i(+)
=12 2\ ol Teondl
[1]>ni€B) . k " 2
S PP CIANOT
[1|>ni€B; Sl- e,
where Sy ; is the support of ¢p ;. We let
)= Z/ Fo(s) Lons(s)ds ¢l,i(')2.
sl

ieB;

Our first goal is to estimate v;. From theorem 2 of (Ding &
Zhang, 2018) or direct calculation based on the property of
Green’s function, we can see that for any f € H:

®Ald,7d

f( )£¢11

S1i

)

where

Aldﬂ?df = O‘ld,idﬂmd_zld i

/Bldﬂd 1f‘ Bld7ld+1f|

DPli+191,i—1 — pl,z—lqlﬂ-i-l

b
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)
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N [’pz,¢+1(h,¢
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Pli+14i,

and @) denotes the tensor product of the A;; operators.
Since both ¢ and p are the solution of the SL-equation,
therefore, p, ¢ are twice differentiable. We have

1

— P1,i41,i+1

Pri+191,:
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We notice that p; ,q1,i — p1,iq; ; is the Wronskian of the SL-
operator, which is bounded away from 0. Therefore, A, ;,
acting on f has the following approximation:

[2f|%d=zld,id o f‘deZld,id—l o f|$d=2ld,id+1:|
2-1

Ald7idf ~

< C max ’ {Id:z’d’idﬂ' B f|$d:zld,z‘d
j=1,—1 21

As a result, ®g:1 Ay, i, acting on f has the following
approximation:

o =]

j=1,-1 2-1

Td=Z21g,ig4

From the same reasoning, we can see that

D
Inillz = T etasia ~ 2™
d=1

We also Taylor expand ¢y, ;, foreach 1 < d < D up to
second order and from direct calculation, we can have

Guy,ig(T) ~ maX{O, 1- W} + 027 1),

This gives us the approximation up to second order:

/S H% i (84)d

Li g=1

N/SH {max{0,1—|

2
s — Zldvid| ds
2—la
Lig=1
2.D

()72 -

(3) VOl(S] 1)

Therefore, we can have the following estimate for v;:

D R e

i€ B;
1
D 3
< 272“‘02 ®Ald7idf VOI(SU)
ieB; Ld=1
~2 M H*fo
~ 27 ‘1|||f0||k’

where the second line is from the fact that supports of
{¢14 : 1 € By} are disjoint, the third line is from the Rie-
mann integral approximation and the last line is from the en-
ergy estimate assumption of SL-operator (see, for instance,
section 6.2.2 of (Evans, 2010)). Finally, we have:

1fo = farllze < D llonllze

1|>n
~ ol 3 27
1|>n
= ol Y 27D 1
i>n [1]=1
fi—1
e . 271
lfolk 3 (221

~ I folle2"n P,

where the identity of the last line can be verified in (Ding
etal., 2019). From (Bungartz & Griebel, 2004) we also have

M = 0(2"nPh).

We can substitute this identity to the previous equation to
have the final result. O

The (€, Lo )-covering number of a function space F, de-
noted as N (e, F, || - || .. ), is defined as the smallest number
Np, so that there exist centers fi,..., fn,, and for each
f € F, there exists f; sothat || f — fi||r.. <e.

Lemma 2. The covering number of the unit ball of Hy,
denoted as F = {f € Hy : ||fllx < 1}, is bounded as
follows:

1 1
log N(&, F, || - |o.) = O (8 logP~ 2 6) .

Proof. When k(x,y) = e “lIx¥l or k(x,y) =
HdD , min{x4, ya}, Hy is equivalent to the Sobolev space
of mixed first derivative H_ . ([0,1]”) (Ding et al., 2019).
According to 6.6 of (Dung et al., 2016), we can immediately
derive the result. When kernel & differs from these two, the

energy property of an SL-operator requires that

D
=169 [H ﬁ] FEd(x)

which implies that 7, can be embedded on ;. ;.. There-
fore, the covering number of H;, must be bounded by that

of H1. O

mix*
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Lemma 3 shows the the function classes associated with the
learning problem are Donsker. We refer to (van der Vaart &
Wellner, 1996) for the definition and properties of Donsker
classes. Let Gr := {L(y, f(x)) : || fllx < R}.

Lemma 3. Ler P be the probability measure of (x,y). The
space Gg is P-Donsker for each R > 0.

Proof. In view of Theorem 2.5.6 of (van der Vaart & Well-
ner, 1996), it suffices to prove that

/ V108 Ny(&, G, |+ 2. p))de < o0,
0

where Np(e,Gr, | - llz,(p)) is the covering number
with bracketing defined as follows. For function
g : RP x R — R, its Ly(P) norm is defined
as [E[g(z,)]?]'/2. Given functions g1, gy such that
gr(u,v) < gy(u,v) for each (u,v), define the bracket
l[gr,gu] as the set of functions {g gr(u,v) <
g(u,v) < gy(u,v)}. The covering number with bracketing
Ny(e,Gr, || - llzo(py) is the smallest number Ny so that
there exist brackets [gr.1,9v.1],---,[9L,Ny> 9UN,)» SUCh

that U, (915, 9u.i] D Gr» and |lgu: — gr.illL.p) < €

for all 4.

Let Fr = {f Ifll < R}. We start with the
centers f1,...,fn, with Ngo = N(e, Fr,| - llz..) =
N(e/R,F1,| - |lL.) so that for each f € Fg, there ex-

ists f; =: £(f) such that || f — fi|]|lL.. < €. To bound the
covering number with bracketing, we need to construct the
associated brackets. The reproduction property implies that

Iz < ellfllx with ¢ := max, k(x,x). Then for any
f € Fgr, by mean value theorem,
OL
[L(y, f(x)) = Ly, £(F)(x)] < sup | (y,u) e
lul<cR | OU
= S(y)e. (12)
Now we define gr,;(u,v) = L(v, fi(u)) — S(v)e and
gu,i(w,v) = L(v, fi(u)) + S(v)e. Clearly gr; < gu
and
l9v.i — 9r.illLap) = 2€[E[S()]*]Y2,

which is a multiple of € according to Assumptions 2-3. Be-
sides, (12) implies that for all f such that || f — fi||z., <,

L(v, f(u)) € (91,5, gu,i]. Now we invoke Lemma 2 to find
that
log Ny (2¢[E[S ()1*]"/%, Fr, || - |l Lo(p))
=0 (RlogDé R) :
€
which implies the desired result. O

To bound the generalization error, we observe that

R(f)R(fO){ NZ (i, f Xz }
|
.

+ {R(fM) — R(f())} =L+ 1+ I3+ 1.

2=

o
Il
=

R 1 &
L(yi, f(xi)) — NZ (yi>fA1(xi))}
i=1

=z~
M=

L(yi, far(x4)) — R(fM)}

1

We will bound I; and I3 by applying a uniform error bound
of empirical processes. For I5, we have

I < M farlli = MR < Allfoll% = 0N ol R,

where the first inequality follows from the optimality condi-
tion

)+ AlFIIE

N
Z (i,

1
N
N
Z (i far (%)) + All Far |7 (13)

The term I, is bounded by Lemma 1.

Now we turn to I; and I3. To show that I; = O,(N~1/2)
and I3 = O,(N~1/2), it suffices to show that the functions
L(y, f(x)) and L(y, fa(x)) fall in a Donsker class (van der
Vaart & Wellner, 1996) with probability arbitrarily close
to one. For L(y, far(x)), this is clearly true in view of
Lemma 3 and the fact that || Ivlle < Il follk- Therefore,
I3 = O,(N~1/2). For L(y, f(x)), it suffices to prove that
[£llx = Op(1). To show this result, we start with the
optimality condition (13). In view of Assumption 2, we can
write

L(y,f(X)) - L(yva(X)) -

+my (u

W (f(x) = fo(x))
() = folx))?,

where W = my (fo(x)), and u* lies between f(x) and
fo(x). Assumptlon 1 implies that for any § € Hy,

0
0 = SRU+)|
0
— DELy. folo) + 1060)|

= E[m,(fo(x)sx)], (14)

where in the last equation we interchange the partial deriva-
tive and the expectation, which is valid because of Assump-
tions 2 and 3. Let Py be the probability measure of x. Since
0 € Hy, is arbitrary, (14) implies

0 = Em, (fo( ))=EW.
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We then invoke (13) and Assumption 2 to find
R 1 R
AR < -5 Z Wi(f(xi) = fo(xi))

N N
=+ { Z yuf]% XL Z yufO xz }
=1

=1

— V(f(xi) = fox)* + Allfollk
Jit e+ Js+ Ja, (15)

for some V' > 0 due to the strong convexity of m,(-). For
the first term, we have

fO(Xl>

J
' ||f\|k+1

IA

(1f1l% +1) Sup Z L0~ Jolxs)
= (Ifllx + D)OR(N 1/2),

where the last step follows from the fact that EW,; = 0, W;
is bounded, and Lemma 3.4.3 of (van der Vaart & Wellner,
1996) and the fact that ||f — follx/(|fllx +1) = O(1).
Clearly, we have Jo = I3 + O,(N~Y/2) = 0,(N~1/?)
according to the central limit theorem. The third term is
clearly non-positive. We also have J; = O,(N~'/2) by
assumption for A.

Now we conclude from (15) that
M2 < 1flxOp(NTY2) 4 O, (N7/2),

which implies || f||z = ©,(1). This completes the proof.



