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Supplementary Material

9. Proof of Theorem 1

The kernel function

k(x, y) = p(min{x, y})q(max{x, y}),

is in fact the Green’s function of the Sturm-Liouville opera-
tor (Zaitsev & Polyanin, 2002)

L :=
d

dx
↵(x)

d

dx
+ �(x).

Thus, the inner product induced by k is

hf, gik =

Z 1

0
fLgdx.

For any l 2 N and i 6= j, the supports of �l,i and �l,j

are [(i � 1)2�l, (i + 1)2�l] and [(j � 1)2�l, (j + 1)2�l],
respectively. These two supports are disjoint because both i
and j are odd so h�l,i,�l,jik = 0 if i 6= j. For any l, n 2 N
and any i, j, the supports supt[�l,i] and supt[�n,j ] are either
disjoint or nested. If they are disjoint, then h�n,j ,�n,iik =
0. If they are nested, without loss of generality assume
l > n and i  j2l�n, then because both p and q satisfy

Lp = Lq = 0,

we have

h�l,i,�n,jik

=

Z (i+1)2�l

(i�1)2�l

�n,jL�l,idx

=

Z (i+1)2�l

(i�1)2�l

�n,jL
p(x)ql,i�1 � q(x)pi,l�1

pl,iql,i�1 � ql,ipl,i�1
dx

= 0.

As a result, we have

h�l,i,�n,jik = �l,i�(l,i),(n,j),

where �l,i is a function of l and i.

10. Proof of Theorem 3

We need the following lemmas.

Lemma 1. Denote fM = argminf2FM
kf0 � fkk. Then

we have

R(fM )�R(f0)  CM�2 log4D�4 Mkf0k2k,

for some constant C.

Proof. According to Assumption 2, we can see that

R(fM )�R(f0) = E[m00

y(u
⇤)(fM (x)� f0(x))

2].

In view of Assumption 3, it suffices to prove

kfM � f0k2L2 = CM�2 log4D�4 Mkf0k2k,

for any f0 2 Hk we then can finish the proof. Let M =
|{(l, i) : |l|  n, i 2 Bl}|. According to theorem 2, we
have the following expansion:

kfM � f0kL2

=

������

X

|l|>n

X

i2Bl

⌧
f0,

�l,i

k�l,ikk

�

k

�l,i(·)
k�l,ikk

������
L2

=

������

X

|l|>n

X

i2Bi

Z

Sl,i

f0(s)L�l,i(s)ds
�l,i(·)
k�l,ik2k

������
L2

.

where Sl,i is the support of �l.i. We let

v(·)l :=
X

i2Bi

Z

Sl,i

f0(s)L�l,i(s)ds
�l,i(·)
k�l,ik2k

.

Our first goal is to estimate vl. From theorem 2 of (Ding &
Zhang, 2018) or direct calculation based on the property of
Green’s function, we can see that for any f 2 Hk:

Z

Sl,i

f(s)L�l,i(s)ds =

"
DO

d=1

�ld,id

#
f,

where

�ld,idf := ↵ld,idf
��
xd=zld,id

� �ld,id�1f
��
xd=zld,id�1

� �ld,id+1f
��
xd=zld,id

,

↵l,i =
pl,i+1ql,i�1 � pl,i�1ql,i+1

[pl,i+1ql,i � pl,iql,i+1][pl,i1ql,i�1 � pl,i�1ql,i]
,

�l,i =
1

pl,i+1ql,i � pl,iql,i+1
,

and
N

denotes the tensor product of the �l,i operators.
Since both q and p are the solution of the SL-equation,
therefore, p, q are twice differentiable. We have

1

pl,i+1ql,i � pl,iql,i+1

=
2l

[pl,i+1ql,i � pl,iql,i]/2�l � [pl,iql,i+1 � pl,iql,i]/2�l

⇠ 2l

p0l,iql,i � pl,iq0l,i
.
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We notice that p0l,iql,i � pl,iq0l,i is the Wronskian of the SL-
operator, which is bounded away from 0. Therefore, �ld,id

acting on f has the following approximation:

�ld,idf ⇠

h
2f

��
xd=zld,id

� f
��
xd=zld,id�1

� f
��
xd=zld,id+1

i

2�l

 C max
j=1,�1

8
<

:

���f
��
xd=zld,id+j

� f
��
xd=zld,id

���
2�l

9
=

; .

As a result,
ND

d=1 �ld,id acting on f has the following
approximation:

DO

d=1

�ld,idf

 C
DY

d=1

max
j=1,�1

8
<

:

���f
��
xd=zld,id+j

� f
��
xd=zld,id

���
2�l

9
=

; .

From the same reasoning, we can see that

k�l,ik2k =
DY

d=1

↵ld,id ⇠ 2|l|.

We also Taylor expand �ld,id for each 1  d  D up to
second order and from direct calculation, we can have

�ld,id(x) ⇠ max

⇢
0, 1� |x� zld,id |

2�ld

�
+O(2�ld).

This gives us the approximation up to second order:

k�l,ik2L2

=

Z

Sl,i

DY

d=1

�2
ld,id(sd)ds

⇠
Z

Sl,i

DY

d=1


max

⇢
0, 1� |s� zld,id |

2�ld

��2
ds

=
�2
3

�D
2�|l| =

�1
3

�DVol(Sl,i).

Therefore, we can have the following estimate for vl:

kvlkL2 = k
X

i2Bi

Z

Sl,i

f0(s)L�l,i(s)ds
�l,i(·)
k�l,ik2k

kL2



������
2�2|l|C

X

i2Bi

"
DO

d=1

�ld,idf

#2

Vol(Sl,i)

������

1
2

⇠ 2�|l|

�����

DY

d=1

@

@xd
f0

�����
L2

⇠ 2�|l|kf0kk,

where the second line is from the fact that supports of
{�l,i : i 2 Bl} are disjoint, the third line is from the Rie-
mann integral approximation and the last line is from the en-
ergy estimate assumption of SL-operator (see, for instance,
section 6.2.2 of (Evans, 2010)). Finally, we have:

kf0 � fMkL2 
X

|l|>n

kvlkL2

⇠ kf0kk
X

|l|>n

2�|l|

= kf0kk
X

i>n

2�i
X

|l|=i

1

= kf0kk
X

i>n

2�i

✓
i� 1

d� 1

◆

⇠ kf0kk2�nnD�1,

where the identity of the last line can be verified in (Ding
et al., 2019). From (Bungartz & Griebel, 2004) we also have

M = O(2nnD�1).

We can substitute this identity to the previous equation to
have the final result.

The (✏, L1)-covering number of a function space F , de-
noted as N(✏,F , k ·kL1), is defined as the smallest number
N0, so that there exist centers f1, . . . , fN0 , and for each
f 2 F , there exists fi so that kf � fikL1 < ✏.

Lemma 2. The covering number of the unit ball of Hk,
denoted as F := {f 2 Hk : kfkk  1}, is bounded as
follows:

logN(✏,F , k · kL1) = O
✓
1

"
logD�

1
2
1

"

◆
.

Proof. When k(x,y) = e�!kx�yk1 or k(x,y) =QD
d=1 min{xd, yd}, Hk is equivalent to the Sobolev space

of mixed first derivative H1
mix([0, 1]

D) (Ding et al., 2019).
According to 6.6 of (Dung et al., 2016), we can immediately
derive the result. When kernel k differs from these two, the
energy property of an SL-operator requires that

hf, fik =

Z

[0,1]D
f(x)

"
DY

d=1

L
#
f(x)d(x)

 C

Z

[0,1]D

�����

DY

d=1

@

@xd
f

�����

2

dx,

which implies that Hk can be embedded on H1
mix. There-

fore, the covering number of Hk must be bounded by that
of H1

mix.
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Lemma 3 shows the the function classes associated with the
learning problem are Donsker. We refer to (van der Vaart &
Wellner, 1996) for the definition and properties of Donsker
classes. Let GR := {L(y, f(x)) : kfkk  R}.

Lemma 3. Let P be the probability measure of (x, y). The
space GR is P -Donsker for each R > 0.

Proof. In view of Theorem 2.5.6 of (van der Vaart & Well-
ner, 1996), it suffices to prove that

Z
1

0

q
logN[](✏,GR, k · kL2(P ))d✏ < 1,

where N[](✏,GR, k · kL2(P )) is the covering number
with bracketing defined as follows. For function
g : RD ⇥ R ! R, its L2(P ) norm is defined
as [E[g(x, y)]2]1/2. Given functions gL, gU such that
gL(u, v)  gU (u, v) for each (u, v), define the bracket
[gL, gU ] as the set of functions {g : gL(u, v) 
g(u, v)  gU (u, v)}. The covering number with bracketing
N[](✏,GR, k · kL2(P )) is the smallest number N0 so that
there exist brackets [gL,1, gU,1], . . . , [gL,N0 , gU,N0 ], such
that [N0

i=1[gL,i, gU,i] � GR, and kgU,i � gL,ikL2(P )  ✏
for all i.

Let FR = {f : kfkk < R}. We start with the
centers f1, . . . , fN0 with N0 = N(✏,FR, k · kL1) =
N(✏/R,F1, k · kL1) so that for each f 2 FR, there ex-
ists fi =: ⇠(f) such that kf � fikL1 < ✏. To bound the
covering number with bracketing, we need to construct the
associated brackets. The reproduction property implies that
kfkL1  ckfkk with c := maxx k(x, x). Then for any
f 2 FR, by mean value theorem,

|L(y, f(x))� L(y, ⇠(f)(x))|  sup
|u|<cR

����
@L

@u
(y,u)

���� ✏

=: S(y)✏. (12)

Now we define gL,i(u, v) = L(v, fi(u)) � S(v)✏ and
gU,i(u, v) = L(v, fi(u)) + S(v)✏. Clearly gL,i  gU,i

and
kgU,i � gL,ikL2(P ) = 2✏[E[S(y)]2]1/2,

which is a multiple of ✏ according to Assumptions 2-3. Be-
sides, (12) implies that for all f such that kf � fikL1 < ✏,
L(v, f(u)) 2 [gL,i, gU,i]. Now we invoke Lemma 2 to find
that

logN[](2✏[E[S(y)]2]1/2,FR, k · kL2(P ))

= O
✓
R

"
logD�

1
2
R

"

◆
,

which implies the desired result.

To bound the generalization error, we observe that

R(f̂)�R(f0) =

(
R(f̂)� 1

N

NX

i=1

L(yi, f̂(xi))

)

+

(
1

N

NX

i=1

L(yi, f̂(xi))�
1

N

NX

i=1

L(yi, fM (xi))

)

+

(
1

N

NX

i=1

L(yi, fM (xi))�R(fM )

)

+

(
R(fM )�R(f0)

)
=: I1 + I2 + I3 + I4.

We will bound I1 and I3 by applying a uniform error bound
of empirical processes. For I2, we have

I2  �kfMk2k � �kf̂k2k  �kf0k2K = O(N�1/2)kf0k2k,

where the first inequality follows from the optimality condi-
tion

1

N

NX

i=1

L(yi, f̂(xi)) + �kf̂k2k

 1

N

NX

i=1

L(yi, fM (xi)) + �kfMk2k. (13)

The term I4 is bounded by Lemma 1.

Now we turn to I1 and I3. To show that I1 = Op(N�1/2)
and I3 = Op(N�1/2), it suffices to show that the functions
L(y, f̂(x)) and L(y, fM (x)) fall in a Donsker class (van der
Vaart & Wellner, 1996) with probability arbitrarily close
to one. For L(y, fM (x)), this is clearly true in view of
Lemma 3 and the fact that kfMkk  kf0kk. Therefore,
I3 = Op(N�1/2). For L(y, f̂(x)), it suffices to prove that
kf̂kk = Op(1). To show this result, we start with the
optimality condition (13). In view of Assumption 2, we can
write

L(y, f(x))� L(y, f0(x)) = W · (f(x)� f0(x))

+m00

y(u
⇤)(f(x)� f0(x))

2,

where W = m0

y(f0(x)), and u⇤ lies between f(x) and
f0(x). Assumption 1 implies that for any � 2 Hk,

0 =
@

@t
R(f0 + t�)

���
t=0

=
@

@t
EL(y, f0(x) + t�(x))

���
t=0

= E
⇥
m0

y(f0(x))�(x)
⇤
, (14)

where in the last equation we interchange the partial deriva-
tive and the expectation, which is valid because of Assump-
tions 2 and 3. Let Px be the probability measure of x. Since
� 2 Hk is arbitrary, (14) implies

0 = Em0

y(f0(x)) = EW.
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We then invoke (13) and Assumption 2 to find

�kf̂k2k  � 1

N

NX

i=1

Wi(f̂(xi)� f0(xi))

+

(
1

N

NX

i=1

L(yi, fM (xi))�
1

N

NX

i=1

L(yi, f0(xi))

)

� V (f̂(xi)� f0(xi))
2 + �kf0k2k

=: J1 + J2 + J3 + J4, (15)

for some V > 0 due to the strong convexity of my(·). For
the first term, we have

J1  (kf̂kk + 1) sup
f2Hk

1

N

NX

i=1

�Wi
f(xi)� f0(xi)

kfkk + 1

= (kf̂kk + 1)Op(N
�1/2),

where the last step follows from the fact that EWi = 0, Wi

is bounded, and Lemma 3.4.3 of (van der Vaart & Wellner,
1996) and the fact that kf � f0kk/(kfkk + 1) = O(1).
Clearly, we have J2 = I3 + Op(N�1/2) = Op(N�1/2)
according to the central limit theorem. The third term is
clearly non-positive. We also have J4 = Op(N�1/2) by
assumption for �.

Now we conclude from (15) that

�kf̂k2k  kf̂kkOp(N
�1/2) +Op(N

�1/2),

which implies kf̂kk = Op(1). This completes the proof.


