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Abstract

We develop a novel variant of the classical Frank-
Wolfe algorithm, which we call spectral Frank-
Wolfe, for convex optimization over a spectrahe-
dron. The spectral Frank-Wolfe algorithm has a
novel ingredient: it computes a few eigenvectors
of the gradient and solves a small-scale SDP in
each iteration. Such procedure overcomes slow
convergence of the classical Frank-Wolfe algo-
rithm due to ignoring eigenvalue coalescence. We
demonstrate that strict complementarity of the op-
timization problem is key to proving linear conver-
gence of various algorithms, such as the spectral
Frank-Wolfe algorithm as well as the projected
gradient method and its accelerated version.

1. Introduction

We consider solving the following optimization problem
with the decision variable X € R™"*":

f(X):
subjectto  tr(X) =

minimize

9(AX) +(C, X) (1)
1 X»>o.

Problem setup. The setup of Problem (1) is as follows.
We assume C' € R™*" is a symmetric matrix. The con-
straint X > 0 means that X is symmetric and positive
semidefinite. We assume that A : S" — R™ is a lin-
ear map from the set of symmetric matrices S to the m-
dimensional Euclidean space. We also assume that the
function g : R™ — R is differentiable and its gradient Vg
is Lg4-Lipschitz continuous. We use tr(-) to denote the stan-
dard trace operation, the sum of diagonal entries of the input
matrix. We denote by S,, the feasible region of Problem (1).
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The set S, is called the spectrahedron, which is nonempty
and compact. Hence Problem (1) always has an optimal
solution. In this paper, we assume Problem (1) admits a
unique optimal solution X, with rank r, for the sake of
simplicity. The main results, Theorem 3 and 6 below, can
be adapted to the setting where multiple optimal solutions
exist; see Section A in the Appendix for a further discussion.
It is worth noting that for almost all matrix C', the solution
of Problem (1) is indeed unique (Drusvyatskiy & Lewis,
2011, Corollary 3.5).

Applications. The optimization problem covers many low
rank matrix recovery problems including matrix sensing
(Recht et al., 2010), matrix completion (Candes & Recht,
2009; Jaggi & Sulovsky, 2010), phase retrieval (Candes
et al., 2015; Yurtsever et al., 2017), and blind deconvolution
(Ahmed et al., 2013). The constraints X > 0 and tr(X) =
1 impose low-rankness on the solution. The rank r, of
optimal solutions in these applications is expected to be
small comparing to the problem dimension n. We note that
the following problem:

f(X), 2)

is sometimes a more direct optimization formulation for
aforementioned low rank matrix recovery problems. Since
Problem (2) can be re-formulated as Problem (1) (Jaggi &
Sulovsky, 2010), we consider Problem (1) as our main focus
of study in this paper.

minimize| x|, <a

Background and related works. A natural but costly al-
gorithm for solving (1) is using the projected gradient de-
scent method (PGD) or its accelerated version (APGD) (Nes-
terov, 2013). Although the iteration complexity of PGD or
APGD is considerably low,' each of their iteration requires
computing a full eigenvalue decomposition of an n X n
matrix, which scales as O(n?) (Trefethen & Bau 111, 1997).
The high per-iteration cost prevents their large-scale deploy-
ment. Hence, projection-free methods are sought, such as
the Frank-Wolfe method (FW) (Frank & Wolfe, 1956; Jaggi,
2013) presented in Algorithm 1. In the spectrahedron setting,

'PGD or APGD achieves an e-approximate solution in
O(log(?)) iterations for strongly convex f. APGD achieves an

e-approximate solution (’)(\%) for general smooth f.
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Algorithm 1 Frank-Wolfe with line search

Input: initialization Xy € S,

fort=1,2,..., do
Eigenvalue computation: compute an eigenvector v
of V f(X;) associated with smallest eigenvalue.
Line search: solve 7§ = arg min,¢jo,1) f(nX¢ + (1 —
n)vv ") and set Xy 1 = 71X; + (1 —How’.

end for

Algorithm 2 Generalized BlockFW (G-BlockFW)
Input: initialization X, € S, a step size p € [0,1], a
smooth parameter /3, and an integer £ > 0
fort=1,2,..., do
Eigenvalue computation: compute top k eigenvalues

(A1,..., ) and their eigenvectors V' = [vq, ..., vg]
of X; — -5V (Xy).
Eigenvalue projection: project (A1,...,\x) to the

k-dimensional probability simplex {z € RF |
Zle x; = 1,z; > 0}, and get the projected point
A.
Forming a new iterates: set X; 11 = (1 — n)X; +
nVdiag(A)V'T.

end for

each step only requires computing one eigenvector of the
gradient of f, which can be efficiently done using the Lanc-
zos method (Kuczynski & WoZniakowski, 1992) by taking
advantage of the structure of V f(X) = A*(Vg)(AX)+C
as well as the sparsity of A and C. FW converges to an
e-approximate solution® within (9(%) many iterations. How-
ever, the iteration complexity O(+) is tight as shown in
(Garber, 2016) even if f is strongly convex and no structural
assumption is posed on the solution of (1). Considerable
recent research effort (Garber, 2016; Freund et al., 2017,
Allen-Zhu et al., 2017; Garber, 2019b) has focused on in-
corporating the low-rankness of solution X,. Of particular
relevance to our work are Garber (2019b) and Allen-Zhu
et al. (2017):

e Garber (2019b) shows that Algorithm 1 converges lin-
early given that the solution is rank one, and an eigen-
gap assumption on the gradient V f (X, ) at the optimal
solution is satisfied. We note that the rank-one assump-
tion is crucial for the linear convergence of Algorithm 1
to hold. As we will demonstrate in Section 5, if the
solution is not rank one, Algorithm 1 gets stagnant and
behaves in the worst case as O(2).

e Allen-Zhu et al. (2017) proposes an algorithm called
BlockFW, which is re-formulated as Algorithm 2 for
our setting and renamed as generalized BlockFW(G-

2A matrix X is e-approximate solution to Problem (1) if X is
feasible and f(X) — f(X,) <e.

BlockFW) 3. It computes only k eigenvectors in each
step, and converges linearly so long as k& > r, =
rank(X,) and f is strongly convex. However, the
method relies critically on the assumption & > r,:
no convergence guarantees can be made if this assump-
tion fails. Indeed, we will demonstrate in Section 5
that if k£ < r,, G-BlockFW gets stuck at moderate ac-
curacy and cannot make further progress.* Moreover,
the method needs to store iterates explicitly to com-
pute the eigenvectors. This not only incurs an extra
O(n?) space complexity, but also increases the burden
of computing eigenvectors as the iterates themselves
have no structure to be exploited for fast eigenvector
computation.’

In summary, previous methods converge linearly only when
the optimal solution is rank one, or the number of eigenvec-
tors computed in each iteration is no smaller than the rank
of the optimal solution.

Our contributions. The contribution of this work is two-
fold. On the problem structure side:

e We show that the eigengap assumption in (Garber,
2019b) is equivalent to the strict complementarity con-
dition, a well-known regularity condition of semidefi-
nite programming (Alizadeh et al., 1997); see Section 2
for more detail.

e Based on the eigengap condition, or the equivalent
strict complementarity condition, we show that Prob-
lem (1) satisfies the quadratic growth property (Defi-
nition 2 below) when the outer function g is strongly
convex over the feasible region S,, of Problem (1),
which is true for all the application being considered.
This governs the linear convergence of many first or-
der methods such as PGD, APGD, and our method,
Spectral Frank Wolfe.

On the algorithm side, we propose a new algorithm called
Spectral Frank-Wolfe (SpecFW) in Section 3, which has the
following properties:

e In each of its iteration, it computes k eigenvectors
using only the current gradient information.

e In each of its iteration, it solves a small-scale sub-
problem efficiently by APGD for small k.

3We note that BlockFW is not designed for (1), but rather for
(2). Since (2) covers (1), we renamed the algorithm as G-BlockFW.

4 Allen-Zhu et al. (2017) gives an adaptive k selection procedure
which works well in their experiments, but there is no theoretical
guarantee for the procedure.

5 Actually Allen-Zhu et al. (2017) provides a method to avoid
the extra space and time costs. However, the method requires
knowledge of the strong convexity parameter, which is unavailable
in all experiments they perform.
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Convergence Rate

Algorithm
Worst Linear Condition
FW (Alg. 1) % (1- ﬁ)t r, = 1 and strict comp.
G-BlockFW (Alg. 2) X (1-55) k> r, and QG
SpecFW (Alg. 3) % (1-— %ﬁf:))t k > 7., QG, and strict comp.

Table 1. Comparision of FW, G-BlockFW and SpecFW. Here, we assume f has gradients V f that are L y-Lipschitz. The optimal solution
rank is ., = rank(X,). We let ¢ be the number of iterations. Convergence rates are measured by f(X:) — f(X.). We set 0 to be
the difference between the smallest eigenvalue and the (7. + 1)th-smallest eigenvalue of V f(X.), thatis, d = Ap—r, (Vf(X)) —
An(Vf(X)). Strict comp.” means strict complementarity (Definition 1). QG means quadratic growth with parameter ~y (Definition

72053

2). Both FW and SpecFW have burn-in phases which are bounded by m Here, the burn-in phase is the number of iterations in

which the method converges with standard rate L ¢ /¢, before shifting to the faster rate (if linear convergence condition is satisfied). The
convergence rate of G-BlockFW can be found in Lemma 8 in Section F of the Appendix.

e It always converges at the rate O(1) no matter what
choice of k is.

e It converges linearly when k£ > r,, and the strict com-
plementarity and quadratic growth condition are satis-
fied. In particular, we do not require f to be strongly
convex or the rank r, to be 1.

e It can easily incorporate the matrix sketching idea from
Tropp et al. (2017) and achieves the so-called storage
optimality discussed in Yurtsever et al. (2017). The
sketching procedure obviates the need for storing the
full decision matrix X throughout iterations, thereby
saving O(n?) space.®

Organization. The rest of the paper is organized as fol-
lows. In Section 2, we explain the concept of strict com-
plementarity and the classical Frank-Wolfe algorithm, and
how they motivate our Spectral Frank-Wolfe. In Section 3,
we present the Spectral Frank-Wolfe and its convergence
guarantees. In Section 4, we show that the strict complemen-
tarity enforces the quadratic growth condition whenever g is
strongly convex on S,,. Finally, we demonstrate numerically
the effectiveness of the Spectral Frank-Wolfe in Section 5.

Notation. For a symmetric matrix A € S”, we denote its
i-th largest eigenvalue as A\;(A). The operator two norm,
nuclear norm, and Frobenius norm are denoted as || A|qp,
| All«, and ||A||g, respectively. The inner product (-,-)
on symmetric matrices is the standard trace inner prod-
uct. We also equip R™ with the dot product. For a lin-
ear map B:S? — R!, the adjoint map of B is denoted
as B*. We also define its largest and smallest singular

SInterested readers can find the procedure in Section D in the
Appendix. We note the matrix sketching idea cannot be combined
with G-BlockFW easily to avoid storing X, as G-BlockFW uses a
sum of the current iterate and current gradient to compute the eigen-
vectors, which destroys the fast matrix-vector product property of
the gradient.

values as [|Bllop = Omax(B) = max) 4),=1 [|B(A)]|2 and
Omin(B) = minj4),—1 [[B(A)|[2. Given a matrix V €
R4*" we denote the restriction of Bto V as By : S" — R!
by By (S) = B(VSVT) for any S € S".

2. Motivating SpecFW from complementarity
and Frank-Wolfe

In this section, we explain the motivations of the spectral
Frank-Wolfe from strict complementarity and its relation-
ship with the classical Frank-Wolfe.

2.1. Observation from complementarity

Let first introduce the KKT condition to see what comple-
mentarity means.

KKT condition. By Slater’s condition for (1) and the fact
that the feasible region S,, is compact, the following KKT
condition of (1) always holds: there is some dual optimal
solution Z, > 0 and s, € R such that’

Vf(X,)— Z,— s =0, (First Order Condition) (3)

(Z,, Xy) =0, (Complementarity)
tr(X,) =1, (Linear Constraint Feasibility)
Z4, Xy = 0. (PSD Feasibility)

Here I is the identity matrix in S™. We prove in Lemma 1
in the Appendix that the dual solution (Z,, s, ) is actually
unique.

Complementarity: extract X, from Z,. we first note
that using Z,, X, = 0 and complementarity (Z,, X,) = 0,
we have Z, X, = 0. This equality implies that

range(X,) C nullspace(Z,), 4)

"If there are multiple primal optimal solutions, then the KKT
condition holds for any one of them.
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and

r, = rank(X,) < dim(nullspace(Z,)) =: ks.  (5)

Hence, if we can compute a matrix V, € R™*k« with or-
thonormal columns that span the null space of Z,, and solve

for ] T
Sy = arg Join FVSV,), (6)

then we get the primal optimal solution X, = V, S, V,".

We note that it is necessary to optimize over the k-
spectrahedron Sy, instead of just a k,-dimensional proba-
bility simplex, as V, may not be the eigenvectors of X, for
ky« > 1. Problem (6) can be solved by APGD rapidly so
long as k., the size of S, is small.

This naturally leads to the following questions:

1. Problem (6) is easy to solve only if k, is small; yet for
now we only have k, > r,. With r, expected to be
small, can we hope for k, = r, to hold, so that k, is
small as well?

2. Suppose we have k, = r,, can we compute V, exactly
or approximate it well enough?

We answer the first question in the next section by defining
strict complementarity and establishing its equivalence to an
eigengap condition on V f(X,). To answer the second ques-
tion, we draw relationship between the first order condition
in (3) and the classical Frank-Wolfe algorithm in Section
2.3.

2.2. Strict complementarity

We answer why we expect r, = k, in this section. Using
the rank-nullity theorem, we see that the equation r, =
rank(X,) < dim(nullspace(Z,)) is equivalent to

rank(X, ) + rank(Z,) < n.

Strict complementarity (Alizadeh et al., 1997) assumes that

we have equality instead of inequality.

Definition 1. (Strict Complementarity) Let X, Z, and s,
satisfy the KKT condition (3). We say that Problem (1) (or
the pair (X, Z,)) satisfies strict complementarity if

rank(X, ) + rank(Z,) = n.
It is immediately clear that using the rank-nullity theorem
again, we see that strict complementarity is equivalent to
T = k*a

which is what we desire. By (4) and given that the solution
rank is 7y, strict complementarity is equivalent to

Anr. (Z,) > 0. (7

Equation (4) also implies that we always have for all ¢ =
1. 0,7,

)\nfr*+i(Z*) =0. )]

Relation with the eigengap assumption. In Garber
(2019a;b), the author proposed an eigengap condition:

An—r, (VF(X4)) = A (V£(

This is in fact equivalent to strict complementarity: since

X)) > 0.

V(X)) = Z, + s,I, we have
An—r, (VI(XL)) = A (V (X))
=An—r, (Zs + 8:1) — A (Zy + 851)
:/\n—u (Z*) + Sk — >\n(Z*) — Sx
:/\nfr* (Z*)

where the last step is due to (8). Using (7), we deduce the
equivalence.

Why strict complementarity should hold. Strict com-
plementarity as shown in Drusvyatskiy & Lewis (2011)
holds for almost all C' (see Lemma 2 for a more detailed
derivation). We will also verify this assumption numerically
in our experiments in Section 5. Moreover, as demonstrated
in Garber (2019b, Lemmas 2 and 10), such assumption
should hold if we expect the solution rank 7, to be stable
under small perturbations.

2.3. FW and approximation of nullspace(Z, )

We have just argued why we expect r, = k, should hold for
Problem (1). In this section, we draw relation of FW and
approximation of nullspace(Z,).

Denote by EV,.(A) the eigenspace of the smallest r eigen-
values of a matrix A € S”. In view of the first order condi-
tion (3), we have

EV;, (Vf(X.)) = nullspace(Z,). )

Hence nullspace(Z,) can be identified using the gradient of
fat X,.

Note that FW indeed uses the eigenvector corresponding to
the smallest eigenvalue of V f(X;) in each of its iteration,
and therefore it tries to approximate EVy, (V f(X,.)). This
is the main intuition that linear convergence of FW can
be established when r, = 1 as in Garber (2019b). It also
reveals that FW fails to converge in a linear rate for k, >
1, as approximation using one eigenvector is not enough
for a k,-dimensional space. Also, from (8) and the first
order condition in the KKT condition, we see the smallest
k. eigenvalues of the gradient coalesce, and hence it is
important to compute the k,-dimensional space to attain
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Algorithm 3 Spectral Frank-Wolfe

Input: initialization Xy € S, an integer k > 0

fort=1,2,..., do
Eigenvalue computation: compute the k£ eigenvec-
tors, v1,...,vx of Vf(X;) associated with the k
smallest eigenvalues, and form the matrix V =
[v1,...,v5]) € R?¥F,
Solving a small-scale
miny 4 ¢r(s)=1,5-0>0 f (N Xt
get an optimal solution (S, 7).
Forming a new iterate: set X;; = 7X; + VSVT.

end for

SDP: solve
+ VSVT) and

better numerical stability and accuracy. Hence, to overcome
this issue, we need to compute at least k, eigenvectors and
solve a sub-problem like (6) in each iteration.

The above discussion motivates our algorithm, the Spectral
Frank-Wolfe (Algorithm 3), described in the next section.

3. Spectral Frank-Wolfe and its Convergence
guarantees

In this section, we describe the Spectral Frank-Wolfe algo-
rithm and its theoretical guarantees.

3.1. The Spectral Frank-Wolfe algorithm

The Spectral Frank-Wolfe algorithm is presented in Algo-
rithm 3. We highlight its key mechanism as follows.

Solving a small-scale SDP. The small-scale semidefinite
programming (SDP)
. T

7}+tr(S)r:nllg‘50,n20 f(nXt + Visv ) (10)
can be solved easily using APGD since projection to the
set {(n,S) | n+tr(S) =1,5 = 0,7 > 0} only requires
an eigenvalue decomposition of a symmetric matrix of size
k and a projection to the (k + 1)-dimensional probability
simplex. The correctness of the procedure for projection
can be verified using arguments in Allen-Zhu et al. (2017,
Lemma 3.1), and Garber (2019a, Lemma 6). We note that
when evaluating gradient is very expensive, instead of mini-
mizing f(nX; + V.SV "), one can also minimize an upper
bound of it (and the guarantees in the next section continue
to hold). This is discussed in Section C in the Appendix.

Averaging with current X,;. In addition to the eigenvec-
tors from the current gradient, we also utilize the informa-
tion of previous iterates when solving the small-scale SDP
(10). This follows the same spirit as the classical Frank-
Wolfe, which performs a line search over the current iterate

and the new atom vv ' . This averaging scheme stabilizes
the algorithm and facilitates the O(%) convergence rate.

The choice of k. From the proof of the convergence in
the next section, it can be observed that so long as k > k,
Algorithm 3 converges linearly. Of course, one may not
know £k, in advance. In this case, k may be taken as the
largest value subject to the user’s computational budget or
the largest rank of the solution the user can afford in terms of
storage. An adaptive strategy may also be employed based
on the progress of objetive value decay as in Allen-Zhu et al.
(2017, Section 6.2). We do not further the discussion of this
issue due to the space limit.

3.2. Theoretical guarantees

To state our result, we first define the notion of quadratic
growth.

Definition 2 (Quadratic Growth (QG)). We say that the
optimization problem (1) satisfies quadratic growth with
parameter v > 0, if for every feasible X € S,, there holds

J(X) = f(Xe) 271X = X*H%’

The quadratic growth condition is necessary for linear con-
vergence of gradient descent type methods as shown in
Necoara et al. (2019, Theorem 13). Hence we should ex-
pect it to hold if we are to show linear convergence of
Frank-Wolfe methods. The condition automatically holds
for strongly convex f, and more broadly, it is satisfied
for almost all C' so long as g is semi-algebraic, as shown
in Drusvyatskiy et al. (2016, Corollary 4.8). In Section 4,
we show that strict complementarity and strong convexity of
the outer function g (but not f) implies quadratic growth, as
well as an explicit formula of  in terms of the solution X,
the map .4, and smoothness and strong convexity parameters
of g.

We now state the theoretical guarantees for our Algorithm 3.

Theorem 3. Suppose strict complementarity holds for Prob-
lem (1), the optimal solution X, is unique with rank r,, the
function g has Lg-Lipschitz continuous gradients, Prob-
lem (1) satisfies quadratic growth with parameter v, and
the choice of k satisfies k > r. = ky. Define hy =
f(Xy) = f(Xy) for each t, and B = || A||2,Ly. Then for all
t, we have

8
Fx0 - 06y < 2 ar
Forallt > Ty = 'Mi,rﬁj(Z*)’ we have
. Y )\nf'r‘ (Z*)
<(1- SR s S . 2A .
ht+1 < (1 mln{4ﬁ’ 126 h,t (12)
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Discussion on the assumptions. As discussed before,
these assumptions are expected to be necessary for linear
convergence and robustness of the rank under small pertur-
bations. The assumption of the unique optimal solution is
only for the purpose of clear presentation.

Preparation of the proof. Let us first give the definition
of the r-th spectral set.

Definition 4. For each X € S", let Vx € R™** having
orthonormal eigenvectors as columns corresponding to the

smallest k eigenvalues of X. Define the spectral k-th set
Ci(X)of X as

Cr(X) :={VxSVy €S| S €S}.

We next present the following important lemma which is
proved in Section E in the Appendix.

Lemma 5. Given Y € S"™ which satisfies Ay, (Y) —
An—r11(Y) > & for some 6 > 0, then for any X € S",
X > 0, and tr(X) = 1, there is some W € C.(Y) such
that

0
(X —W,Y) 2 SIX - W2,
We are now ready to start the proof.

Proof of Theorem 3. Using the Lipschitz smoothness of
f, we have for any ¢ > 1, n € [0,1], and any W €
Cr (Vf(X4)):

f(Xi1) <F(Xe) + (1 =)W = X4, VF(Xy))

1—n)*B
U0 x

13)

Now choose W = vnvg where v,, is the eigenvector of
V f(X;) with the smallest eigenvalue, we can then perform
the analysis as normal Frank-Wolfe as is done in (Jaggi,
2013) to reach the first part of the theorem, the inequality

(11).

For the second part, we first note that by the discussion
after the Definition 1 of strict complementarity, we have
An—r, (VF(X0)) = Anr, 41 (VF(XL)) = An—r, (Z4), and
An—r, 41(VF(XS)) = -+ = M(VF(Xy)).

Using Lipschitz continuous gradient of f in step (a), the
quadratic growth of f in step (b), and the choice of Ty in
step (¢), we find that for all ¢ > Tj,

(@)
IVF(Xe) = VIX)e < BIX: — Xille

<wﬁ<ﬂxo;ﬂxn>%

An—r, (Zy). (14)

Using the inequality (14) and Weyl’s inequality, we find that

An—r, (V(Xt)) = Ap—r, 41 (V f(X2))
=An—r. (Vf(Xs)) = Aer, 41(V (X))
=An—r, (Z)
+ (/\n—r* (Vf(Xt)) - /\n—h (Vf(X*)))
>3 An—r, (Z0)
+ An—re1 (VX)) = Aner 11 (V (X))

2_%>\n—7‘* (Z*)

An—r, (Zy).

>

Wl

Now we subtract the inequality (13) both sides by f(X),
and denote h; = f(X;) — f(X,) for each ¢, we reach

hiv1 <hg + (1 —n) (W — X, V(Xy))

Ry

L2 (15)

+ 08w i
—_———

R2

Using Lemma 5 and the inequality (15), we can choose
W e C,, (Vf(Xt)) such that

W - X,, V(X)) < ~2neretZe)

=X - WR 36)

Let us now analyze the term Ry = (W — X, Vf(X}))
using (16) and convexity of f:

Ry =(W — X, Vf(Xy))
=(W — X, V(X)) + (X, — X, V(X))
An—r, (Zy)

< — 2ot X~ WE -

The term Ry = || X; — W||2 can be bounded by

(a)
Ry =X, — W[} < 2(|Xe — XulE + | X = W)

® 2 )
S 2[| X, = Wz,

where we use triangle inequality and the basic inequality
(a + b)? < 2a% + 2b? in step (a), and the quadratic growth
condition in step (b).

Now combining (15), and the bounds of R; and Rs, we
reach that there is a W € C,, (V f(X,)) such that for any
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&€=1-mn¢€l0,1], we have

)\nfr* Zy
21 Wi - )

hit1 <hg + € <
2
+2 (2hvalx - wig)

2
~(1-¢+E0)
Y

)\nfr Z*
+ (526 - W) 1% = W

A detailed calculation and choice of ¢ in Section E in Ap-
pendix reveals that we can reach the second part of the
theorem, the inequality (12). O

4. Quadratic Growth and Linear
Convergence of Algorithms

In this section, we show that when g is a-strongly convex
(Nesterov, 2013) and strict complementarity of (1) holds,
then we have quadratic growth of Problem (1). We also
demonstrate when the dual matrix Z, has rank n — 1 then
we do not require g to be a-strongly convex. An imme-
diate consequence is the linear convergence of PGD and
APGD (Karimi et al., 2016), the generalized blockFW® (Al-
gorithm 2, and the spectral Frank-Wolfe (Algorithm 3) as
shown in Theorem 3.

Theorem 6. Suppose strict complementarity of (1) and one
of the following conditions hold:

(i) g is a-strongly convex, and the solution X, is unique, or

(ii) the dual matrix Z, in the KKT condition (3) has rank
n—1,

then Problem (1) satisfies quadratic growth. The constant ~y
takes the form of

(i) v = min ’\"*;2*(2(})) , Wﬁ“‘g(AV) in the first case,
4 80- n]axﬁv)

where A( ) = EX((;()) }, and

(ii) v = /\"%*(Z*) in the second case. In addition, the

uniqueness of X, is implied in the second case.

Proof. The second case has been verified in Garber (2019a,
Lemmas 1 and 2). We provide a self-contained and different
proof in Section F in Appendix.

Now consider the first case. For any feasible X and the

8We show its convergence under quadratic growth in Lemma 8
in Section F in the Appendix.

optimal solution X, we have

F(X) = f(Xy)
:g(AX) - g(AX*) + <C,X - X*>
(@)
>((Vg)(AX,), A(X — X))
O X — X))+ %HAX —AX, |2
4 (Vg)(AX,) + C, X — X,.) (17)
+9||AX ~AX|2

A

UZe+ 5.0, X = X,) + SIAX - X3

Dz, x)

Foa - X o

Here step (a) is due to the strong convexity of g. Step (b)
is because of the definition of A*. For step (c), we uses
the first order condition of KKT condition (3) in terms of
gand A: A*(Vg)(AX,)+ C — Z, — s,I = 0. The step
(d) is due to the complementarity in KKT condition (3) and
feasibility of X and X,. The last inequality (e) is beacause
Z,X > 0.

We claim that a feasible matrix X € S™ is optimal if and
only if X satisfies

(Z,X)=0, AX—AX,=0

18
tr(X)=1, and X > 0. (1%)

Indeed, if X is optimal, then (17) and feasibility of X im-
plies (18). Conversely, if X satisfies (18), then it satisfies
the KKT condition (3) and hence it is optimal because the
problem (1) is convex. Since the optimal solution is unique
by assumption, we know the system (18) admits a unique
solution. Using Lemma 6 in Section F in the Appendix, we
have the relationship between ((Z,, X), [ A(X — X,)|l2)
and the distance to the solution | X — X, ||g:

Z X
HX—&%<<4% mﬁ@)< -
A mln( V) " Tx \ % (19)
+ —|AX) — b))%
o*?nm(Av)” (X) —0ll3
Combining (17) and (19), we see that
f(X) - f(X*) > ’YHX - X*H}Q?
f — : n—ry (Z+) ,a m]n(‘Av) O
or vy mm{ . ‘“a’{(% B

5. Numerics

In this section, we verify numerically a few of our claims in
the paper, and show the advantages of the Spectral Frank-
Wolfe algorithm when strict complementarity is satisfied
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Dimension n  Avg. gap  Avg. recovery error

100 288.06 0.0013
200 505.16 0.00064
400 961.09 0.00031
600 1358.62 0.00021

Table 2. Verification of low rankness and strict complementarity.
| %+ —v,u, I
1T U, I
measured by A\n,—3(Vf(X,)) — M (Vf(X.)). All the results is

averaged over 20 iid trials.

The recovery error is measured by . The gap is

and the solution rank is larger than 1. We focus on the
quadratic sensing problem (Chen et al., 2015). Given
a random matrix U, € R"*"s with 1, = 3 and Frobe-
nius norm ||U]|2 = 1, we generate Gaussian vectors
a; € R™1 4 = 1,...,m and construct quadratic mea-
surement vectors yo (%) = ||UuTai||E,i =1,...,m. We then
add noise n = ¢||yol|2v, where ¢ is the inverse signal-to-
noise ratio and v is a random unit vector. Our observation is
given by y = yo + n and we aim to recover Uy U, hT from y.
To this end, we solve the following optimization problem:

m 2
> (o] Xai —y,)
i=1

X = 0.

minimize f(X) :=

M| —

(20)
subjectto  tr(X) =,

We set m = 15nry in all our experiments.

Low rankness and strict complementarity. We verify
the low rankness and strict complementarity for n =
100, 200, 400 and 600. We set ¢ = 0.5 for the noise Level.
We also set 7 = 0.5, since otherwise, the optimal solu-
tion will fit the noise and results in a higher rank matrix.
Problem (20) is solved via FASTA (Goldstein et al., 2014,
2015). We found that every optimal solution rank in this
case is , = 3, and there is indeed a significant gap be-
tween \,_3(Vf(X,)) and A\, (Vf(X,)), which verifies
strict complementarity. More details can be found in Table
5.

Comparison of algorithms. We now compare the per-
formance of FW, G-BlockFW, and SpecFW. We follow the
setting as the previous paragraph for n = 100, 200, 400, and
600. We set k = 4 for both SpecFW and G-BlockFW, which
is larger than r, = 3. We also set = 0.4 and 3 = 2.5n2.°
The small-scale SDP (10) is solved via FASTA. We plot the
relative objective value against both the time and iteration

This choice might appear conservative. But we note that a;
has length around y/n. Hence the operator norm of A is around
vmn ((aia), X) < [lal[#]|X|lr & n||X||r), which suggests
Ly = ||A||2, = n®m as a safe choice. We have already omitted
one m factor here for better algorithmic performance.

n =600,7=0.5,r=3 n =600,7=0.5,r=3

O 0
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Figure 1. Comparison of algorithms under different setting. f* is
obtained from the best value of the three methods and FASTA.

counter in Figure 1. We only present the plot for the case
of n = 600 here and those for the other cases can be found
in Section G in the Appendix. As can be seen from Figure
1(a), SpecFW converges faster in terms of both the iteration
counter and the time. The oscillation in the end may be
attributed to the sub-problem solver.

Misspecification of k. We adopt the same setting as be-
fore. In this experiment, we set k = 2 for both SpecFW
and G-BlockFW, which is less than r, = 3. As can be seen
from the Figure 1(b), SpecFW still converges as fast as FW
(the two line coincide). G-BlockFW gets stuck around 107!
and stop converging to the optimal solution.

6. Discussion

In this paper, we propose the Spectral Frank-Wolfe algo-
rithm, a novel variant of the classical Frank-Wolfe algorithm,
which converges sublinearly for convex smooth optimiza-
tion problems and converges linearly when strict comple-
mentary is satisfied for structural convex optimization prob-
lems. We also show that the quadratic growth condition,
which is essential for linear convergence of first order meth-
ods, holds under strict complementarity.

Here we discuss two potentially interesting extensions of
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the current paper:

e Total computational complexity: The complexity of
subproblem (10) is not discussed and hence leave the
total complexity unresolved. Simply using the known
(’)(ﬁ) result for the subproblem complexity seems
to be too pessimistic. Is it possible to improve this

complexity to O(log(1))?

e Solving Subproblem (10) by sub-sampling? In
many applications, f is of a finite sum structure with
m terms, e.g., matrix completion, and quadratic sens-
ing. The number m is usually on the order nr,. In the
subproblem (10), the decision variable has size O(k?),
which is much smaller than m. It might be unwise to
use all the m terms. Can we sub-sample the m terms
to reduce the burden of computing gradient?
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