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Abstract

There has been recent interest in improving per-
formance of simple models for multiple reasons
such as interpretability, robust learning from small
data, deployment in memory constrained settings
as well as environmental considerations. In this
paper, we propose a novel method SRatio that can
utilize information from high performing complex
models (viz. deep neural networks, boosted trees,
random forests) to reweight a training dataset for a
potentially low performing simple model of much
lower complexity such as a decision tree or a
shallow network enhancing its performance. Our
method also leverages the per sample hardness es-
timate of the simple model which is not the case
with the prior works which primarily consider the
complex model’s confidences/predictions and is
thus conceptually novel. Moreover, we generalize
and formalize the concept of attaching probes to
intermediate layers of a neural network to other
commonly used classifiers and incorporate this
into our method. The benefit of these contribu-
tions is witnessed in the experiments where on
6 UCI datasets and CIFAR-10 we outperform
competitors in a majority (16 out of 27) of the
cases and tie for best performance in the remain-
ing cases. In fact, in a couple of cases, we even
approach the complex model’s performance. We
also conduct further experiments to validate asser-
tions and intuitively understand why our method
works. Theoretically, we motivate our approach
by showing that the weighted loss minimized by
simple models using our weighting upper bounds
the loss of the complex model.
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1. Introduction
Simple models such as decision trees or rule lists or shal-
low neural networks still find use in multiple settings where
a) (global) interpretability is needed, b) small data sizes
are available, or c) memory/computational constraints are
prevalent (Dhurandhar et al., 2018b). In such settings com-
pact or understandable models are often preferred over high
performing complex models, where the combination of a
human with an interpretable model can have better on-field
performance than simply using the best performing black
box model (Varshney et al., 2018). For example, a manu-
facturing engineer with an interpretable model may be able
to obtain precise knowledge of how an out-of-spec product
was produced and can potentially go back to fix the process
as opposed to having little-to-no knowledge of how the de-
cision was reached. Posthoc local explainability methods
(Ribeiro et al., 2016; Bach et al., 2015; Dhurandhar et al.,
2018a) can help delve into the local behavior of black box
models, however, besides the explanations being only local,
there is no guarantee that they are in fact true (Rudin, 2018).
There is also a growing concern of the carbon footprint left
behind in training complex deep models (Strubell et al.,
2019), which for some popular architectures is more than
that left behind by a car over its entire lifetime.

In this paper, we propose a method, SRatio, which reweights
the training set to improve simple models given access to a
highly accurate complex model such as a deep neural net-
work, boosted trees, or some other predictive model. Given
the applications we are interested in, such as interpretability
or deployment of models in resource limited settings, we
assume the complexity of the simple models to be prede-
termined or fixed (viz. decision tree of height ≤ 5). We
cannot grow arbitrary size ensembles such as in boosting or
bagging (Freund & Schapire, 1997). Our method applies po-
tentially to any complex-simple model combination which is
not the case for some state-of-the-art methods in this space
such as Knowledge Distillation (Geoffrey Hinton, 2015) or
Profweight (Dhurandhar et al., 2018b), where the complex
model is assumed to be a deep neural network. In addition,
we generalize and formalize the concept of probes presented
in (Dhurandhar et al., 2018b) and provide examples of what
they would correspond to for classifiers other than neural
networks. Our method also uses the a priori low performing
simple model’s confidences to enhance its performance. We
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believe this to be conceptually novel compared to existing
methods which seem to only leverage the complex model
(viz. its predictions/confidences). The benefit is seen in
experiments where we outperform other competitors in a
majority of the cases and are tied with one or more methods
for best performance in the remaining cases. In fact, in a
couple of cases we even approach the complex model’s per-
formance, i.e. a single tree is made to be as accurate as 100
boosted trees. Moreover, we motivate our approach by con-
trasting it with covariate shift and show that our weighting
scheme where we now minimize the weighted loss of the
simple model is equivalent to minimizing an upper bound
on the loss of the complex model.

2. Related Work
Knowledge Distillation (Geoffrey Hinton, 2015; Tan et al.,
2017; Lopez-Paz et al., 2016) is one of the most popular ap-
proaches for building "simpler" neural networks. It typically
involves minimizing the cross-entropy loss of a simpler net-
work based on calibrated confidences (Guo et al., 2017) of
a more complex network. The simpler networks are usually
not that simple in that they are typically of the same (or
similar) depth but thinned down (Romero et al., 2015). This
is generally insufficient to meet tight resource constraints
(Reagen et al., 2016). Moreover, the thinning down was
shown for convolutional neural networks but it is unclear
how one would do the same for modern architectures such as
ResNets. The weighting of training inputs approach on the
other hand can be more easily applied to different architec-
tures. It also has another advantage in that it can be readily
applied to models optimizing losses other than cross-entropy
(viz. hinge loss, squared loss) with some interpretation of
which inputs are more (or less) important. Some other strate-
gies to improve simple models (Buciluǎ et al., 2006; Ba &
Caurana, 2013; Bastani et al., 2017) are also conceptually
similar to Distillation, where the actual outputs are replaced
by predictions from the complex model.

In (Dehghani et al., 2017), authors use soft targets and their
uncertainty estimates to inform a student model on a larger
dataset with more noisy labels. Uncertainty estimates are ob-
tained from Gaussian Process Regression done on a dataset
that has less noisy labels. In (Furlanello et al., 2018), authors
train a student neural network that is identically parameter-
ized to the original one by fitting to soft scores rescaled by
temperature. In our problem, the complexity of the student
is very different from that of the teacher and we do compare
with distillation-like schemes. (Frosst & Hinton, 2017) de-
fine a new class of decision trees called soft decision trees
to enable it to fit soft targets (classic distillation) of a neural
network. Our methods use existing training algorithms for
well-known simple models. (Ren et al., 2018) advocate
reweighting samples as a way to make deep learning robust

by tuning the weights on a validation set through gradient
descent. Our problem is about using knowledge from a pre-
trained complex model to improve a simple model through
weighting samples.

The most relevant work to our current endeavor is
ProfWeight (Dhurandhar et al., 2018b), where they too
weight the training inputs. The weights are determined
based on the output confidences of linear classifiers attached
to intermediate representations (called probes) of a deep
neural network. Their method however, requires the com-
plex model to be a neural network and thus does not apply
to settings where we have a different complex model. More-
over, their method, like Distillation, takes into account only
the complex model’s assessment of an example’s difficulty.

Curriculum learning (CL) (Bengio et al., 2009) and boosting
(Freund & Schapire, 1997) are two other approaches which
rely on weighting samples, however, their motivation and
setup are significantly different. In both CL and boosting
the complexity of the improved learner can increase as they
do not have to respect constraints such as interpretability
(Dhurandhar et al., 2017; Montavon et al., 2017) or limited
memory/power (Reagen et al., 2016; Chen et al., 2016). In
CL, typically, there is no automatic gradation of example
difficulty during training. In boosting, the examples are
graded with respect to a previous weak learner and not an in-
dependent accurate complex model. Also, as we later show,
our method does not necessarily up-weight hard examples
but rather uses a measure that takes into account hardness
as assessed by both the complex and simple models.

3. Methodology
In this section, we first provide theoretical and intuitive jus-
tification for our approach. This is followed by a description
of our method for improving simple models using both the
complex and simple model’s predictions. The key novelty
lies in the use of the simple model’s prediction, which also
makes the theory non-trivial yet practical. Rather than use
the complex model’s prediction, we generalize a concept
from (Dhurandhar et al., 2018b) where they attached probe
functions to each layer of a neural network, obtained pre-
dictions using only the first k layers (k being varied up to
the total number of layers), and used the mean of the probe
predictions rather than the output of only the last layer. They
empirically showed the extra information from previous lay-
ers to improve upon only using the final layer’s output. Our
generalization, which we call graded classifiers and formally
define below, extracts progressive information from other
models (beyond neural networks). The graded classifiers
provide better performance than using only the output of
complex model, as illustrated by our various experiments in
the subsequent section.
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3.1. Theoretical Motivation

Our approach in section 3.3 can be motivated by contrast-
ing it with the covariate shift (Agarwal et al., 2011) set-
ting. If X × Y is the input-output space and p(x, y) and
q(x, y) are the source and target distributions in the covari-
ate shift setting, then it is assumed that p(y|x) = q(y|x) but
p(x) 6= q(x). One of the standard solutions for such settings
is importance sampling where the source data is sampled
proportional to q(x)

p(x) in order to mimic as closely as possible
the target distribution. In our case, the dataset is the same but
the classifiers (i.e. complex and simple) are different. We
can think of this as a setting where p(x) = q(x) as both the
models learn from the same data, however, p(y|x) 6= q(y|x)
where p(y|x) and q(y|x) correspond to the outputs of com-
plex and simple classifiers, respectively. Given that we want
the simple model to approach the complex models perfor-
mance, a natural analog to the importance weights used in
covariate shift is to weight samples by p(y|x)

q(y|x) which is the
essence of our method as described below in section 3.3.

Now, let us formally show that the expected cross-entropy
loss of a model is no greater than the reweighted version
with an additional positive slack term. This implies that
training the simple model with this reweighting is a valid
and sound procedure of the loss we want to optimize.

Lemma 3.1. Let pθ(y|x) be the softmax scores on a specific
model θ from simple model space Θ. Let θ∗ ∈ Θ be the set of
simple model parameters that is obtained from a given learn-
ing algorithm for the simple model on a training dataset.
Let pc(y|x) be a pre-trained complex classifier whose loss
is smaller than θ∗ on the training distribution. Let β ≥ 1 be
a scalar clip level for the ratio pc(y|x)/pθ∗(y|x). Then we
have:
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(a) The inequality log(wx) ≤ w log(x) + log(β) holds for
all β ≥ w ≥ 1, x > 1 where β ≥ 1 is any arbitrary clip
level.

Remark 1: We observe that re-weighing every sample by
max(1,min( pc(y|x)

pθ∗ (y|x)
, β)) and re-optimizing using the sim-

ple model training algorithm is a sound way to optimize
the cross-entropy loss of the simple model on the training
data set. The reason we believe that optimizing the upper
bound could be better is because many simple models such
as decision trees are trained using a simple greedy approach.
Therefore, reweighting samples based on an accurate com-
plex model could induce the appropriate bias leading to
better solutions. Moreover, in equation 2, the second in-
equality is the main place where there is slack between the
upper bound and the quantity we are interested in bounding.
This inequality exhibits a smaller slack if w = pc(y|x)

pθ∗ (y|x)
is not much smaller than 1 with high probability. This is
typical when pc comes from a more complex model that is
more accurate than that of θ∗.

Remark 2: The upper bound used for the last inequality in
the proof leads to a quantification of the bias introduced by
weighting for a particular dataset. Note that in practice, we
determine the optimal β via cross-validation.

3.2. Intuitive Justification

Intuitively, assuming w ≥ 1 implies that the complex model
finds an input easier (i.e. higher score or confidence) to
classify in the correct class than does the simple model.
Although in practice this may not always be the case, it is
not unreasonable to believe that this would occur for most
inputs, especially if the complex model is highly accurate.

The motivation for our approach conceptually does not con-
tradict (Dhurandhar et al., 2018b), where hard samples for
a complex model are weighted low. These would still be
potentially weighted low as the numerator would be small.
However, the main difference would occur in the weight-
ing of the easy examples for the complex model, which
rather than being uniformly weighted high, would now be
weighted based on the assessment of the simple model. This,
we believe, is important information as stressing inputs that
are already extremely easy for the simple model to classify
will possibly not lead to the best generalization. It is proba-
bly more important to stress inputs that are somewhat hard
for the simple model but easier for the complex model, as
that is likely to be the critical point of information transfer.
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Algorithm 1 Our proposed method SRatio.
Input: n (graded) classifiers ζ1, ..., ζn, learning algo-
rithm for simple model LS , dataset DS of cardinality
N , performance gap parameter γ and maximum allowed
ratio parameter β.

1) Train simple model on DS , S ← LS(DS ,~1N ) and
compute its (average) prediction error εS .{Obtain initial
simple model where each input is given a unit weight.}

2) Compute (average) prediction errors ε1, ..., εn for the
n graded classifiers and store the ones that are at least
γ more accurate than the simple model i.e. I ← {i ∈
{1, ..., n} | εS − εi ≥ γ}

3) Compute weights for all inputs x as follows: w(x) =∑
i∈I ζi(x)

mS(x) , where m is the cardinality of set I and S(x)
is the prediction probability/score for the true class of the
simple model.

4) Set w(x)← 0, if w(x) > β. {Clip the importance of
extremely hard examples for the simple model.}

5) Retrain the simple model on the dataset DS with the
corresponding learned weights w, Sw ← LS(DS ,w)

6) Return Sw

Even though easier inputs for the complex model are likely
to get higher weights, ranking these based on the simple
model’s assessment is important and not captured in previ-
ous approaches. Hence, although our idea may appear to be
simple, we believe it is a significant jump conceptually in
that it also takes into account the simple model’s behavior
to improve itself.

Our method described in the next section is a generalization
of this idea and the motivation presented in the previous
section. If the confidences of the complex model are rep-
resentative of difficulty then we could leverage them alone.
However, many times as seen in previous work (Dhurandhar
et al., 2018b), they may not be representative and hence
using confidences of lower layers or simpler forms of the
complex classifier can be very helpful.

3.3. Method

We now present our approach SRatio in algorithm 1, which
uses the ideas presented in the previous sections and gen-
eralizes the method in (Dhurandhar et al., 2018b) to be
applicable to complex classifiers other than neural networks.

In previous works (Akshayvarun Subramanya, 2017; Dhu-
randhar et al., 2018b), it was seen that sometimes highly

accurate models such as deep neural networks may not
be good density estimators and hence may not provide an
accurate quantification of the relative difficulty of an in-
put. To obtain a better quantification, the idea of attaching
probes (viz. linear classifiers) to intermediate layers of a
deep neural network and then averaging the confidences
was proposed. This, as seen in the previous work, led to sig-
nificantly better results over the state-of-the-art. Similarly,
we generalize our method where rather than taking just the
output confidences of the complex model as the numerator,
we take an average of the confidences over a gradation of
outputs produced by taking appropriate simplifications of
the complex model. We formalize this notion of graded
outputs as follows:

Definition (δ-graded) Let X × Y denote the input-output
space and p(x, y) the joint distribution over this space. Let
ζ1, ζ2, ..., ζn denote classifiers that output the prediction
probabilities for a given input x ∈ X for the most probable
(or true) class y ∈ Y determined by p(y|x). We then say
that classifiers ζ1, ζ2, ..., ζn are δ-graded for some δ ∈ (0, 1]
and a (measurable) set Z ⊆ X if ∀x ∈ Z, ζ1(x) ≤ ζ2(x) ≤
· · · ≤ ζn(x), where

∫
x∈Z p(x) ≥ δ.

Loosely speaking, the above definition says that a sequence
of classifiers is δ-graded if a classifier in the sequence is at
least as accurate as the ones preceding it for inputs whose
probability measure is at least δ. Thus, a sequence would
be 1-graded if the above inequalities were true for the entire
input space (i.e. Z = X). Below are some examples of how
one could produce δ-graded classifiers for different models
in practice.

• Deep Neural Networks: The notion of attaching probes,
which are essentially linear classifiers (viz. σ(Wx +
b)) trained on intermediate layers of a deep neural
network (Dhurandhar et al., 2018b; Alain & Bengio,
2016) could be seen as a way of creating δ-graded
classifiers, where lower layer probes are likely to be
less accurate than those above them for most of the
samples. Thus the idea of probes as simplifications
of the complex model, as used in previous works, are
captured by our definition.

• Boosted Trees: One natural way here could be to con-
sider the ordering produced by boosting algorithms
that grow the tree ensemble and use all trees up to a
certain point. For example, if we have an ensemble
of 10 trees, then ζ1 could be the first tree, ζ2 could
be the first two trees and so on where ζ10 is the entire
ensemble.

• Random Forests: Here one could order trees based on
performance and then do a similar grouping as above
where ζ1 could be the least accurate tree, then ζ2 could
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be the ensemble of ζ1 and the second most inaccurate
tree and so on. Of course, for this and boosted trees
one could take bigger steps and add more trees to pro-
duce the next ζ so that there is a measurable jump in
performance from one graded classifier to the next.

• Other Models: For non-ensemble models such as gen-
eralized linear models one too could form graded clas-
sifiers by taking different order Taylor approximations
of the functions, or by setting the least important co-
efficients successively to zero by doing function de-
compositions based on binary, ternary and higher order
interactions (Molnar et al., 2019), or using feature se-
lection and starting with a model containing the most
important feature(s).

Given this, we see in algorithm 1 that we take as input
graded classifiers and the learning algorithm for the simple
model. Trivially, the graded classifiers can just be the entire
complex classifier where we only consider its output con-
fidences. We now take a ratio of the average confidence of
the graded classifiers that are at least more accurate than the
simple model by γ > 0 and the simple model’s confidence.
If this ratio is too large (i.e. > β) we set the weight to zero
and otherwise the ratio is the weight for that input. Note
that setting large weights to zero reduces the variance of the
simple model because it prevents dependence on a select
few examples. Moreover, large weights mostly indicate that
the input is extremely hard for the simple model to classify
correctly and so expending effort on it and ignoring other
examples will most likely be detrimental to performance.
Best values for both parameters can be found empirically
using standard validation procedures. The learned weights
w(x) can be used to reweight the simple models correspond-
ing per (training) sample loss λ(x), following which we can
retrain the simple model.

Table 1. Dataset characteristics, where N denotes dataset size and
d is the dimensionality.

Dataset N d # of Classes
Ionosphere 351 34 2

Ovarian Cancer 216 4000 2
Heart Disease 303 13 2

Waveform 5000 40 3
Human Activity 10299 561 6

Musk 6598 166 2
CIFAR-10 60000 32× 32 10

4. Experiments
In this section, we empirically validate our approach as com-
pared with other state-of-the-art methods used to improve
simple models. We experiment on 6 real datasets from UCI

repository (Dheeru & Karra Taniskidou, 2017): Ionosphere,
Ovarian Cancer (OC), Heart Disease (HD), Waveform, Hu-
man Activity Recognition (HAR), Musk as well as CIFAR-
10 (Krizhevsky, 2009). Dataset characteristics are given in
Table 1.

4.1. UCI Datasets Setup

We experiment with two complex models, namely, boosted
trees and random forests, each of size 100. For each of the
complex models we see how the different methods perform
in enhancing two simple models: a single CART decision
tree and a linear SVM classifier. Since ProfWeight is not
directly applicable in this setting, we compare with its spe-
cial case ConfWeight which weighs examples based on
the confidence score of the complex model. We also com-
pare with two models that serves as a proxy to Distillation,
namely Distill-proxy 1 and Distill-proxy 2
since distillation is mainly designed for cross-entropy loss
with soft targets. For Distill-proxy 1, we use the
hard targets predicted by the complex models (boosted trees
or random forests) as labels for the simple models. For
Distill-proxy-2, we use regression versions of trees
and SVM for the simple models to fit the soft probabilities
of the complex models. For multiclass problems, we train a
separate regressor for fitting a soft score for each class and
choose the class with the largest soft score. This version
performed worse and numbers are relegated to the supple-
ment. We only report numbers for Distill-proxy 1 in
the main paper. Datasets are randomly split into 70% train
and 30% test. Results for all methods are averaged over 10
random splits and reported in Table 2 with 95% confidence
intervals.

For our method, graded classifiers based on the complex
models are formed as described before in steps of 10 trees.
We have 10 graded classifiers (10 × 10 = 100 trees) for
both boosted trees and random forests. The trees in the
random forest are ordered based on increasing performance.
Optimal values for γ and β are found using 10-fold cross-
validation.

4.2. CIFAR-10 Setup

The setup we follow here is very similar to previous works
(Dhurandhar et al., 2018b). The complex model is an 18 unit
ResNet with 15 residual (Res) blocks/units. We consider a
simple model that consists of 3 Res units, 5 Res units and 7
Res units. Each unit consists of two 3× 3 convolutional lay-
ers with either 64, 128, or 256 filters (the exact architecture
is given in the supplement). A 3×3 convolutional layer with
16 filters serves an input to the first ResNet block, while an
average pooling layer followed by a fully connected layer
with 10 logits takes as input the output of the final ResNet
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Table 2. Below we see the averaged % errors with 95% confidence intervals for the different methods on six real datasets. Boosted Trees
and Random Forest (100 trees) are the complex models (CM), while a single decision tree and linear SVM are the simple models (SM).
Best simple model results are indicated in bold. ∗ indicates the simple model has approached the complex models performance.

Complex CM Simple SM Distill-proxy 1 ConfWeight SRatio
Dataset Model Error Model Error Error (SM) Error (SM) Error (SM)

Ionosphere

Tree 10.95 10.95 11.42 8.57∗

Boosted 8.10 ±0.4 ±0.4 ±0.8 ±0.5
Trees ±0.4 SVM 12.38 11.90 11.90 10.47

±0.6 ±0.6 ±0.6 ±0.5
Tree 10.95 10.95 11.42 10.42

Random 6.19 ±0.4 ±0.4 ±0.4 ±0.1
Forest ±0.4 SVM 12.38 12.38 12.38 11.42

±0.6 ±0.6 ±0.6 ±0.3

Ovarian Cancer

Tree 15.62 15.62 15.62 15.62
Boosted 4.68 ±0.8 ±0.8 ±1.0 ±0.5

Trees ±0.4 SVM 1.56 1.56 1.56 1.56
±0.4 ±0.4 ±0.4 ±0.4

Tree 15.62 15.62 14.06 14.04
Random 6.25 ±0.8 ±0.8 ±0.1 ±0.1
Forest ±0.8 SVM 1.56 1.56 1.56 1.56

±0.4 ±0.4 ±0.4 ±0.4

Heart Disease

Tree 23.88 22.77 23.33 22.77
Boosted 15.55 ±0.7 ±0.1 ±0.3 ±0.2

Trees ±0.6 SVM 17.22 16.67 17.22 16.77
±0.2 ±0.3 ±0.2 ±0.2

Tree 23.88 23.88 25.55 22.77
Random 15.88 ±0.7 ±0.7 ±0.5 ±0.3
Forest ±0.6 SVM 17.22 17.22 16.67 16.67

±0.2 ±0.2 ±0.3 ±0.2

Waveform

Tree 25.43 25.06 25.10 25.06
Boosted 12.96 ±0.2 ±0.1 ±0.1 ±0.1

Trees ±0.1 SVM 14.70 15.33 14.70 13.72
±0.2 ±0.0 ±0.2 ±0.2

Tree 25.43 25.43 25.43 25.06
Random 10.90 ±0.2 ±0.2 ±0.2 ±0.1
Forest ±0.1 SVM 14.70 14.33 14.30 12.72

±0.2 ±0.0 ±0.2 ±0.5
Tree 7.93 7.93 7.86 7.15

Boosted 6.32 ±0.2 ±0.1 ±0.2 ±0.1
Trees ±0.0 SVM 14.56 15.85 13.92 13.92

Human Activity ±0.1 ±0.1 ±0.1 ±0.2
Recognition Tree 7.93 7.23 7.21 6.67

Random 2.34 ±0.2 ±0.1 ±0.1 ±0.0
Forest ±0.0 SVM 14.56 13.92 14.24 13.92

±0.1 ±0.1 ±0.1 ±0.1

Musk

Tree 4.49 6.11 4.45 4.06∗

Boosted 4.06 ±0.1 ±0.1 ±0.1 ±0.1
Trees ±0.1 SVM 6.11 6.29 6.41 5.48

±0.1 ±0.1 ±0.1 ±0.1
Tree 4.49 4.49 4.47 3.89

Random 2.45 ±0.1 ±0.1 ±0.1 ±0.1
Forest ±0.1 SVM 6.11 6.16 5.96 5.53

±0.1 ±0.1 ±0.1 ±0.1
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Figure 1. Above (left) we see the % of training set points assigned weight 0 by SRatio at optimal β values for each complex (BT, RF) and
simple model (Tree, SVM) combination on the 6 UCI datasets. We see that < 1% of the training set has weights 0 in all cases. Above
(right) we analyze why intuitively our reweighting seems to work by considering the % of nearest neighbors that have zero weight, high
weight, and in-between weight. Results are averaged over all complex-simple model combinations. Both plots represent averaged values
over 10 random train/test splits with 95% confidence intervals.

Table 3. Below we see the % of training points whose weights based on SRatio have changed by > 1% compared to just considering
the complex model, i.e., ignoring simple model confidences in Step 3 of algorithm 1. This depicts the impact of considering the simple
models confidences in the weighting, which is our main conceptual contribution. Results are averaged over both complex models.

Ionosphere OC HD Waveform HAR Musk
Tree SVM Tree SVM Tree SVM Tree SVM Tree SVM Tree SVM
37.40 90.65 8.55 6.57 92.02 99.06 44.9 99.7 5.9 29.45 7.5 13.93

(± 2.4) (± 1.1) (± 0.2) (± 1) (± 1.8) (± 0.1) (± 2.4) (± 0.1) (± 0.9) (± 1.3) (± 0.5) (± 0.7)

block for each of the models. 1

We form 18 graded classifiers by training probes which
are linear classifiers with softmax activations attached to
flattened intermediate representations corresponding to the
18 units of ResNet (15 Res units + 3 others). As done in
prior studies, we split the 50000 training samples from the
CIFAR-10 dataset into two training sets of 30000 and 20000
samples, which are used to train the complex and simple
models, respectively. 500 samples from the CIFAR-10 test
set are used for validation and hyperparameter tuning (de-
tails in supplement). The remaining 9500 are used to report
accuracies of all the models. Distillation (Geoffrey Hinton,
2015) employs cross-entropy loss with soft targets to train
the simple model. The soft targets are the softmax outputs
of the complex model’s last layer rescaled by temperature
t = 0.5 which was selected based on cross-validation. For
ProfWeight, we report results for the area under the curve
(AUC) version as it had the best performance in a majority
of the cases in the prior study. Details of β and γ values that
we experimented with to obtain the results in Table 4 are in
the supplement.

1Tensorflow 1.5.0 was used for CIFAR-10 experiments

4.3. Observations

In the experiments on the 6 UCI datasets depicted in Table
2, we observe that we are consistently the best performer,
either tying or superseding other competitors. Given the 24
experiments based on dataset, complex model, and simple
model combinations (6 × 2 × 2 = 24), we are the out-
right best performer in 14 of those cases, while being tied
with one or more other methods for best performance in the
remaining 10 cases. In fact, in 2 cases where we are out-
right best performers, dataset=Ionosphere, complex model
=boosted trees, simple model = Tree and dataset=Musk,
complex model =boosted trees, simple model = Tree, our
method enhances the simple model’s performance to match
(statistically) that of the complex model. We believe this
improvement to be significant. In fact, on the Musk dataset,
we observe that the simple tree model enhanced using our
method, where the complex model is a random forest, su-
persedes the performance of the other complex model. On
the Ovarian Cancer dataset, linear SVM actually seems to
perform best, even better than the complex models. A rea-
son for this may be that the dataset is high dimensional with
few examples. Due to this, it also seems difficult for any of
the methods to boost the simple model’s performance.

We now offer an intuition as to why our weighting works.
First, we see in figure 1(left) that our assertion of only a very
small fraction of the training set being assigned 0 weights
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Table 4. Below we observe the averaged accuracies (%) of simple models SM-3 (3 Res units), SM-5 (5 Res units) and SM-7 (7 Res units)
trained with various weighting methods and distillation. The complex model achieved 84.5% accuracy. Statistically significant best
results are indicated in bold.

SM-3 SM-5 SM-7
Standard 73.15 (± 0.7) 75.78 (±0.5) 78.76 (±0.35)

ConfWeight 76.27 (±0.48) 78.54 (±0.36) 81.46 (±0.50)
Distillation 65.84 (±0.60) 70.09 (±0.19) 73.4 (±0.64)
ProfWeight 76.56 (±0.51) 79.25 (±0.36) 81.34 (±0.49)

SRatio 77.23 (±0.14) 80.14 (±0.22) 81.89 (±0.28)

based on parameter β, which upper bounds the weights, is
true (< 1% is assigned weight 0). For Ovarian Cancer (OC),
SVM was better than the complex models and hence no
points had weight 0.

In figure 1(right), we see the intuitive justification for the
learned weights. Given 10 nearest neighbors (NN) of a data
point, let νs and νd denote the number of those NNs that
belong to its class (i.e. same class), and most frequent differ-
ent class respectively. Then the Y-axis depicts νs

νs+νd
× 100.

This metric gives a feel for how difficult it is likely to be to
correctly classify a point. We thus see that most of the 10
NNs for the 0 weight points lie in a different class and so
likely are almost impossible for a simple model to classify
correctly. The highest weighted points (i.e. top 5 percentile)
have nearest neighbors from the same class almost 50% of
the time and are close to the most frequent (different) class.
This showcases why the 0 weight points are so difficult for
the simple models to classify, while the highest weighted
points seem to outline an important decision boundary. With
some effort a simple model should be able to classify them
correctly and so focusing on them is important. The remain-
ing points (on average) seem to be relatively easy for both
complex and simple models.

In Table 3, we see the percentage of weights that change
(> 1%) by considering the simple model in addition to the
complex model, as opposed to just considering the complex
model. A reasonable percentage of the weights are impacted
by considering the simple models predictions, thus indicat-
ing that our method can have significant effect on a learning
algorithm. An interesting side fact is that there seems to
be some correlation, albeit not perfect, between the sim-
ple models initial performance and percentage of weights
that change. For instance, HD and Waveform seem to be
the hardest to predict and a high percentage of weights are
changed to improve the simple models. While Musk seems
to be one of the easier ones to predict and a small percentage
of weights are changed.

On the CIFAR-10 dataset, we see that our method outper-
forms other state-of-the-art methods where the simple model
has 3 Res units and 5 Res units. For 7 Res units, we tie with
ProfWeight and ConfWeight. Given the motivation of re-

source limited settings where memory constraints can be
stringent (Reagen et al., 2016; Chen et al., 2016), SM-3
and SM-5 are anyway the more reasonable options. In gen-
eral, we see from these experiments that the simple model’s
predictions can be highly informative in improving its own
performance.

5. Discussion
Our approach and results outline an interesting strategy,
where even in cases that one might want a low complexity
simple model, it might be beneficial to build an accurate
complex model first and use it to enhance the desired simple
model. Such is exactly the situation for the manufactur-
ing engineer described in the introduction that has experi-
ence with simple interpretable models that provide him with
knowledge that a complex model with better performance
cannot offer.

Although our method may appear to be simplistic, we be-
lieve it to be a conceptual jump. Our method takes into
account the difficulty of a sample not just based on the com-
plex model, but also the simple model which a priori is not
obvious and hence possibly ignored by previous methods
that may or may not be weighting-based. Moreover, we
have empirically shown that our method either outperforms
or matches the best solutions across a wide array of datasets
for different complex model (viz. boosted trees, random
forests and ResNets) and simple model (viz. single decision
trees, linear SVM and small ResNets) combinations. In fact,
in a couple of cases, a single tree approached the perfor-
mance of a 100 boosted trees using our method. In addition,
we also formalized and generalized the idea behind probes
presented in previous work (Dhurandhar et al., 2018b) to
classifiers beyond deep neural networks and gave exam-
ples of practical instantiations. In the future, we would like
to uncover more such methods and study their theoretical
underpinnings.
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