
Supplementary material for paper:
Margin-aware Adversarial Domain Adaptation with Optimal Transport

In this supplementary material, we provide proofs for the
theoretical claims of the main paper, and we detail some
other points.

Problem setup and notations
We recall the problem setup of our study with the notations
used throughout the paper. We consider a binary classifica-
tion setting, in which source and target data are respectively
drawn from S and T , the joint distributions over the prod-
uct space of instances and labels X × Y , where X ⊆ Rd
and Y = {−1, 1}. We denote their corresponding marginal
distributions as DS and DT and use bold upper-case letters
for matrices (e.g., D) and bold lower-case letters for vectors
(e.g., x). Although both domains are assumed to be labeled,
only the labels of the source instances are observable dur-
ing the learning stage. This settings is often referred to as
unsupervised domain adaptation.

Furthermore, letH andH′ denote two compact classes of
hypotheses acting on X and taking values in [−1, 1]. For
further developments, we define several quantities to assess
classifiers’ performances on different domains. Let lρ,β be
the loss function defined by

lρ,β(t) :=

{
1− (t−ρ)

β , if ρ ≤ t ≤ β + ρ

[t < ρ], otherwise

where 1 > ρ, β > 0, and [·] denotes the Iverson bracket
for indicator functions. From its definition, we note that
lρ,0(t) = [t < ρ] and that it verifies the following inequality
for all ρ, β > 0 and t ∈ R

lρ,0(t)=[t < ρ] < lρ,β(t) < lρ+β,0(t)=[t < ρ+ β] (1)

illustrated in Figure 1.

For any domain P with marginal feature distribution DP
and any hypotheses h, f , we define their disagreement asso-
ciated to the loss lρ,β as

ερ,βP (h, f) := E
x∼DP

[
lρ,β(f(x)h(x))

]
, (2)

This quantity can be further generalized to non deterministic
hypotheses that define the labeling of domain P , in which

Figure 1. Loss function lρ,β with its characteristic points and an
illustration of the property from Equation (1).

case the expectation is taken over P:

ερ,βP (h) := P
x,y∼P

[
lρ,β(yh(x))

]
. (3)

This definition stands for the classification risk on P: for
β = 0, it is the ρ−margin violation rate measuring the
probability of the event {yh(x) < ρ}, while for ρ = β = 0,
it is the 0-1 or misclassification rate.

Section 2
Details on the bound of (Zhang et al., 2019) in the bi-
nary case: In their work, (Zhang et al., 2019) use vector-
valued scoring functions that take their values in R2 in the
case of binary classification. To this end, let us denote by
h = (h1, h2) and h′ = (h′1, h

′
2) the respective R2-valued

counterparts of our real valued h and h′ scoring functions,
and we define the labels in {0,1} as y analogously. Then,
according to the notations used by the authors, we have:

ρh(x, 1) =
1

2
(h1(x)− h2(x)),

ρh(x, 0) =
1

2
(h2(x)− h1(x)).

By linking their notations and ours via the relation h =
1
2 (h1 − h2), the last two equations can be written:

ρh(x, y) = yh(x).

In particular, when we consider the class associated to a
scoring function, i.e., y

h
:= [h1 > h2] corresponding in our
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case to yh = sgn (h), we have:

ρh′(x, y
h
) = sgn (h(x))h′(x).

Hence, we have for all β > 0,

l0,β ◦ ρh′(x, y
h
) = l0,β(sgn (h(x))h′(x)).

where l0,β is denoted Φβ in (Zhang et al., 2019).

Remark For any κ > 0, the parametrization

h = κ(h1 − h2)

also works as long as |h| ≤ 1. In this case, we have:

l0,β ◦ ρh′(x, y
h
) = l0,β

(
1

κ
sgn (h(x))h′(x)

)
= l0,κβ(sgn (h(x))h′(x))

and κβ spans all of the positive numbers when β > 0.

Section 3
Bound with non convex divergence between
distributions

Theorem 1. Assume that for any h′ ∈ H′, we have
P

x∼DS
[h′(x) = 0] = P

x∼DT
[h′(x) = 0] = 0. Let ρ, β, α >

0 be such that ρ + β < α < 1. Then, for any h ∈ H, the
following bound holds:

ερ,0T (h) ≤ ε
ρ+β
α ,0

S (h) + dρ,βh,H′(DS ,DT ) + λα

where

dρ,βh,H′(DS ,DT ) := sup
h′∈H′

∣∣∣ερ,βS (h, h′)− ερ,βT (h, h′)
∣∣∣

and

λα := inf
f∈H′

ε0,0T (f) + ε0,0S (f) + P
x∼DS

[|f | < α] .

Proof. Let h ∈ H, f ∈ H′ and 0 ≤ θ < 1.

P
x,y∼T

[yh < θρ] (4)

= P
x,y∼T

[
yh.f2 < θρ.f2

]
(5)

≤ P
x∼DT

[hf < ρ|f |] + P
x,y∼T

[yf < θ|f |] (6)

≤ P
x∼DT

[hf < ρ] + P
x,y∼T

[y sgn (f) < θ]

= P
x∼DT

[hf < ρ] + P
x,y∼T

[y sgn (f) < 0] (7)

= ερ,0T (h, f) + ε0,0T (f). (8)

In the previous developments, we first use the fact that
yh(x)ff2(x) < θρf2(x) implies that either h(x)f(x) <

ρ|f |(x) or yf(x) < θ|f |(x) to obtain (6). The next in-
equality comes from |f | ≤ 1 as f ∈ H′. Then, we use
the fact that f

|f | = sgn (f). Finally, as 0 < θ < 1 and
y sgn (f) ∈ {−1, 1}, the inequality y sgn (f) < θ is equiv-
alent to y sgn (f) = −1 < 0 and to yf(x) < 0, implying
(7) and (8).
Taking the limit as θ → 1 in the previous inequality, we get:

ερ,0T (h) ≤ ερ,0T (h, f) + ε0,0T (f). (9)

Now, let us concentrate on bounding ερ,0T (h, f).

ερ,0T (h, f)

= E
x∼DT

[[hf < ρ]]

≤ E
x∼DT

[
lρ,β(hf)

]
= E

x∼DT

[
lρ,β(hf)

]
− E

x∼DS

[
lρ,β(hf)

]
+ E

x∼DS

[
lρ,β(hf)

]
≤ sup
h′∈H′

∣∣∣ερ,βDT
(h, h′)− ερ,βDS

(h, h′)
∣∣∣+ P

x∼DS
[hf < ρ+ β] ,

(10)

where we used the lower bound on the ramp function lρ,β

from Equation (1). Finally, from the fact that f ∈ H′, we
take the supremum overH′ and we use the upper bound on
lρ,β , again from Equation (1), to obtain (10).
What is left to bound is P

x∼DS
[hf < ρ+ β]. For any 0 <

θ < 1, we have:

P
x∼DS

[hf < ρ+ β]

= P
x,y∼S

[
yh.yf <

ρ+ β

θ|f |
θ|f |

]
≤ P

x,y∼S

[
yh <

ρ+ β

θ|f |

]
+ P

x,y∼S
[yf < θ|f |]

= P
x,y∼S

[
yh <

ρ+ β

θ|f |

]
+ P

x,y∼S
[y sgn (f) < θ]

= P
x,y∼S

[
yh <

ρ+ β

θ|f |

]
+ P

x,y∼S
[y sgn (f) < 0] (11)

θ→1−−−→ P
x,y∼S

[
yh <

ρ+ β

|f |

]
+ ε0,0S (f)

≤ P
x,y∼S

[
yh <

ρ+ β

α

]
+ P

x∼DS
[|f | < α] + ε0,0S (f)

(12)

where α > 0 is arbitrarily chosen. To obtain (11), we ap-
plied the same technique as the one used to prove (9). Then,
taking the limit as θ → 1 is justified by the monotonous
convergence theorem. Finally, we use conditioning on the
event {|f(x)| ≥ α}, and the fact that the event {yh(x) <
ρ+β
|f |(x) ∧ |f |(x) ≥ α} implies event {yh(x) < ρ+β

α }, to
obtain (12).
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To sum up the different developments established up to now,
i.e., (9), (10) and (12), we have:

ερ,0T (h) ≤ ε0,0T (f) + ε0,0S (f) + P
x∼DS

[|f | < α]

+ dρ,βh,H(DS ,DT ) + ε
ρ+β
α ,0

S (h).

Given that previous inequality holds for any choice of f ∈
H′, minimizing it over this choice yields the result and
introduces the ideal joint error.

Corollary 1. If H = H′ is a class of binary hypotheses
taking values in {−1, 1}, the bound from Theorem 1 is
equivalent to the one in (Ben-David et al., 2010).

Proof. Let h ∈ H, h′ ∈ H′ and y ∈ {−1, 1}. For 0 <
ρ, β < 1 and 1 > α > ρ+ β, we have:

lρ,β(h(x)h′(x)) = [h(x)h(x′) < 0] (13)

[y.h(x) <
ρ+ β

α
] = l

ρ+β
α ,0(y.h(x)) = [y.h(x) < 0].

(14)

This holds because for any 1 > ρ, β > 0 verifying ρ+ β <
1, lρ,β and [. < 0] take the same values when restricted
to the set {−1, 1}. Consequently, all the margins in the
estimable part of our bound can be omitted, and it becomes
equal to ε0,0S (h) + d0,0

h,H′(DS ,DT ).
Omitting all of the margins in the estimable part of our
bound, we have:

ε0,0T (h) ≤ ε0,0S (h) + d0,0
h,H(DS ,DT ) + λα (15)

=ε0,0S (h) + sup
h′∈H

∣∣∣ε0,0S (h, h′)− ε0,0T (h, h′)
∣∣∣+ λα

(16)

≤ε0,0S (h) + sup
h,h′∈H

∣∣∣ε0,0DS
(h, h′)− ε0,0DT

(h, h′)
∣∣∣+ λα

=ε0,0S (h) + dH∆H(DS ,DT ) + λα (17)

where (15) is from Theorem 1 and (16) comes from proper-
ties (13) and (14). Then, taking the supremum over h ∈ H
and the definition of dH∆H yield the rest of the develop-
ments. Finally, for any f ∈ H, P

x∼DS
[|f(x) < α|] = 0

since |f(x)| = 1 for all x ∈ X as f is a binary hypothesis.
Hence,

λα = inf
f∈H

ε0,0T (f) + ε0,0S (f) + P
x∼DS

[|f | < α]

= inf
f∈H

ε0,0T (f) + ε0,0S (f) = λ

Combining this result with Equation (17) yields the final
result.

PROOF OF THE BOUND ON λα

When we analyzed the previous bound in the main paper,
we gave the following bound on λα.

λα ≤ min
f∈H′

εα,0S (f) + εα,0T (f).

We hereby provide its proof.

Proof. We have for f ∈ H′ and for α > 0:

ε0,0T (f) = P
x,y∼T

[y.f(x) < 0] ≤ P
x,y∼T

[y.f(x) < α]

(18)
Also

P
x,y∼S

[y.f(x) < α]

= P
x,y∼S

[y.f(x) < 0] + P
x,y∼S

[0 ≤ y.f(x) < α]

= P
x,y∼S

[y.f(x) < 0]

+ P
x,y∼S

[0 ≤ y.f(x) < α ∧ y = sgn (f(x))]

+ P
x,y∼S

[0 ≤ y.f(x) < α ∧ y = − sgn (f(x))]

≥ P
x,y∼S

[y.f(x) < 0]

+ P
x,y∼S

[0 ≤ y.f(x) < α ∧ y = sgn (f(x))]

= P
x,y∼S

[y.f(x) < 0] + P
x∼DS

[|f(x)| < α]

Summing the last inequality and inequality (18) yields for
any f ∈ H′:

ε0,0T (f) + ε0,0S (f) + P
x∼DS

[|f | < α] ≤ εα,0T (f) + εα,0S (f)

We take the infimum over f ∈ H′ on both sides of this
inequality to complete the proof.

A convex domain divergence based on optimal
transport

Before proceeding to the rest of the proofs, we recall some
notions related to the optimal transport theory. Let us in-
troduce two projection operators π1 : (x1,x2) 7→ x1 and
π2 : (x1,x2) 7→ x2 defined over X × X . The set Π of
transport plans between DS and DT is the set of probability
distributions D over X × X that verify the following two
properties:

π1#D = DS , π2#D = DT ,

where # denotes the pushforward measure.
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Proposition 1 (Convex bound for alignment term). For any
ρ, β > 0, we have

dρ,βh,H′(DS ,DT ) ≤ 1

β
inf
D∈Π

∆H′(h,D) (19)

where

∆H′(h,D) := sup
h′∈H′

E
xs,xt∼D

[|hh′(xs)− hh′(xt)|] .

Proof.

dρ,βh,H(DS ,DT )

= sup
h′∈H′

∣∣∣∣ Ex∼DT

[
lρ,β(hh′)

]
− E

x∼DS

[
lρ,β(hh′)

]∣∣∣∣
≤ sup
h′∈H′

sup
|ϕ|Lip≤

1
β

∣∣∣∣ Ex∼DT
[ϕ(hh′)]− E

x∼DS
[ϕ(hh′)]

∣∣∣∣ (20)

=
1

β
sup
h′∈H′

W1(hh′#DS , hh′#DT ) (21)

=
1

β
sup
h′∈H′

inf
D∈Π

E
xs,xt∼D

[|hh′(xs)− hh′(xt)|] (22)

≤ 1

β
inf
D∈Π

sup
h′∈H′

E
xs,xt∼D

[|hh′(xs)− hh′(xt)|] (23)

where we used the 1
β−Lipchtiz continuity of lρ,β to obtain

(20), in which the term sup|ϕ|Lip≤
1
β

denotes a supremum

over all 1
β−Lipschitz functions. Then using the dual form

of the Wasserstein distance W1 between 1-dimensional dis-
tributions hh′#DS and hh′#DT , we obtain (21). In the
next line (22), we express the Wasserstein distance in its
primal form. Finally, we use the inf-sup inequality to obtain
(23).

Proposition 2 (Optimal transport bound on the target risk).
With the assumptions and notations of Theorem 1 and Propo-
sition 1, we have for any h ∈ H:

ερ,0T (h) ≤ ε
ρ+β
α ,0

S (h) +
1

β
inf
D∈Π

∆H′(h,D) + λα (24)

Proof. Follows directly by combining results of Theorem 1
and Proposition 1.

Proposition 3 (Bounding by the Wasserstein distance). Let
c : X × X → R+ be a metric, and assume that all of the
hypotheses fromH andH′ verify theL−Lipschitz continuity
with respect to metric c for some L > 0. Then, the following
holds

sup
h∈H

inf
D∈Π

∆H′(h,D) ≤ 2LW1(DS ,DT )

where

W1(DS ,DT ) := inf
D∈Π

E
xs,xt∼D

[c(xs,xt)] (25)

is the Wasserstein distance associated to metric c.

Proof. For any xs,xt ∈ X ,

|hh′(xs)− hh′(xt)|
=|h(xs)(h

′(xs)− h′(xt)) + h′(xt)(h(xs)− h(xt))|
≤|h(xs)||h′(xs)− h′(xt)|+ |h′(xt)||h(xs)− h(xt)|

(26)

≤|h′(xs)− h′(xt)|+ |h(xs)− h(xt)| (27)
≤2L · c(xs,xt)

where we apply the triangle inequality to obtain (26) and we
use the fact that the hypotheses fromH andH′ have values
in [−1, 1] to obtain (27). Then we use the L−Lipschitz
property of h and h′. Taking the expectation with respect
to an arbitrary distribution D ∈ Π, then the supremum over
h′ ∈ H′ yields:

∆H′(h,D) ≤ 2LW1(DS ,DT )

Then taking the infimum over D ∈ Π followed by the
supremum over h ∈ H yields the result.

Section 4
We recall that we try to solve the following problem:

min
h∈H
D∈Π

E
x,y∼S

[(ρ′ − y.h(x))+] +
1

β
∆H′(h,D). (28)

Proposition 4. LetH be the space of linear classifier with
bounded `2 norm, andH′ be the space of linear classifiers
with bounded `1 norm. Let l denote the hinge loss, Dst :=
xsx

T
s − xtx

T
t and (|Dstw|)i := |(Dstw)i| for 1 ≤ i ≤ d,

where w ∈ Rd. Then, Problem (28) can be equivalently
expressed as the following convex program:

min
w∈Rn
D∈Π

E
x,y∼S

[
l(y.wTx)

]
+δ

∥∥∥∥ E
xs,xt∼D

[|Dstw|]
∥∥∥∥
∞

+ζ‖w‖22

(29)
where δ, ζ > 0 are two hyper-parameters related to the
bounds onH andH′.

Proof. Let ν > 0 and η > 0 be the respective radii of H
andH′, i.e:

H ' {w ∈ Rd; ‖w‖2 ≤ ν} (30)

H′ ' {v ∈ Rd; ‖v‖1 ≤ η} (31)

were ' denotes an equality up to an isomorphism of vector
spaces. Also, let {u1, ...,ud} be the canonical basis of Rd.
For h ∈ H, i.e., for w ∈ Rd with ‖w‖ ≤ ν, the alignment
term becomes:

∆H′(h,D)

= sup
h′∈H′

E
xs,xt∼D

[|hh′(xs)− hh′(xt)|]
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= sup
‖v‖1≤η

E
xs,xt∼D

[∣∣vTDstw
∣∣]

=η sup
1≤k≤d

E
xs,xt∼D

[∣∣uTkDstw
∣∣] (32)

=η sup
1≤k≤d

E
xs,xt∼D

[
uTk |Dstw|

]
(33)

=η sup
1≤k≤d

uTk E
xs,xt∼D

[|Dstw|]

=η

∥∥∥∥ E
xs,xt∼D

[|Dstw|]
∥∥∥∥
∞
,

where after replacing h and h′ by linear classifiers w and
v, we use the convexity of v 7→ E

xs,xt∼D

[∣∣vTDstw
∣∣] for a

fixed w, and the fact that the `1 unit ball is a polytope with
vertices {±ηuk; 1 ≤ k ≤ d} to obtain (32). Then, we use
the identity

∣∣uTk u
∣∣ = uTk |u|, ∀u ∈ Rd to obtain (33). The

last steps are deduced by the linearity of the expectation and
the definition of the `∞ norm.
Satisfying constraint ‖w‖2 ≤ ν is equivalent to adding
ζ‖w‖2, where ζ is a Lagrange multiplier who has a one-
to-one correspondance with ν. Finally, as 1

β multiplies
∆H′(h,D) in Problem (28), setting δ = η

β yields the result.

Empirical case and optimization problem

We recall that in the empirical case, one has access to fi-
nite data sets Sm = {((x1, y1), ...., (xm, ym)} ∼ Sm, and
Tn = {(x′1, y′1), ...., (x′n, y

′
n)} ∼ T n, where the labels of

Tn are not used for learning classifier w. We define Π̂, the
empirical counterpart of Π, as the set:

Π̂ = {Γ ∈ Rm×n+ ; Γ1n =
1

m
1m; ΓT1m =

1

n
1n} (34)

where 1p = (1, 1, ..., 1) ∈ Rp. Denoting Dij = xix
T
i −

x′jx
′
j
T ∈ Rd×d, the empirical cost function of Problem (29)

is:

1

m

∑
1≤i≤m

l(ys,i.w
Txs,i) + δ

∥∥∥∥∥∥∥∥
∑

1≤i≤m
1≤j≤n

γij |Dijw|

∥∥∥∥∥∥∥∥
∞

+ζ‖w‖22

(35)
is a function of w ∈ Rd and Γ ∈ Π̂ having elements γij .

For a fixed w ∈ Rd, we would like to find Γ ∈ Π̂ minimiz-
ing: ∥∥∥∥∥∥∥∥

∑
1≤i≤m
1≤j≤n

γij |Dijw|

∥∥∥∥∥∥∥∥
∞

(36)

However, we have:

min
Γ∈Π̂

∥∥∥∥∥∥
∑
ij

γij |Dijw|

∥∥∥∥∥∥
∞

= min
Γ∈Π̂

max
1≤k≤d

∑
ij

γiju
T
k |Dijw| (37)

= min
Γ∈Π̂

max
q∈∆d

∑
ij

γijq
T |Dijw| (38)

= max
q∈∆d

min
Γ∈Π̂

∑
ij

γijq
T |Dijw| (39)

=− min
q∈∆d

max
Γ∈Π̂

−∑
ij

γijq
T |Dijw|

 (40)

where uk are the vectors of the canonical basis of Rd. Due
to the positivity of coordinates of

∑
ij γiju

T
k |Dijw|, we ob-

tain (37). Then, since the function q 7→
∑
ij γijq

T |Dijw|
is linear, its maximum is achieved over the vertices of
the probability simplex, hence the equality between (37)
and (38). Furthermore, due to the linearity of both q 7→∑
ij γijq

T |Dijw| and Γ 7→
∑
ij γijq

T |Dijw|, and to the
convexity and compactness of ∆d and Π̂, Von-Neumann’s
minimax theorem allows us to permute the maximum and
the minimum to obtain (39). Finally, introducing minus sign
yields (40).

Smooth proxies used for optimization

We use the smooth proxies to provide smooth functions
for scipy’s L-BFGS optimizer. They all depend on a
parameter κ > 0. For all our experiments, we set κ = 0.1.

SMOOTH PROXY OF THE POSITIVE PART

We define the smooth proxy of the positive part function as:

posκ : t 7→ 1

2κ

(
t+

κ

2

)2

if − κ

2
≤ t ≤ κ

2
(t)+ otherwise

plotted in Figure 2 (left) and verifying posκ(t)
κ→0−−−→ (t)+

for all t ∈ R.

SMOOTH PROXY OF THE ABSOLUTE VALUE

Since for any t ∈ R, one has |t| = (t)+ + (−t)+, we define
a smooth proxy of the absolute value in a similar manner:

absκ(t) = posκ(t) + posκ(−t)

plotted in Figure 2 (right) and verifying absκ(t)
κ→0−−−→ |t|

for all t ∈ R.
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Figure 2. (left) Smooth proxy of the positive part function; (right) Smooth proxy of the absolute value function.

SMOOTH PROXY OF THE INFINITE NORM

As in Problem (29), the coordinates of vector
E

xs,xt∼D
[|Dstw|] are positive, computing its infinite

norm is simply computing its largest coordinate. Hence, we
use the logsumexpκ function (Nesterov, 2005, Lemma 4)
defined for t = (t1, ..., td) in Rd as:

logsumexpκ(t) = κ log

(
d∑
k=1

e
tk
κ

)

verifying logsumexpκ(t)
κ→0−−−→ max(t1, ..., td) for all t ∈

Rd.

Proposition 5. The margin violation loss does not respect
the triangle inequality.

Proof. Let ρ, ε1, ε2 > 0 such that 0 <
√
ρ ≤ ε1 < ε2 < 1.

Also, let

x = y = ε2
√
ρ and z =

√
ρ

ε1
.

We have 0 ≤ x, y, z ≤ 1 and :

xz = yz = ε2
√
ρ

√
ρ

ε1
=
ε2
ε1
ρ > ρ.

Hence,
[xz < ρ] = [yz < ρ] = 0.

However,
xy = ε22ρ < ρ,

hence [xy < ρ] = 1 and we have:

1 = [xy < 1] � [xz < 1] + [yz < 1] = 0.
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