
Supplementary material for paper:
A Swiss Army Knife for Minimax Optimal Transport

This supplementary material contains the proofs for the
different theoretical results of the main paper, as well as
more details on the experimental part provided for the sake
of reproducibility.

Recall of the setting
Optimal transport problem For two probability mea-
sures µ1 and µ2, a cost function c : (x,y) ∈ X × Y 7→
c(x,y) ∈ R+ and two complete metric spaces X and Y ,
the Kantorovitch (Kantorovich, 1942) formulation of OT
seeks for an optimal coupling γ between µ1 and µ2 which
minimizes the following quantity:

Wc(µ1, µ2) = inf
γ∈Π(µ1,µ2)

∫
X×Y

c(x,y)dγ(x,y)

= inf
γ∈Π(µ1,µ2)

E
(X,Y )∼γ

[c(X,Y )] ,

When c is the squared Euclidean distance, we write simply
W2. In the discrete version of the problem, i.e. when µ1 and
µ2 are defined as empirical measures supported on vectors
{xi}mi=1, {yj}nj=1 in Rd with probability vectors r ∈ ∆m

and c ∈ ∆n, the previous problem can be expressed as
follows:

P∗ ∈ argmin
P∈Π(r,c)

〈P,C〉F , (1)

where 〈·, ·〉F is the Frobenius dot product, C ∈ Rm×n+ is a
cost matrix representing the pairwise costs of transporting
xi to yj and P is a joint distribution given by a matrix of
size m× n belonging to the transportation polytope Π(r, c)
(also called Birkhoff polytope for m = n) defined as:

Π(r, c) = {P ∈ Rm×n+ ;P1n = c;PT1m = r}.

Minimax OT (Paty & Cuturi, 2019) showed that one can
see the OT problem, with c taken to be the squared Euclidean
distance, as a trace minimization problem of the second-
order displacement matrix defined for any γ ∈ Π(µ1, µ2)
as

Vγ :=

∫
X×Y

(x− y)(x− y)T dγ(x,y)

or equivalently in the discrete case for any P ∈ Π(r, c) as

(VP)ij :=

n∑
i=1

m∑
j=1

Pij(xi − yj)(xi − yj)
T .

Using this reformulation, we can equivalently rewrite Equa-
tion (1) as follows: P∗ ∈ argminP∈Π(r,c) tr(VP).

Robust optimal transport Let C be a convex compact
set of cost functions defined over X × Y with no particu-
lar constraints on the form of distances used to compute
matrices belonging to C as long as a solution of the corre-
sponding Kantorovich problem exists. We further denote
the convex hull of a set S as Conv (S) that is the set of
convex combinations of S’s elements.

We now consider the following bilinear minimax problem:

RKP(Π, C) = min
γ∈Π

max
c∈C

E
x,y∼γ

[c(x,y)] , (2)

We denote the value at the solution of this problem by
RKP(Π, C) and write RKP(P, C) for any set P (even non
convex) to denote RKP(conv(P), C). We also extend the
notation Wc, presented before, to the case c ∈ C by defining

WC(µ1, µ2) = RKP(Π, C).

Proofs from Section 3.2
For any vector u = (u1, ..., ud) ∈ Rd and matrix M ∈
Rd×d, we define their respective norms (Schatten p-norm in
case of matrix) as

‖u‖p :=

 ∑
1≤i≤d

|ui|p
 1

p

, ‖M‖p :=

 ∑
1≤i≤d

σpi (M)

 1
p

,

where p ∈ [1,+∞] and {σi (M)} are M’s singular values.
In particular, if M is a symmetric, positive semi-definite
matrix, then

‖M‖p = Tr{Mp}
1
p .

We also recall that the dual of a p−norm (respectively
Schatten p−norm) is the q−norm (respectively the Schatten
q−norm), with q equal to p

p−1 if p > 1, to∞ if p = 1 and
to 1 if p = ∞. We define C as a family of Mahalanobis
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distance cost matrices, indexed by bounded symmetric ma-
trices M ∈ S+

d (R) (where Sd(R) is the set of symmetric
PSD matrices):

C = {cM :(x,y) 7→ (x−y)TM(x−y); ‖M‖p≤1}. (3)

Claim (footnote 1 in the main paper) C defined in (3) is
a convex compact set.

Proof. Denoting F(X × Y,R) the set of real valued func-
tions on X × Y , let:

Φ : Rd×d 7→ F(X × Y,R)

M 7→ cM : (x,y) 7→ (x− y)TM(x− y)

Notice that Φ is linear and its domain is a finite dimensional
vector space, hence Φ is continuous.
Moreover, we have C = Φ

(
Bdp
)

where

Bdp := {M ∈ Rd×d; ‖M‖p ≤ 1}

is the unit ball of norm ‖.‖p, which is compact and convex.
As a result, C is a convex compact set.

Proposition 1. Let C be defined as in (3) for M ∈ Sd+(R).
Then, C is a convex compact set of cost functions and the
following holds:

max
c∈C

E
x,y∼γ

[c(x,y)] = max
M∈Sd+ ‖M‖p≤1

〈Vγ ,M〉F = ‖Vγ‖q

implying RKP(Π, C) = minγ∈Π ‖Vγ‖q. Furthermore, for
any γ ∈ Π,

M∗ = argmax
M∈Sd+ ‖M‖p≤1

〈Vγ ,M〉F =

(
Vγ

‖Vγ‖q

) q
p

(4)

verifies ‖M∗‖p = 1. In particular, for p = ∞,
minγ∈Π ‖Vγ‖1 = W 2

2 (µ1, µ2), i.e., we recover the clas-
sic 2-Wasserstein distance.

Proof. With the notations used to prove that C is a convex
compact, adding the PSD constraint on M can be done by
considering the image of Bdp+ := Bdp ∩ Sd+(R) by map-
ping Φ. Bdp+ is a convex compact set as it is the intersec-
tion of a convex compact set and a convex cone (the PSD
cone). For fixed γ ∈ Π, we compute the maximum of

E
x,y∼γ

[
cM(x,y)

]
over M ∈ Bdp+.

max
M∈Bdp+

E
x,y∼γ

[c(x,y)]

= max
M∈Bdp+

E
x,y∼γ

[
(x− y)TM(x− y)

]
= max

M∈Bdp+
E

x,y∼γ

[
Tr
(
(x− y)(x− y)TM

)]
= max

M∈Bdp+
E

x,y∼γ

[〈
(x− y)(x− y)T ,M

〉
F

]
= max

M∈Bdp+
〈Vγ ,M〉F .

where we used properties of the trace operator, the linearity
of the expectation and the definition of Vγ .

This maximum is achieved for M∗ verifying ‖M∗‖p =

‖M∗‖pp = Tr{(M∗)p} = 1. In fact, supposing this is
not the case, i.e.‖M∗‖p < 1, then M∗∗ = M∗

‖M∗‖ verifies
〈Vγ ,M

∗∗〉F > 〈Vγ ,M
∗〉F , which contradicts M∗’s opti-

mality.
Using the equality case of the Hölder inequality for Schatten
p-norms (Magnus, 1987, Theorem 5), the only PSD matrix
achieving this maximum is:

M∗ =

(
Vq
γ

Tr{Vq
γ}

) 1
p

=

(
Vγ

‖Vγ‖q

) q
p

and the value of the maximum is ‖Vγ‖q. Taking the mini-
mum over γ ∈ Π, we obtain:

min
γ∈Π

max
M∈Bdp+

E
x,y∼γ

[c(x,y)] = min
γ∈Π
‖Vγ‖q.

In particular, for p = ∞, the corresponding dual norm is
‖·‖1, and we have:

min
γ∈Π
‖Vγ‖1 = min

γ∈Π
Tr{Vγ}

= min
γ∈Π

E
x,y∼Π

[
‖x− y‖2

]
= W 2

2 (µ1, µ2).

This concludes the proof.

Corollary 1 (Euclidean norm case). Let C be defined with
p = 2 in (3) and let M∗ = argmax‖M‖2≤1 〈Vγ ,M〉. Then

M∗ =
Vγ

‖Vγ‖2
, thus M∗ is PSD and ‖M∗‖2 = 1.

Proof. sup‖M‖2≤1 〈Vγ ,M〉F is achieved, without impos-

ing that M is PSD, for M =
Vγ

‖Vγ‖ (by the equality case of
the Cauchy-Schwartz inequality). This matrix is PSD as Vγ

is PSD, and has unit norm.

Corollary 2. With the assumptions from Proposition 1, the
following inequality holds for any p ∈ [1,+∞]:

1

d
1
p

W 2
2 (µ1, µ2) ≤WC(µ1, µ2) ≤W 2

2 (µ1, µ2). (5)
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Proof. Let γ ∈ Π. We have for any p ≥ 1, ‖Vγ‖p ≤
‖Vγ‖1 by the monotonicity of Schatten p−norm, and we
have minγ∈Π ‖Vγ‖1 = W 2

2 (µ1, µ2). Taking the infimum
over γ ∈ Π yields the right hand side inequality in (5). To
obtain the left hand side, notice that A := d−

1
p Id verifies

‖A‖p ≤ 1, and that A is PSD, so that cA ∈ C. Thus,

min
γ∈Π
〈Vγ ,A〉F ≤WC(µ1, µ2).

Finally, notice that the left hand side in the previous inequal-
ity equals 1

d
1
p
W 2

2 (µ1, µ2), thus concluding the proof.

Proofs from Section 3.3
Let X and Y are identified respectively with finite sets
{xi}mi=1 and {yj}ni=j , hence C is identified with a con-
vex compact set of cost matrices with entries (C)ij =
c(xi,yj). For any positive integer p, we denote ∆p =
v ∈ Rp+;1Tp v = 1 the p−dimensional probability simplex.
Proposition 2. Let P be a finite subset of Π. The prob-
lem RKP(P, C) := RKP(Conv (P) , C) has a saddle point
(P∗,C∗) verifying

〈P∗,C∗〉F = min
P∈Conv(P)

max
C∈C
〈P,C〉F (6)

= max
C∈C

min
P∈P
〈P,C〉F . (7)

Moreover, solving RKP(P, C) is equivalent to solving

C∗ ∈ argmaxC∈C,µ≥0 µ

s.t. 〈P,C〉F ≥ µ, ∀P ∈ P. (8)

Also, P∗ =
∑|P|
l=1 qlPl, where {ql}|P|l=1,

∑
i qi = 1, are dual

variables of (8). In particular, solving RKP(Π, C) can be
done by setting P as the set of vertices of Π.

Proof. Since the set P is finite, Conv (P) is a convex com-
pact set. Also, by definition, C is a convex compact set.
Moreover, we note that for any (P,C) ∈ Π× C, the func-
tions 〈P, ·〉F and 〈·,C〉F are linear. By applying Sion’s
min-max theorem (Sion, 1958), problem RKP(P, C) :=
RKP(Conv (P) , C) has at least a saddle point, and any sad-
dle point (Ps,Cs) verifies:

〈Ps,Cs〉F = min
P∈Conv(P)

max
C∈C
〈P,C〉F

= max
C∈C

min
P∈Conv(P)

〈P,C〉F . (9)

However, for any fixed C ∈ C, the linearity of 〈·,C〉F
implies that its minimum on Conv (P) is achieved on one
of its vertices, i.e.:

min
P∈Conv(P)

〈P,C〉F = min
P∈P
〈P,C〉F ∀C ∈ C ⇒

max
C∈C

min
P∈Conv(P)

〈P,C〉F = max
C∈C

min
P∈P
〈P,C〉F . (10)

Combining (9) and (10) yields Equation (7).
Moreover, by the saddle point’s definition, we have: C∗ ∈
argmaxC∈C minP∈P 〈P,C〉F . Using the fact that P is
finite, we obtain the equivalent Problem (8). What is left is
computing P∗’s value. To this end, let us introduce IC , the
convex indicator function of set C, defined by:

IC : C 7→ 0 if C ∈ C
+∞ otherwise

Also, notice that µ is nonnegative even without imposing
this condition. In fact, assuming that the cost matrices in C
have positive values, we have minP∈P 〈P,C〉F ≥ 0, for all
C ∈ C. If µ∗, the value of µ at the solution was negative, its
maximality contradicts the condition minP∈P 〈P,C〉F ≥
0. Hence, Problem (8) is equivalent to the following:

max
C∈Rm×n,µ∈R

µ− IC(C),

s.t 〈P,C〉F ≥ µ ∀P ∈ P.

The Lagrangian of the previous problem is:

L(q,C, µ) = µ− IC(C) +

|P|∑
l=1

ql(〈Pl,C〉F − µ), (11)

where l indexes the finite set of matrices P , ql ≥ 0 for all
l ∈ {1, ..., |P|} denote the dual variables of the constraints,
and q = (q1, ..., q|P|). A known optimization result (Boyd
& Vandenberghe, 2004, Section 5.4.2) implies that that the
solution to the primal, (C∗, µ∗) and the solution to the dual,
q∗ = (q∗1 , ..., q

∗
l ) form a saddle point of the Lagrangian,

which implies:

L(q∗,C∗, µ∗) = max
C,µ
L(q∗,C, µ) (12)

Deriving the Lagrangian with respect to µ yields:∑
l

q∗l = 1. (13)

In addition to this condition, knowing that the value of the
Lagrangian is finite at the solution, we have IC(C∗) = 0.
Substituting the last two conditions in Equation (12) yields:

L(q∗,C∗, µ∗) = 〈P∗,C∗〉F
= max

C∈Rm×n
〈P∗,C〉F − IC(C)

= max
C∈C
〈P∗,C〉F (14)

where P∗ is defined as in the proposition. Also, Equa-
tion (13) implies that there is at least one l′ ∈ {1, ..., |P|}
verifying ql′ > 0, and hence

µ∗ = 〈Pl′ ,C∗〉F = min
P∈P
〈P,C∗〉F = min

P∈Conv(P)
〈P,C∗〉F

(15)
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Moreover, by the Lagrangian’s definition, we have µ∗ =
L(q∗,C∗, µ∗). This latter equation combined with (15) and
(14) yields:

〈P∗,C∗〉F = max
C∈C
〈P∗,C〉F = min

P∈Conv(P)
〈P,C∗〉F

(16)
i.e., (P∗,C∗) is a saddle point of RKP(P, C).

Algorithm 1 Cutting set method for RKP(Π, C) with con-
straint elimination

1: Input: maxIt, C, P0⊂Π, thd1, thd2
2: t, l← 0
3: err, µ−1 ←∞
4: while t <maxIt and err > thd1 and µt−1−µt

µt−1
> thd12

do
5: Solve (8) to obtain (µt,Ct),Q
6: for l in {0, ..., |Pt| − 1} do
7: if ql ≤ thd2 then
8: Pt ← Pt \ {Pl}
9: Q← Q \ {ql}

10: Find Pt ∈ argminP∈Π 〈P,Ct〉
11: l← max(l, 〈Pt,Ct〉)
12: err ← (µt − l)/l
13: Pt+1 = Pt ∪ {Pt}
14: t← t+ 1

return
∑|Pt|−1
l=0 qlPl, Ct

Proposition 3. Let T be the number of iterations required
by Algorithm 1 to reach error err(T ) ≤ thd1. Then,

T ≤
(

diam∞ (C) + RKP(P0, C)
2.thd1

+ 1

)dim(C)+1

where diam∞ (C) := supC1,C2∈C,i,j
∣∣C1

ij −C2
ij

∣∣ and
dim(C) is the dimension of the affine hull of C. Also, ∀t ≥ 0,
we have that 0 ≤ RKP(Pt, C)− RKP(Π, C) ≤ err(t).

Proof. In this proof, we use the notation ‖A‖1 =∑
ij |Aij | and ‖A‖∞ = supij |A|ij . We note that these

notations are only used in this proof and do not apply to the
rest of the paper, as they do not correspond to the Schatten-1
and∞ norms.

We apply the result given in (Mutapcic & Boyd, 2009, Sec-
tion 5.2) to our case. To this end, since our nominal problem
corresponds to P0, we define its feasible set F0 as:

F0 = {(µ,C) ∈ R+ × C|µ ≤ min
P∈P0

〈P,C〉F }.

Also, we define

‖(µ,C)‖∞ := |µ|+ ‖C‖∞. (17)

For every (µ1,C
1), (µ2,C

2) ∈ F0 and for every constraint,
i.e., for every P ∈ P0, we have:

|(
〈
P,C1

〉
F
− µ1)− (

〈
P,C2

〉
F
− µ2)|

≤
∣∣〈P,C1

〉
F
−
〈
P,C2

〉
F

∣∣+ |µ1 − µ2|
(18)

≤‖P‖1
∥∥C1 −C2

∥∥
∞ + |µ1 − µ2| (19)

≤
∥∥C1 −C2

∥∥
∞ + |µ1 − µ2| (20)

=
∥∥(µ1,C

1)− (µ2,C
2)
∥∥
∞ (21)

where (µ1,C
1) − (µ2,C

2) := (µ1 − µ2,C
1 −C2). (18)

is due to the triangle inequality, followed by the Hölder
inequality to obtain (19). Then, since P0 ⊂ Π and any
matrix in Π has all of its entries bounded by 1, we obtain
(20). Lastly, we used definition (17) to obtain (21).

To establish the bound as done in (Mutapcic & Boyd, 2009),
we also need to find the radius R of a ball that contains
the feasible set F0, and we consider the affine hull of C
instead of Rm×n as the space containing C. It is then suf-
ficient to bound the diameter of F0, denoted diam∞ (F0)
and to take half of the bound for R. To this end, for any
(µ1,C

1), (µ2,C
2) ∈ F0,∥∥(µ1,C

1)− (µ2,C
2)
∥∥
∞ =

∥∥(µ1 − µ2,C
1 −C2)

∥∥
∞

=
∥∥C1 −C2

∥∥
∞ + |µ1 − µ2|

≤ diam∞ (C) + |µ1 − µ2|.

We have:

µ1 − µ2 ≤ µ1 ≤ min
P∈P0

〈P,C〉F ≤ RKP(P0, C).

We can obtain this bound also for µ2 − µ1, hence for
|µ2 − µ1|. Taking the supremum over (µ1,C

1), (µ2,C
2) ∈

F0 (the definition of a diameter), we obtain:

diam∞ (F0) ≤ diam∞ (C) + RKP(P0, C).

We can then set radiusR as half of the previous upper bound,
leading to the bound on the number of iterations T . For the
second result of the proposition, for any t ≥ 0, we have:

min
P∈Π
〈P,C〉F ≤ RKP(Π, C) ≤ RKP(Pt, C),

where the left inequality is due to taking the maximum over
C, while the right one is due to the set inclusion Pt ⊂ Π.
Thus,

0 ≤ RKP(Pt, C)−RKP(Π, C) ≤ RKP(Pt, C)−min
P∈Π
〈P,C〉F .

In Algorithm 1, the right hand side is equal to err(t), which
yields the result.
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Proofs from Section 3.4
We first prove the following lemma that will be helpful in
the following proofs.

Lemma 1. Let c and d be two positive integers. The dual
of the linear program

max
p∈∆d,µ≥0

µ

s.t. Gp ≥ µ1c, (22)

is the linear program

min
q∈∆c,ν≥0

ν

s.t.GTq ≤ ν1d,

Proof. We will transform (22) to a standard LP formulation.
To this end, let v = (p1, ..., pd, µ), i.e the concatenation of
p and µ. Also, we transform the equality condition 1Td p = 1
into the two inequalities 1Td p ≤ 1 and −1Td p ≤ −1. We
construct the following matrix:

F =

−G 1c

1
T
d 0
−1Td 0


Having c + 2 rows and d + 1 columns. Then, (22) can be
re-written under the standard form:

max eTd+1v

s.t Fv ≤ ec+1 − ec+2

v ≥ 0

where ei denotes the vectors of Rd+1’s canonical basis. This
latter problem has the following dual:

min (ec+1 − ec+2)Tw

s.t FTw ≥ ed+1

w ≥ 0

Using the fact that

FT =

[
−GT

1d −1d
1
T
c 0 0

]
and denoting w = (q1, ..., qc, ν1, ν2), and q = (q1, ..., qc),
the dual is written:

min ν1 − ν2 (23)

s.t GTq ≤ (ν1 − ν2)1d (24)

1
T
c q ≥ 1 (25)

q ≥ 0 (26)
ν1, ν2 ≥ 0 (27)

Setting ν = ν1 − ν2, from (24) and the fact that G has
positive elements (Frobenius products between cost matrices
and transport matrices), we have ν ≥ 0. Also, for ν∗, q∗ the
solution of the dual, we necessarily have 1Tc q

∗ = 1. In fact,
assuming that 1Tc q

∗ > 1 and dividing (24) by 1
T
c q
∗, we

see that ν∗∗,q∗∗ defined by q∗∗ = q∗

1Tc q
∗ and ν∗∗ = ν∗

1Tc q
∗

verify all the constraints, whereas ν∗∗ < ν∗. This latter
inequality contradicts the minimality of ν. Hence, the dual
formulation is proven.

Proposition 4 (Finite set C). Let C = Conv ({C1, ...,Cd}).
Then, for t ≥ 0, solving the problem given in (8) over Pt×C
is equivalent to the following linear program

min
p∈Rd+

1
T
d p

s.t. Gp ≥ 1|Pt|, (28)

where G ∈ R|Pt|×d is defined by Gkl = 〈Pk,Cl〉.
Moreover,

C∗ =

∑d
k=1 p

∗
kCk∑d

k=1 p
∗
k

, P∗ =

∑|Pt|
l q∗l Pl∑|Pt|
l q∗l

,

where p∗ and q∗ are optimal solutions of (28) and its dual.

Proof. Since C is the convex hull of matrices {C1, ...,Cd},
i.e the set of their convex combinations, problem (8) can be
formulated as follows:

max
p∈∆d,µ≥0

µ

s.t. µ ≤
∑
l

pl 〈Pk,Cl〉F ∀1 ≤ k ≤ d

Let Gkl be the matrix whose elements are: Gkl =
〈Pk,Cl〉F . The previous problem can be re-written:

max
p∈∆d,µ≥0

µ

s.t. Gp ≥ µ1|Pt|, (29)

Since the probability simplex ∆d can be expressed as:

∆d =

{
p

1
T
d p

;p ∈ Rd+ \ {0}
}

the previous problem is equivalent to

max
p∈Rd+,µ≥0

µ

s.t. Gp ≥ µ1Td p1|Pt|.

By setting µ1Td p = 1 (same technique used to derive primal
SVM optimization problem as a constrained norm minimiza-
tion problem), which proves formulation (28). Also, from
the change of variables that we made on p, we obtain

C∗ =

∑d
k=1 p

∗
kCk∑d

k=1 p
∗
k

,
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where p∗ is the solution of Problem (28).

Now we focus on the second part of the proof, to obtain
the expression of P∗, the other component of the saddle
point. By the result in Lemma 1, denoting q̃∗ the dual
variables of Problem (29), q̃∗ is a solution to the following
dual problem:

min
q∈∆|Pt|,ν≥0

ν

subject to GTq ≤ ν1d, (30)

By the same argument used to obtain the equivalent formu-
lation (28), Problem (30) is equivalent to:

max
q∈Rd+

1
T
|Pt|q

s.t. GTq ≤ 1d, (31)

where the components of the solution q̃∗ by normalizing
solution q∗ of the previous problem, which yields the expres-
sion of P∗. Finally, it is sufficient to notice that Problems
(31) and (28) are each the dual of the other, to conclude the
proof.

To proceed for the next proposition, we recall the definition
of the set

CC = {C + EM ∈ Rm×n |EM
ij = (xi − yj)

TM(xi − yj);

M ∈ Sd+(R); ‖M‖p≤r} (32)

for given cost matrix C and radius r > 0.

Proposition 5 (Non centered family of Mahalanobis dis-
tances). For a fixed C, let CC be defined as in (32). Then,
for t ≥ 0, solving (8) over Pt ×CC, is equivalent to solving
the following convex program

min
P∈Conv(Pt)

r‖VP‖q +
∑
ij

(P)ij(C)ij . (33)

Moreover, if P∗ is an optimal solution of (33), then M∗ is
given by (4) with γ replaced by P∗.

Proof. C in this case is convex compact, as it is the same as
C presented in Proposition 1, up to a translation by a matrix
C.

By Proposition 2, solving Problem (8) is equivalent to solv-
ing

min
P∈Conv(Pt)

max
D∈CC

〈P,D〉F

However for any matrix P ∈ Conv (Pt), and for rBdp+ =

{rM,M ∈ Bdp+} (Bdp+ is defined as in the proof of Propo-

sition 1), we have:

max
D∈CC

〈P,D〉F

= max
M∈rBdp+

∑
ij

Pij((xi − yj)M(xi − yj) + (C)ij)

= max
M∈Bdp+

r
∑
ij

Pij((xi − yj)M(xi − yj)) +
∑
ij

Pij(C)ij

=r‖VP‖q +
∑
ij

Pij(C)ij

where in the last line, we used the developments done in
Proposition 1, from which we also get the expression of M∗.
For the case p = 2, we use the result of Corollary 1, where
the PSD constraint is not needed.

For additional details on the experimental evaluations kindly
proceed to the following page.
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Experimental evaluations
In this section, we add the details needed to reproduce the experiments from the main paper using the code submitted
in the supplementary material. We also provide more experimental results for the considered evaluation scenarios and
full-size figures presented in a reduced size in the main paper. For all of the experiments, threshold thd2 used for constraint
elimination is set to 10−12.

Section 4.1: Convergence and execution time Convergence curves for first two plots are obtained for threshold value
thd1= 0. The value for the first threshold is to let the algorithm perform all of the iterations, set to 100. As for the right
figure, we set the maximum number of iterations to 1000 and thd1 to 10−8, and we use MOSEK solver to solve the LP
formulation, for which we set all tolerance values to 10−8.

Section 4.2: Hypercube We set maxIter to 10, P0 is set to the uniform distribution and thd1= 10−8. The experiment is
reproduced 100 times.

Section 4.3: Stability and noise sensitivity The parameters used in this experiment for all additiional data sets are the
same as for the MNIST 0-to-1 dataset and the two Gaussians. The maximum number of iterations of the cutting set method,
maxIter is set to 10. P0 is set to the uniform distribution, thd1= 10−20. The Mahalanobis ball has the radius r = 0.01. The
50 cost matrices are created with random Mahalanobis projections and different norms taking values in (2, 3, 4, 5, 10). We
also add the cost matrix associated with the squared Euclidean distance. Each cost matrix is divided by its Frobenius norm.
The noise sensitivity is computed over 200 runs. In all examples of Figure 1, the sensitivity to noise is correlated to the

0 10 20 30 40 50

Various cost matrices

0.0
87

2

0.0
87

4

0.0
87

6

0.0
87

8

0.0
88

0

No
ise

 st
ab

ilit
y

Various cost matrices
Euclidean distance cost matrix

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

W
as

se
rs

te
in

 st
ab

ilit
y

+1.662e1

0 10 20 30 40 50

Various cost matrices
0.0

74
8

0.0
75

0

0.0
75

2

0.0
75

4

0.0
75

6

No
ise

 st
ab

ilit
y

Various cost matrices
Euclidean distance cost matrix

0.0048

0.0050

0.0052

0.0054

0.0056

0.0058

0.0060

0.0062

W
as

se
rs

te
in

 st
ab

ilit
y

+1.096e1

0 10 20 30 40 50

Various cost matrices

0.0
78

3

0.0
78

4

0.0
78

5

0.0
78

6

0.0
78

7

No
ise

 st
ab

ilit
y

Various cost matrices
Euclidean distance cost matrix

0.0062

0.0064

0.0066

0.0068

0.0070

W
as

se
rs

te
in

 st
ab

ilit
y

+1.271e1

0 10 20 30 40 50

Various cost matrices0.0
60

3

0.0
60

4

0.0
60

5

0.0
60

6

0.0
60

7

0.0
60

8

0.0
60

9

No
ise

 st
ab

ilit
y

Various cost matrices
Euclidean distance cost matrix

7.5535

7.5540

7.5545

7.5550

7.5555

W
as

se
rs

te
in

 st
ab

ilit
y

0 10 20 30 40 50

Various cost matrices0.0
65

6

0.0
65

8

0.0
66

0

0.0
66

2

0.0
66

4

0.0
66

6

No
ise

 st
ab

ilit
y

Various cost matrices
Euclidean distance cost matrix

8.65050

8.65075

8.65100

8.65125

8.65150

8.65175

8.65200

8.65225

W
as

se
rs

te
in

 st
ab

ilit
y

0 10 20 30 40 50

Various cost matrices
0.0

64
4

0.0
64

5

0.0
64

6

0.0
64

7

0.0
64

8

0.0
64

9

0.0
65

0

No
ise

 st
ab

ilit
y

Various cost matrices
Euclidean distance cost matrix

8.5798

8.5800

8.5802

8.5804

8.5806

8.5808

8.5810

8.5812

W
as

se
rs

te
in

 st
ab

ilit
y

Figure 1. Left to right, top to bottom: Gaussians, MNIST 0-to-1, MNIST 3-to-0, MNIST 6-to-5, MNIST 7-to-1, MNIST 7-to-4 data
sets. Y-axis (left) is the difference between the OT cost with Ci and Ci +EM. Y-axis (right), the Wasserstein stability defined in Section
3.5. Each column is a different cost matrix, the matrices are ordered by the Wasserstein stability.
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stability of the cost matrix. The cost matrix associated with the squared Euclidean distance is often stable and robust to
noise which is predictable as it is the most used distance in OT. However, it is never the best cost matrix in terms of our
notion of stability.

Section 4.4: Color transfer We use the same setting as above with the following parameters: maxIter is set to 200,
thd1= 10−8, r = 0.001 and we divide each cost matrix element-wise by its corresponding transport cost. Below, we first
provide images from the main paper in a bigger size in order to see more fine-grained details.

Figure 2. Top row: Original images of ocean sunset and ocean sky. Middle row: (left) most stable cost matrix, (right) squared Euclidean
based cost matrix. Bottom row: (left) least stable Mahalanobis cost matrix, (right) least stable cost matrix. Notice the quality difference
between the most stable matrix and the squared Euclidean based one in the area just under the cloud.
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Figure 3 presents additional visualizations for a new pair of images. The obtained results are in line with experiments shown
in the main paper and exhibit similar behaviour.

Figure 3. Top row: Original images of woods and autumn. Middle row: (left) most stable cost matrix, (right) Euclidean based cost
matrix. Bottom row: (left) least stable Mahalanobis cost matrix, (right) least stable cost matrix.

References
Boyd, S. P. and Vandenberghe, L. Convex optimization. Cambridge University Press, 2004. ISBN 978-0-521-83378-3.



A Swiss Army Knife for Minimax Optimal Transport

1 50 100
Various cost matrices

0.0
07

0.0
09

6

0.0
13

W
as

se
rs

te
in

 st
ab

ilit
y

Most stable matrix
Least stable mahalanobis matrix
Least stable matrix
Euclidean distance cost matrix

Figure 4. Cost matrices sorted by the Wasserstein stability. The first 50 are Mahalanobis cost matrices, while the last 50 are random cost
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