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Abstract
Motivated by the repeated sale of online ads via
auctions, optimal pricing in repeated auctions has
attracted a large body of research. While dynamic
mechanisms offer powerful techniques to improve
on both revenue and efficiency by optimizing auc-
tions across different items, their reliance on exact
distributional information of buyers’ valuations
(present and future) limits their use in practice.
In this paper, we propose robust dynamic mech-
anism design. We develop a new framework to
design dynamic mechanisms that are robust to
both estimation errors in value distributions and
strategic behavior. We apply the framework in
learning environments, leading to the first pol-
icy that achieves provably low regret against the
optimal dynamic mechanism in contextual auc-
tions, where the dynamic benchmark has full and
accurate distributional information.

1. Introduction
Motivated by the popularity of selling online ads via auc-
tions, pricing in dynamic auctions has been extensively stud-
ied in recent years. Dynamic auctions open up the possibility
of linking the auction rules and payments across time to en-
hance revenue or welfare. Formally, dynamic mechanism
design considers an environment in which the seller has ex-
act distributional information over the buyers’ values for the
items, for the current stage and all future stages, and designs
revenue-maximizing dynamic mechanisms that adapt the
auction rules based on the buyer’s historical bids (Thomas &
Worrall, 1990; Bergemann & Välimäki, 2010; Ashlagi et al.,
2016; Mirrokni et al., 2016a; 2018; Deng et al., 2019b).
This line of study provides simple dynamic mechanisms, in
terms of descriptive complexity, that compare favorably to
the revenue-optimal dynamic benchmark. However, these
mechanisms are clairvoyant and rely on exact knowledge of
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future value distributions to align buyers’ incentives (across
time) and guarantee desirable outcomes. This strong require-
ment limits the application of dynamic auctions in practice
because the seller may only have access to approximate
models of distributions. As one attempt to address this con-
cern, Mirrokni et al. (2018) consider another extreme and
propose non-clairvoyant dynamic mechanisms, which do
not rely on any information about the future. They show
that a non-clairvoyant dynamic mechanism can achieve a
constant approximation of the revenue-optimal clairvoyant
dynamic mechanism that knows the future in advance.

In this work we take an intermediate stance where the de-
signer can model present and future distributional infor-
mation subject to an estimation error. Designing revenue-
optimal and incentive-compatible auctions in this framework
is challenging for the following reason: when the seller’s
distributional information is not perfectly aligned with the
buyer’s true value distributions, it is impossible for the seller
to offer a prior-dependent dynamic mechanism in which the
optimal strategy for the buyer is to report her valuation truth-
fully at every stage (i.e., dynamic incentive-compatible).
Furthermore, in a dynamic mechanism the buyer’s misre-
port can potentially affect auctions for all future items. We
overcome these obstacles and provide a robust dynamic
mechanism where the extent of the buyers’ misreports and
the revenue loss can be related to and bounded by the esti-
mation error of the buyers’ distributions.

We then apply our robust dynamic mechanism to the prob-
lem of robust price learning. In particular, we focus on
contextual auctions, where a buyer’s valuation for an item
depends on the context that describes the item, but the re-
lationship between the buyer’s valuation and the context is
unknown to the seller. The seller’s task is to design a pol-
icy to adapt the mechanism based on the buyer’s historical
bids, with the objective of maximizing revenue. Previous
results (Amin et al., 2014; Golrezaei et al., 2019) give a
no-regret policy against the optimal static mechanism in
which the auction ignores the history and does not evolve
over time. However, Papadimitriou et al. (2016) have shown
that the revenue gap between optimal static and dynamic
mechanisms can be arbitrarily large. We tailor the structure
of our robust dynamic mechanism to a learning environment,
leading to a no-regret policy against the optimal clairvoyant
contextual auction that knows the relationship in advance.
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Related Work

Our work is closely related to the recent work by Deng et al.
(2019a), which provides a robust dynamic mechanism de-
sign framework for the non-clairvoyant environment. They
provide a no-regret policy in contextual auctions against a
constant approximation of the optimal clairvoyant mech-
anism. In contrast, we provide a robust dynamic mecha-
nism design framework for the clairvoyant environment and
design a no-regret policy against the optimal clairvoyant
contextual auction without any approximation.

Moreover, robust dynamic mechanism design for the clair-
voyant environment is more challenging than robust dy-
namic mechanism design for the non-clairvoyant environ-
ment. In a non-clairvoyant environment, there exists a
concrete dynamic mechanism from Mirrokni et al. (2018),
which is a mixture of the give-for-free auction, the posted-
price auction with an entry fee, and the Myerson’s auction.
Using such a concrete mechanism as a starting point, one
only needs to provide a framework to make this mecha-
nism robust (Deng et al., 2019a). In contrast, we consider a
clairvoyant environment, and the revenue-optimal dynamic
mechanism (with perfect prior knowledge) is given by a con-
vex program based dynamic program, i.e., it is computed
via a dynamic program in which each transition is computed
by a convex program (see Section 3.3). To overcome the
difficulty of analyzing a convex program based dynamic
program, we both develop new technical tools for analysis
and provide structural insights of its optimal solution.

Dynamic Mechanism Design. For a review of the liter-
ature, readers are encouraged to refer to (Bergemann &
Välimäki, 2019) for a comprehensive survey. Bergemann &
Välimäki (2010) propose a generalized VCG mechanism to
the dynamic environment where the buyers receive private
information over time, called the dynamic pivot mechanism,
which achieves welfare-maximizing outcomes. Kakade et al.
(2013) combine the dynamic pivot mechanism and the vir-
tual valuation idea (Myerson, 1981) to design a virtual-pivot
mechanism. Athey & Segal (2013) propose a team mecha-
nism that is efficient and budget-balanced.

The line of research on revenue-maximizing dynamic mech-
anism design was initiated by Baron & Besanko (1984)
and Courty & Hao (2000). Pavan et al. (2014) generalize
the Myersonian approach (Myerson, 1981) to the dynamic
setting and provide characterizations of dynamic incentive-
compatibility. Papadimitriou et al. (2016) provide an ex-
ample that demonstrates the revenue gap between the static
and dynamic mechanism can be arbitrarily large. More-
over, they show that it is NP-Hard to design the optimal
deterministic auctions even in a dynamic environment with
a single buyer and two items only. Ashlagi et al. (2016)
and Mirrokni et al. (2016b) independently provide fully
polynomial-time approximation schemes to compute the

optimal randomized mechanism. Our work is mainly built
on top of the framework of bank account mechanisms from
(Mirrokni et al., 2018; Deng et al., 2019b), which relies
on exact knowledge of valuation distributions. They pro-
vide a general framework to design the revenue-maximizing
dynamic mechanism, called bank account mechanisms. In-
spired by the framework, Deng & Lahaie (2019) and Deng
et al. (2020) provide statistical tools to test and measure dy-
namic incentive compatibility. However, such a framework
considers a setting where the seller has a perfect informa-
tion about the buyer’s distributions. In contrast, our robust
dynamic mechanism works in an environment where the
seller’s distributional information is not perfect.

Robust Price Learning. Our work is also related to dy-
namic pricing with learning (see den Boer (2015) for a
recent survey). There has been a growing body of literature
on price learning with non-strategic buyers (Cohen et al.,
2016; Lobel et al., 2018; Leme & Schneider, 2018; Mao
et al., 2018). In their models, the buyers have fixed val-
uations and are non-strategic, and therefore, the problem
can be reduced to a one-shot auction where the buyer acts
myopically without considering future. However, Edelman
& Ostrovsky (2007) provide empirical evidence that the
buyers participating in the online advertising markets do
act strategically. The study of robust price learning with
strategic buyers was initiated by Amin et al. (2013) and
Medina & Mohri (2014). When the valuations are fixed and
the buyers are impatient, the revenue regret has been shown
to be Θ(log log T ) by Drutsa (2017; 2018). For learning
in the contextual auctions, Amin et al. (2014) develop a
no-regret policy in a setting without market noise. Recently,
Golrezaei et al. (2019) enrich the model by incorporating
market noise. All of these results are no-regret against op-
timal static mechanisms that ignore the history, while our
policy is no-regret against optimal dynamic mechanisms.

2. Preliminaries
A dynamic auction model describes an environment where a
seller (he) sells a stream of T items that arrive online, based
on the reports by strategic buyers. In an online environment,
an item must be sold once it arrives. For the sake of clarity,
we will focus on the case with a single buyer (she). Our
results can be extended to multi-buyer settings by using the
techniques from Cai et al. (2012).

In line with the literature (Deng et al., 2019a), the t-th item
arrives at stage t and the buyer’s valuation vt ∈ [0, at] is
drawn independently (but not necessarily identically) ac-
cording to the cumulative distribution function Ft. We as-
sume that the density function ft of Ft is upper bounded
by cf/at where cf is a constant. The domain bounds at are
public and enrich the model to reflect the fact that item valu-
ations may have different scales. We normalize the domain
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bound sequence so that
∑
t at = T . We consider a setting

where the seller’s distributional information is imperfect:
the seller only has access to an estimated distribution F̂t.

After the buyer learns her valuation vt at the beginning of
stage t, she then submits a bid bt to the seller who then
implements an outcome with an allocation probability and
a payment. We restrict our attention to the case where the
bid bt is always in the set Vt = [0, at]. For convenience, let
V t =

∏t
t′=1 Vt′ be the set of all possible sequences of the

buyer’s bids for the first t stages. Similarly, let ∆Vt be the
set of distributions over Vt and let (∆V )t =

∏t
t′=1(∆Vt′)

be the set of all possible sequences of distributions for the
first t stages. For convenience, we use the notation a(t′,t′′)

to represent a sequence (at′ , . . . , at′′) of a between stage t′

and stage t′′. In general, a clairvoyant mechanism can be
characterized by a sequence of allocation and payment func-
tions: (1) the allocation function maps historical bids and
seller’s distributional information F̂(1,T ) to an allocation
probability: xt : V t × (∆V )T → [0, 1]; (2) the payment
function maps historical bids and seller’s distributional infor-
mation F̂(1,T ) to a payment: pt : V t× (∆V )T → R. Given
b(1,t) and F̂(1,T ), the utility ut of the buyer with true valu-
ation vt is ut

(
vt; b(1,t); F̂(1,T )

)
= vt · xt

(
b(1,t); F̂(1,T )

)
−

pt
(
b(1,t); F̂(1,T )

)
. A dynamic mechanism is non-clairvoyant

if no prior knowledge about future stages is available, and
therefore, the allocation rule and the payment rule of a non-
clairvoyant dynamic mechanism at stage t can only depend
on F̂(1,t) and b(1,t). We will focus on how to make the
revenue-optimal clairvoyant mechanism robust.

Estimated Distributional Information. Following the
setup in (Deng et al., 2019a), we relax the standard assump-
tion of exact distributional information (Ashlagi et al., 2016;
Mirrokni et al., 2018; Deng et al., 2019b) and consider an
environment where the seller’s distributional information is
estimated with an error ∆.

Assumption 2.1 (Deng et al. (2019a)). There exists a cou-
pling between a random draw vt fromFt and a random draw
v̂t from F̂t such that vt = v̂t + at · εt with εt ∈ [−∆,∆].

The assumption states that samples from the estimated dis-
tribution have a bounded bias. Looking ahead to our ap-
plication into contextual auctions, such a bias comes from
that the seller does not have perfect information about the
relationship between the buyer’s valuation and the context.

Utility-maximizing Buyer. We assume the buyer’s valua-
tion is additive across items. At stage t, the buyer aims at
maximizing her time-discounted cumulative expected utility∑T
t′=t γ

t′−t · E[ut], where γ ∈ (0, 1) is the discounting
factor and the expectation is taken with respect to the true
distribution F(1,T ). The discounting factor implies that the
buyer is less patient than the seller. We note that Amin et al.
(2013) showed that it is impossible to obtain a no-regret

policy when the buyer is as patient as the seller.

Incentive Constraints. The buyer’s best response in a dy-
namic mechanism depends on her strategy in future stages.
When the seller has perfect distributional information, the
classic notion of dynamic incentive-compatibility (DIC) re-
quires that reporting truthfully is always the buyer’s optimal
strategy, assuming that she plays optimally in the future
(Mirrokni et al., 2018). However, exact DIC is no longer
possible to achieve in prior-dependent dynamic mechanisms
when the seller only has approximate distributional infor-
mation. We consider η(1,T )-approximate DIC (Deng et al.,
2019a): assuming the buyer plays optimally in the future
(optimally now no longer means truthfully), the buyer’s bid
should deviate from vt by at most ηt at stage t. Formally,
there exists b̂t ∈ [vt − ηt, vt + ηt] that belongs to

arg max
bt

ut
(
vt; b(1,t); F̂(1,T )

)
+γ ·Ut

(
b(1,t);F(1,T ); F̂(1,T )

)
(η(1,T )-DIC)

for all vt, b(1,t−1). Here Ut(b(1,t);F(1,T ); F̂(1,T )) is the
continuation utility that the buyer obtains in the future: for
t < T , Ut

(
b(1,t);F(1,T ); F̂(1,T )

)
is defined recursively as

Evt+1∼Ft+1

[
max
bt+1

ut+1

(
vt+1; b(1,t+1); F̂(1,T )

)
+ γ · Ut+1

(
b(1,t+1);F(1,T ); F̂(1,T )

)]
,

while UT
(
b(1,T );F(1,T ); F̂(1,T )

)
= 0.

Participation Constraints. We assume that the buyer
weights realized past utilities equally, and therefore, ex-post
individual rationality requires that for all v(1,T ):

T∑
t=1

ut
(
vt; v(1,t); F̂(1,T )

)
≥ 0 (ex-post IR)

For convenience, we will use the phrasing “for F(1,T )” to
refer to the environment where the true distributions are
F(1,T ). For example, that a mechanism is η(1,T )-DIC for
F(1,T ) means that the mechanism is η(1,T )-DIC when the
true distributions are F(1,T ).

2.1. Bank Account Mechanism

Even in an environment where the seller has perfect distri-
butional information F̂(1,T ) = F(1,T ), the first challenge in
designing a dynamic mechanism is that the descriptive com-
plexity of the mechanism could be exponentially large. In
general, the allocation functions and the payment functions
depend on the entire sequence of historical bids. We will
focus on a simpler, special class of dynamic mechanisms.
called bank account mechanisms. For our purposes, this is
without loss of generality, because Mirrokni et al. (2018)
showed that any dynamic incentive-compatible and ex-post
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individual rational mechanism can be converted to a bank
account mechanism without loss of revenue.

The salient feature of a bank account mechanism is that it
uses a single non-negative real number balt, called bank
account balance, to summarize the history. Henceforth, the
allocation and payment function at stage t only depends on
balt, bt, and the seller’s distributional information.

Definition 2.2 (Bank Account Mechanism (Mirrokni et al.,
2018)). A bank account mechanism B = 〈x, p,balU〉 for
F̂(1,T ) is specified by a tuple constituted by x, p, and balU
such that for each stage t:

(1) A stage mechanism xt(bal, bt), pt(bal, bt) is parameter-
ized by a balance bal ∈ R+, which is incentive-compatible
for the stage for every bal ≥ 0: for any vt and bt,

vt ·xt(bal, vt)−pt(bal, vt) ≥ vt ·xt(bal, bt)−pt(bal, bt);
(stage-IC)

(2) The mechanism is not necessarily individual rational for
the stage. However, the expected utility is balance indepen-
dent if the buyer reports truthfully:

Evt∼F̂t [vt · xt(bal, vt)− pt(bal, vt)] = ct, (BI)

where ct is a constant not dependent on bal;

(3) A balance update policy balUt : R+ × V → R+ that
maps the previous balance and the buyer’s bid to a new
balance, satisfying balUt+1(balt, bt) ≥ 0 and

balUt+1(balt, bt) ≤ balt + bt · xt(balt, bt)− pt(balt, bt).
(BU)

balt+1 can be defined recursively as bal1 = 0 and

balt+1

(
b(1,t)

)
= balUt+1

(
balt

(
b(1,t−1)

)
, bt
)
.

We will use the notation xt(b(1,t)) and xt(bal, bt) where
bal = balt(b(1,t−1)) interchangeably since xt(b(1,t)) and
xt(bal, bt) are the same; similarly for pt.

Note that (BI) implies that the buyer’s historical reports
have no impact on her future expected utilities, assuming
she reports truthfully in the future. Therefore, when the
seller has perfect distributional information, if the stage
mechanism for every stage is stage-IC, a backward induction
argument can demonstrate that the mechanism is exactly
DIC. Moreover, (BU) ensures that the non-negative balance
always lower bounds the buyer’s utility provided truthful
reporting. Thus, the bank mechanism is ex-post IR.

3. Core Bank Account Mechanism
It is inconvenient to directly analyze the bank account mech-
anism since we need to relate the stage mechanisms with
different bal ≥ 0 to ensure that (BI) is satisfied. A refined

characterization called core bank account mechanism (Mir-
rokni et al., 2016b), provides a more convenient way to
ensure (BI). The full proofs of this section are deferred
to the full version. After introducing the notion of a core
bank account mechanism (Definition 3.1), we develop a
novel program to compute the revenue of such a mecha-
nism, even when the seller’s distributional information is
imperfect (Section 3.1). We then introduce basic operations
for editing core bank account mechanisms (Section 3.2),
which enable a unification of core bank account mechanisms
(Lemma 3.5) as well as a dynamic program for computing
the revenue-optimal mechanism when the seller’s distribu-
tional information is perfect (OPT-BAM). The latter will
serve as the base mechanism for our robust mechanisms.

Definition 3.1 (Core Bank Account Mechanism (Mirrokni
et al., 2016b)). A core bank account mechanism 〈g, y〉 for
F̂(1,T ) is constituted by a family of functions g = g(1,T ) and
y = y(1,T ). gt maps a history b(1,t) to a non-negative real
number and yt maps b(1,t) to the stage allocation. Moreover

(1) yt is the sub-gradient of gt with respect to bt;

(2) gt is consistent, symmetric, convex in bt, and weakly
increasing in bt, where g is consistent if

gt−1

(
b(1,t−1)

)
− Evt∼F̂t

[
gt
(
b(1,t−1), vt

)]
= χt(g),

where χt(g) is a number dependent on g but independent of
b(1,t−1); g is symmetric if gt−1

(
b(1,t−1)

)
= gt−1

(
b′(1,t−1)

)
implies gt

(
b(1,t−1), bt

)
= gt

(
b′(1,t−1), bt

)
.

A bank account mechanism B(g, y; F̂(1,T )) satisfying stage-
IC, BI, and BU for F̂(1,T ) can be constructed from a core
bank account mechanism 〈g, y〉 as follows:

balt+1

(
b(1,t)

)
= gt

(
b(1,t)

)
− µt(g) (1)

xt
(
balt(b(1,t−1)), bt

)
= yt

(
b(1,t)

)
(2)

p̂t
(
balt(b(1,t−1)), bt

)
= yt

(
b(1,t)

)
· bt

−
∫ bt

0

yt
(
b(1,t−1), b

)
db (3)

st
(
balt(b(1,t−1))

)
= Evt∼F̂t

[∫ vt

0

yt
(
b(1,t−1), v

)
dv

]
+ χt(g)− µt−1(g) + µt(g) (4)

pt
(
balt(b(1,t−1)), bt

)
= p̂t

(
balt(b(1,t−1)), bt

)
+ st

(
balt(b(1,t−1))

)
(5)

where µt(g) = infb(1,t) gt(b(1,t)).

Intuitively, the function g maintains the state of the core
bank account mechanism, which can be viewed as a variant
of the bank account balance from (1). The function y defines
the stage allocation rule xt. By the celebrated Myerson’s
Lemma (Myerson, 1981), p̂t is the unique payment rule
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derived from xt such that 〈xt, p̂t〉 constitutes a stage-IC and
stage-IR mechanism. A mechanism 〈xt, p̂t〉 is stage-IR if
for any balance bal ≥ 0, and for any vt,

xt
(
bal, vt

)
· vt − p̂t

(
bal, vt

)
≥ 0 (stage-IR)

We refer to the stage-IC and stage-IR mechanism 〈xt, p̂t〉
as the local-stage mechanism. The payment function pt is
computed as the sum of p̂t and st, where st only depends
on the historical bids b(1,t−1) and does not depend on bt.
The stage mechanism 〈x, p〉 can be interpreted as follows:

(1) The seller first charges a spend st from the buyer before
the buyer learns his valuation vt;

(2) The seller runs the local-stage mechanism 〈xt, p̂t〉.

Note that st is independent of the buyer’s bid bt at stage
t, and therefore, the stage mechanism 〈xt, pt〉 is stage-IC.
It is straightforward to verify that the expected utility at
stage t is always −χt(g) + µt−1(g)− µt(g), independent
of balt

(
b(1,t−1)

)
. Moreover, BU is satisfied with equality

such that balUt+1(balt, bt) = balt + bt · xt(balt, bt) −
pt(balt, bt). Since both g and y are symmetric, we abuse the
notation slightly and let gt

(
gt−1(b(1,t−1)), bt

)
= gt(b(1,t))

and yt
(
gt−1(b(1,t−1)), bt

)
= yt(b(1,t)).

3.1. Revenue of Core Bank Account Mechanism

Let ût
(
balt(b(1,t−1)), bt

)
= xt

(
balt(b(1,t−1)), bt

)
· bt −

p̂t
(
balt(b(1,t−1)), bt

)
be the buyer’s utility from the

local-stage mechanism 〈xt, p̂t〉. By taking the equal-
ity in BU, we have balt+1(b(1,t)) = balt(b(1,t−1)) +

ût
(
balt(b(1,t−1)), bt

)
− st

(
balt(b(1,t−1))

)
. Plugging in

(1) and (4), and noticing that
∫ vt

0
yt
(
b(1,t−1), v

)
dv =

ût
(
balt(b(1,t−1)), vt)

)
we have:

gt(b(1,t)) = gt−1(b(1,t−1)) + ût
(
balt(b(1,t−1)), bt

)
− χt(g)

− Evt∼F̂t [ût
(
balt(b(1,t−1)), vt

)
]. (6)

Equation (6) is useful because it connects the transition
between gt−1(b(1,t−1)) and gt(b(1,t)) to the buyer’s utility
obtained from the local-stage mechanism at stage t. This
connection enables a convenient way to compute the revenue
of a core bank account mechanism.
Definition 3.2 (Revenue Tracking Program). For a core
bank account mechanism 〈g, y〉 for F̂(1,T ), we consider
a revenue tracking program ψt(ξ;B(g, y; F̂(1,T ));F(1,T ))

to compute the revenue of implementing B(g, y; F̂(1,T ))
when the buyer’s true distribution is F(1,T ). We define
ψt−1(ξ;B(g, y; F̂(1,T ));F(1,T )) to be −ξ when t = T and

E
[
yt(ξ, v

′
t) · v′t + ψt

(
gt(ξ, v

′
t);B(g, y; F̂(1,T ));F(1,T )

)]
when t < T , where the expectation is taken over vt ∼ Ft
and v′t is the buyer’s bid that maximizes her continuation
utility when her true value is vt.

The revenue tracking program provides a tool to compute
the revenue, even when the seller’s distributional informa-
tion is not perfectly aligned with the true distribution. Let
Rev(B,F(1,T )) be the revenue of implementing B when
the buyer’s true valuation is F(1,T ).

Lemma 3.3. Rev
(
B(g, y; F̂(1,T )), F(1,T )

)
can be com-

puted as ψ0(g0;B(g, y; F̂(1,T ));F(1,T )) + µT (g).

The proof of Lemma 3.3 is based on the fact that the quantity
ψ0(g0;B(g, y; F̂(1,T ));F(1,T )) can be written as

ψ0(g0;B(g, y; F̂(1,T ));F(1,T ))

= Ev(1,T )

[∑
t

yt(v
′
(1,t)) · v

′
t

]
− Ev(1,T )

[
gT (v′(1,T ))

]
(7)

where the expectation is taken over F(1,T ). Recall that
yt(v

′
(1,t)) defines the allocation rule by (2). Therefore,

Ev(1,T )
[
∑
t yt(v

′
(1,t)) · v

′
t] is exactly the expected reported

welfare, i.e., the welfare computed from the buyer’s reported
bids. Moreover, using (6) that connects g and the buyer’s
utility, we can show that gT (v′(1,T )) is equal to the buyer’s
reported utility plus µT (g), i.e.,

gT
(
v′(1,T )

)
= µT (g) +

T∑
t=1

[
xt
(
balt(v

′
(1,t−1)), bt

)
· bt

− pt
(
balt(v

′
(1,t−1)), v

′
t

)]
. (8)

We can then compute the revenue by taking the difference
between reported welfare and reported utility.

3.2. Operations on Core Bank Account Mechanism

Given a core bank account 〈g, y〉 for F̂(1,T ), we can apply
modifications on 〈g, y〉 to obtain a new core bank account
mechanism 〈g′, y′〉. We introduce three basic operations
that we will use to modify a core bank account mechanism.
These operations change the dynamics of the core bank
account mechanism, and are useful for us to unify the core
bank account mechanism (Lemma 3.5) and make it robust
(Definition 4.6).

(1) A follow-the-history operation at stage t is defined as

g′t(b(1,t)) = g′t−1(b(1,t−1)) + gt(b(1,t))− gt−1(b(1,t−1))

y′t(b(1,t)) = yt(b(1,t)).

By (2) and (3), xt(b(1,t)) = x′t(b(1,t)) and p̂t(b(1,t)) =
p̂′t(b(1,t)) for any b(1,t−1). Therefore, 〈xt, p̂t〉 under 〈g, y〉
is the same as 〈x′t, p̂′t〉 under 〈g′, y′〉 for the same history.

(2) A follow-the-state operation at stage t is defined as

g′t(b(1,t)) = gt(g
′
t−1(b(1,t−1)), bt)

y′t(b(1,t)) = yt(g
′
t−1(b(1,t−1)), bt).
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By (2) and (3), for historical bids b(1,t−1) and b′(1,t−1), if
gt−1(b(1,t−1)) = g′t−1(b′(1,t−1)), then xt(b(1,t−1), bt) =

x′t(b
′
(1,t−1), bt) and p̂t(b(1,t−1), bt) = p̂′t(b

′
(1,t−1), bt) .

Therefore, for two histories mapped to the same state,
〈xt, p̂t〉 under 〈g, y〉 is the same as 〈x′t, p̂′t〉 under 〈g′, y′〉.

(3) A state-shift operation at stage t is defined as,

g′t(b(1,t)) = gt(b(1,t)) + δ and y′t(b(1,t)) = yt(b(1,t)),

for some δ. Basically, a state shift operation simply follows
〈g, y〉 so that the local-stage mechanism remains the same.
However, there is an additional term δ that is added to the
state transition function.

Remark 3.4. It is worth noting that, although the local-
stage mechanisms are maintained for all the operations, the
stage mechanism might not be the same since the payment
pt includes an additional term, the spend st that depends
on χt(g′), µt−1(g′), and µt(g′) according to (5).

3.3. Optimal Core Bank Account Mechanism

The next lemma demonstrates that any core bank account
mechanism 〈g, y〉 can be turned into a core bank account
mechanism 〈g′, y′〉with χt(g′) = 0 for all t and µT (g′) = 0
with the same revenue.

Lemma 3.5. For a core bank account mechanism 〈g, y〉
for F̂(1,T ), we construct a core bank account mechanism
〈g′, y′〉 with χt(g′) = 0 for all t and µT (g′) = 0 that shares
the same revenue as 〈g, y〉 as follows:

• g′0 = g0 −
∑
t χt(g)− µT (g);

• For t > 0, g′t(b(1,t)) = g′t−1(b(1,t−1)) + gt(b(1,t)) −
gt−1(b(1,t−1)) + χt(g) and y′t(b(1,t)) = yt(b(1,t)).

In this construction, we apply a follow-the-history operation
and a state-shift operation with δ = χt(g) for stage t > 0,
and shift the initial state down by

∑
t χt(g) + µT (g).

Utility Interpretation. Under truthful bidding, the buyer’s
utility is ût

(
balt(b(1,t−1)), vt

)
−st

(
balt(b(1,t−1))

)
at stage

t and the expected utility is Evt∼F̂t [ût
(
balt(b(1,t−1)), vt

)
]−

st
(
balt(b(1,t−1))

)
. The spend st

(
balt(b(1,t−1))

)
is can-

celled, after taking the difference. When χt(g) = 0, the tran-
sition function (6) of g at stage t can be interpreted as: first
subtract the buyer’s expected utility at stage t and then add
the buyer’s realized utility at stage t. Therefore, for a core
bank account mechanism with χt(g) = 0 and µT (g) = 0,
we can interpret the state gt(b(1,t)) as the promised utility
of the buyer, which is the sum of the realized utility for the
first t stages and the expected utility in the future.

Dynamic Programming. We are now ready to design a
dynamic programming algorithm (Mirrokni et al., 2016b)

to compute the revenue-optimal core bank account mech-
anism. Let φt−1(ξ; F̂(1,T )) be the optimal revenue for the
sub-problem consisting of stages from t to T , when the
buyer’s true distribution is F̂(1,T ) and the current state is
ξ ≥ 0. Through backward dynamic programming from
stage T to stage 1, we can compute φt−1(ξ; F̂(1,T )) from
the following program (OPT-BAM):

max Evt∼F̂t
[
zt(ξ, vt) · vt + φt

(
ht(ξ, vt); F̂(1,T )

)]
s.t. 〈zt(ξ, ·), q̂(ξ, ·)〉 is a stage-IC and IR mechanism

∀vt, ξ + ût(ξ, vt; vt)− Ev′t∼F̂t [ût(ξ, v
′
t; v
′
t)] ≥ 0

(OPT-BAM)

where ût(ξ, vt; vt) = vt · zt(ξ, vt) − q̂t(ξ, vt). In
the above program, the free variables are zt(ξ, ·) and
q̂t(ξ, ·) while the state transition function ht(ξ, vt) =
ξ + ût(ξ, vt; vt) − Ev′t∼F̂t [ût(ξ, v

′
t; v
′
t)] is determined by

zt(ξ, vt) and q̂t(ξ, vt), and ensures consistency. Henceforth,
the task of the program is to find a local-stage mechanism
〈zt(ξ, ·), q̂t(ξ, ·)〉 that is stage-IC and stage-IR and maxi-
mizes the objective.

The optimal initial state is ξ∗0 = arg maxξ0≥0 φ0(ξ0; F̂(1,T ))

and let B(g|ξ∗0 , y|ξ∗0 ; F̂(1,T )) be the optimal mechanism. A
FPTAS can be obtained by approximating φt(·; F̂(1,T ))
by piece-wise linear functions with polynomial-many
pieces (Mirrokni et al., 2016b).

3.4. Mismatch between F(1,T ) and F̂(1,T )

Before we end this section, we provide the first component
of our robust dynamic mechanism that quantifies the revenue
loss due to the mismatch in distributional information. The
next lemma demonstrates that the gradient of the revenue
function in terms of the state is at least −1, which enables
us to relate the revenue loss to the amount of state shift.

Lemma 3.6. For any stage t, state ξ ≥ 0, and δ > 0,
φt(ξ + δ; F̂(1,T )) ≥ φt(ξ; F̂(1,T ))− δ.

With Lemma 3.6 at hand, we can show that the revenue of
the optimal dynamic mechanism for F̂(1,T ) is close to the
revenue of the optimal dynamic mechanism for F(1,T ).

Lemma 3.7. Let φ0

(
ξ̂∗0 ; F̂(1,T )

)
be the revenue of the opti-

mal dynamic mechanism for F̂(1,T ) and let φ0

(
ξ∗0 ;F(1,T )

)
be the revenue of the optimal dynamic mechanism for F(1,T ).

Then, φ0

(
ξ̂∗0 ; F̂(1,T )

)
≥ φ0

(
ξ∗0 ;F(1,T )

)
−O (∆

∑
t at).

4. Robust Bank Account Mechanism
In this section we provide the central contribution of this
paper: a framework to make the optimal bank account mech-
anism for F̂(1,T ) robust against the estimation error and the
buyer’s misreport when the true distributions are F(1,T ). We
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first show that the magnitude of the misreport can be related
to the estimation error and the sequence of a(1,T ). Next, we
demonstrate how to design a revenue robust mechanism in
which the revenue loss can be related to the magnitude of
the misreport and the estimation error. The full proofs of
this section are deferred to the full version.

4.1. Misreport from the Buyer

Since the seller does not have perfect distributional informa-
tion, there is no way for the seller to compute the buyer’s
expected future utility exactly. As a result, the seller is
not able to design a prior-dependent dynamic mechanism
achieving exact dynamic incentive-compatibility.

To this end, we modify a core bank account mechanism
〈g, y〉 for F̂(1,T ) to obtain a dynamic mechanism that is
η(1,T )-DIC for F(1,T ). To begin with, note that for an ar-
bitrary core bank account mechanism 〈g, y〉 for F̂(1,T ), the
corresponding bank account mechanism B(g, y; F̂(1,T )) is
stage-IC and BU for F̂(1,T ). Moreover, both of these prop-
erties do not depend on the the buyer’s true distributions
in a single buyer environment. Hence, B(g, y; F̂(1,T )) is
stage-IC and BU for F(1,T ). Recall that BU ensures ex-post
IR, and thus, B(g, y; F̂(1,T )) is also ex-post IR for F(1,T ).
However, B(g, y; F̂(1,T )) is no longer BI for F(1,T ). To
overcome this difficulty, we generalize the definition of BI.
Definition 4.1 (Approximate BI). A bank account mecha-
nism for F(1,T ) is δ(1,T )-BI if, for each t and any bal ≥ 0,
there exists a constant ct independent of bal such that

Evt∼Ft [vt · xt(bal, vt)− pt(bal, vt)] ∈ c+ [−δt/2, δt/2].
(δ(1,T )-BI)

Under Assumption 2.1, for the same stage mechanism, the
difference between the expected utility under F̂t and Ft is
at most ∆at. As a result, B(g, y; F̂(1,T )) is δ(1,T )-BI with
δt = 2∆at. Combining these observations, we have the
following lemma on B(g, y; F̂(1,T )) for F(1,T ):
Lemma 4.2. For a core bank account mechanism 〈g, y〉
for F̂(1,T ), B(g, y; F̂(1,T )) is stage-IC, δ(1,T )-BI with δt =
2∆at, BU and ex-post IR for F(1,T ).

For a bank account mechanism satisfying δ(1,T )-BI for
F(1,T ), the range of expected utility is δt for the t-th stage.
Therefore, no matter how the buyer misreports in the first
(t− 1) stages, her expected utility in the t-th stage can only
fluctuate by at most δt under truthful reporting. The fact that
the stage mechanisms are stage-IC for F(1,T ) implies that
the buyer’s expected utility at a stage is maximized when
she reports truthfully. Therefore, we are able to upper bound
the continuation utility from a misreport.
Lemma 4.3. For a dynamic mechanism that is stage-IC
and δ(1,T )-BI for F(1,T ), for any b(1,t−1) and vt, the dif-
ference between the continuation utility of reporting any

bt ∈ [0, at] and the continuation utility of reporting vt truth-
fully is bounded by

∑T
t′=t+1 γ

t′−t · δt′ .

As a result, once the dynamic mechanism posts a risk for
the buyer to misreport at stage t, we are able to bound the
magnitude of the buyer’s misreport. To do so, we mix the
dynamic mechanism with a random posted-price auction at
every stage, with probability λ.

Definition 4.4 (η(1,T )-DIC Mechanism). Given a bank ac-
count mechanism B = 〈x, p,balU〉 satisfying stage-IC,
δ(1,T )-BI and BU for F(1,T ), we construct a bank account
mechanism B̄ = 〈x̄, p̄,balU〉 by mixing B(x, p; F̂(1,T ))
with a random posted price mechanism with probability
λ. In particular, the random posted price mechanism at
stage t posts a price uniformly from [0, at]:

(1) x̄(bal, bt) = (1− λ) · x(bal, bt) + λ · btat ;

(2) p̄(bal, bt) = (1− λ) · p(bal, bt) + λ · b
2
t

2at
;

(3) balU(bal, bt) = (1− λ) · balU(bal, bt).

Note that a random posted price auction is stage-IC and
stage-IR. Moreover, in a random posted price mechanism
with a price uniformly drawn from [0, at] at stage t, it can
be shown that a misreport with magnitude mt will cause
the buyer a utility loss m2

t

2at
. Since the buyer is a utility-

maximizer with discounting factor γ, we have the following
lemma on the magnitude of misreport for each stage.

Lemma 4.5. For B̄ = 〈x̄, p̄,balU〉 constructed ac-
cording to Definition 4.4 from a δ(1,T )-BI mechanism,
the mechanism B̄ is stage-IC, δ(1,T )-BI and BU for
F(1,T ). Moreover, the mechanism is η(1,T )-DIC with ηt =√

2at
λ ·

∑T
t′=t+1 γ

t′−t · δt′ and ex-post IR for F(1,T ).

4.2. Revenue Robust Mechanism

Given the construction in Definition 4.4 and Lemma 4.5,
any bank account mechanism B for F̂(1,T ) can be turned
into a η(1,T )-DIC mechanism B̄ for F(1,T ) by mixing B
with a random posted price auction for each stage with
probability λ. Excluding the random posted price auction,
the remaining mechanism is in fact B with probability (1−
λ) such that for stage t, the misreport of the buyer is at most
ηt. Given η(1,T ), we construct a revenue robust mechanism
in which the revenue is robust against the buyer’s misreport.

Definition 4.6 (Revenue Robust Mechanism). For a core
bank account mechanism 〈g, y〉 for F̂(1,T ), assuming the
magnitude of the misreport at stage t is at most ηt, we
construct a revenue robust core bank account mechanism
〈g̃, ỹ〉 with βt = ∆at for all t such that g̃0 = g0 and

g̃t(b(1,t)) = gt(g̃t−1(b(1,t−1)), bt) + βt + ηt

ỹt(b(1,t)) = yt(g̃t−1(b(1,t−1)), bt).
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Basically, we apply follow-the-state operations for every
stage with an additional state shift βt + ηt. Therefore, in
B(g̃, ỹ; F̂(1,T )), the local-stage mechanism is the same as in
B(g, y; F̂(1,T )) if the state is the same. Moreover, when we
update the state, the next state is shifted up by βt + ηt. The
reason why we shift the state up is that, by Lemma 3.6 we
do not have a bound on the revenue loss when the combined
effect of the estimation error and the buyer’s misreport re-
sults in a smaller state in the next stage, but we do have one
when the combined effect results in a larger state.

Lemma 4.7. 〈g̃, ỹ〉 constructed according to Definition 4.6
is a core bank account mechanism for F̂(1,T ). When
βt = ∆at and θt(ξ) = ψt(ξ;B(g, y; F̂(1,T )); F̂(1,T )) satis-
fies θt(ξ + δ) ≥ θt(ξ)− δ for all t, ξ ≥ 0, and δ > 0,

Rev
(
B(g̃, ỹ; F̂(1,T )), F(1,T )

)
≥ Rev

(
B(g, y; F̂(1,T )), F̂(1,T )

)
−O

(∑
t

(∆at + ηt)

)
.

In particular, the condition in Lemma 4.7 is satisfied by the
revenue-optimal mechanism by Lemma 3.6.

4.3. Final Mechanism

We are ready to construct our robust bank account mech-
anism. We first compute the optimal bank account mech-
anism B(g|ξ̂∗0

, y|ξ̂∗0
; F̂(1,T )) for the estimated distributional

information F̂(1,T ) (Section 3.3). We then compute the rev-
enue robust mechanism 〈g̃, ỹ〉 from 〈g, y〉 (Definition 4.6),
and finally, mix in a random posted price mechanism to
obtain B̄(g̃|ξ̂∗0

, ỹ|ξ̂∗0
; F̂(1,T )) (Definition 4.4).

Theorem 4.8. Under Assumption 2.1, B̄(g̃|ξ̂∗0
, ỹ|ξ̂∗0

; F̂(1,T ))

is stage-IC, BU and ex-post IR for F(1,T ). The mechanism
is δ(1,T )-BI with δt = 2∆at and η(1,T )-DIC and ηt =√

2at∆
λ ·

∑T
t′=t+1 γ

t′−tat′ for F(1,T ).

In the worst case, the revenue loss from the random
posted price auction is at most the expected welfare
λ
∑
t Evt∼Ft [vt] ≤ λ

∑
t at = λT . Moreover, we can es-

tablish an upper bound on the total magnitude of the buyer’s
misreport

∑
t ηt = O(

√
∆/λ · T ). Finally, combining

Lemma 3.7 and Lemma 4.7, we have:

Theorem 4.9.

Rev
(
B̄(g̃|ξ̂∗0

, ỹ|ξ̂∗0
, F̂(1,T )), F(1,T )

)
≥ Rev

(
B∗(F(1,T )), F(1,T )

)
−O(λT +

√
∆/λ · T )

where B∗(F(1,T )) is the optimal clairvoyant mechanism for
F(1,T ), where ∆ is the bias bound in Assumption 2.1. The
revenue loss is minimized when λ = ∆

1
3 , which results in

revenue loss O(∆
1
3T ).

5. No-Regret Policy in Contextual Auctions
In this section, we apply our robust dynamic mechanism in
a learning environment, leading to policies that achieve low
regret against the optimal clairvoyant mechanism (which has
full and accurate distributional information) in the domain
of contextual auctions.

5.1. Contextual Auctions

In a contextual auction, the item at stage t is represented
by an observable feature vector ζt ∈ Rd with ‖ζt‖2 ≤
1. In line with the literature, we assume that the feature
vectors are drawn independently from a fixed distribution
D with positive-definite covariance matrix (Golrezaei et al.,
2019). The buyer’s preferences are encoded by a fixed
vector σ ∈ Rd and the buyer’s valuation at stage t takes the
form vt = at(〈σ, ζt〉+ nt), where nt is a noise term with
cumulative distribution Mt. The distribution Mt and the
feature vector ζt are known to the buyer in advance, but the
buyer’s preference vector σ remains private. In line with
the literature (Deng et al., 2019a), we make the following
technical assumption that upper bounds the sequence of
domain bounds at:

Assumption 5.1 (Deng et al. (2019a)). For all stages t, we
assume that

∑
t′≤t at′ ≤ ca · t where ca is a constant.

Assumption 5.1 limits the portion of welfare and revenue
that can arise in the first t stages, for any t. Its purpose is to
rule out situations where a large fraction of revenue comes
from the initial stages, under which a large revenue loss may
be inevitable since it is impossible for the seller to obtain a
good estimate of σ from just the first few stages.

Our task is to design a policy π that includes both a learning
policy for σ and an associated dynamic mechanism policy
to extract revenue. At the beginning of stage t, the learn-
ing policy estimates F̂t using information (at, ζt, Mt, and
b(1,t−1)) while the dynamic mechanism policy computes
the stage mechanism 〈xt, pt〉 at stage t. Let Rev(π;F(1,T ))
and Rev(B;F(1,T )) be the revenue of implementing pol-
icy π and mechanism B for F(1,T ), respectively. More-
over, let B∗(F(1,T )) denote the revenue-optimal clairvoyant
dynamic mechanism that knows F(1,T ) in advance. The
regret of policy π against the dynamic benchmark is de-
fined as Regretπ(F(1,T )) = Rev

(
B∗(F(1,T ));F(1,T )

)
−

Rev(π;F(1,T )). Our objective is to design a policy with
sublinear regret for both the clairvoyant and the semi-
clairvoyant environments.

5.2. Clairvoyant Environment

Due to space limitations, the details of our no-regret poli-
cies are deferred to the full version. Our robust dynamic
mechanism enables a no-regret policy in the clairvoyant
environment.
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Theorem 5.2. There exists a policy such that the T -stage re-
gret of the contextual auction in a clairvoyant environment is
Õ(T

6
7 ) against the optimal clairvoyant dynamic mechanism

that knows the buyer’s preference vector in advance.

5.3. Semi-clairvoyant Environment

We can generalize our results to a semi-clairvoyant envi-
ronment. In a semi-clairvoyant environment, the seller
does not know the time horizon T and he obtains the
estimated distributions in W > 1 batches, specified by
(τ1 = 1, τ2, · · · , τW , τW+1 = T + 1). The j-th batch con-
tains the estimated distributions for items arriving between
stage τj and stage (τj+1 − 1). In other words, letting Bj be
the set of stages in batch j, the seller obtains the estimated
distributions for batch j at the beginning of stage τj and not
before, so that the mechanism at stage t ∈ Bj can only de-
pend on F̂(1,τj+1−1). Henceforth, in the contextual auction,
the seller can learn the information about stage t ∈ Bj (i.e.,
at, ζt, and Mt) at the beginning of stage τj .

However, in the worst-case scenario, a semi-clairvoyant en-
vironment will degenerate to a non-clairvoyant environment
in which each batch only contains one stage, and Mirrokni
et al. (2018) demonstrate that the approximation ratio be-
tween the optimal non-clairvoyant mechanism and the op-
timal clairvoyant mechanism is at most 1

2 . To circumvent
this impossibility and obtain a no-regret policy against the
optimal clairvoyant mechanism, we introduce a measure to
capture the revenue gap between the semi-clairvoyant and
the clairvoyant mechanism:
Definition 5.3. Given B(1,W ) and a(1,T ), we define a mea-

sure V(B(1,W ), a(1,T )) =
∑W
j=1

√∑
t∈Bj a

2
t .

The regret of our policy in the semi-clairvoyant environ-
ment depends on V(B(1,W ), a(1,T )), and the regret is sub-
linear when V(B(1,W ), a(1,T )) = o(T ). Observe that,∑W
j=1

√∑
t∈Bj a

2
t ≤

∑W
j=1

∑
t∈Bj at = T . Therefore,

the difference between V(B(1,W ), a(1,T )) and T is captured

by the sum of the difference between
√∑

t∈Bj a
2
t and∑

t∈Bj at. Such a difference is small for batch j when there
exists a stage t′ ∈ Bj such that at′ is close to

∑
t∈Bj at,

which implies that there is no much difference between fo-
cusing on stage t′ only and the stages in batch Bj , since the
revenue contribution from stages other than t′ from Bj is
relatively small. Therefore, when the difference between√∑

t∈Bj a
2
t and

∑
t∈Bj at is small, a semi-clairvoyant en-

vironment degenerates to a non-clairvoyant environment.

We obtain a no-regret policy by combining our robust dy-
namic mechanism with a carefully designed learning policy.
Theorem 5.4. There exists a policy such that the T -stage
regret of the contextual auction in a semi-clairvoyant envi-

ronment is Õ
(
T

5
6 + V(B(1,W ), a(1,T ))

)
against the opti-

mal clairvoyant dynamic mechanism that knows the buyer’s
preference vector in advance. In particular, the regret is
sublinear when V(B(1,W ), a(1,T )) = o(T ).

6. Conclusion
In this paper, we provided a new framework for designing
dynamic mechanisms that are robust to estimation errors
in value distributions as well as to strategic behavior. We
applied the framework to design policies for contextual
auctions that are no-regret against the revenue-optimal dy-
namic mechanism that has full information about the buyer’s
distributions, in both the clairvoyant environment and the
semi-clairvoyant environment.

A natural direction to consider in the future is to improve
the revenue loss bound of our robust dynamic mechanism
as well as our no-regret policies. Is it possible to design a
robust dynamic mechanism or no-regret policy with smaller
revenue loss? Or could we provide a lower bound for the
loss? It would also be interesting to apply our framework to
contextual auctions with other kinds of valuation structures,
and other dynamic auction environments more generally.
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Appendix

A. Omitted Details for No-regret Policies in Contextual Auctions
We provide high-level idea of our no-regret policies in this section while the full proofs are deferred to Appendix E.

A.1. The Learning Policy

Our learning policy is adapted from the learning policy proposed in (Golrezaei et al., 2019). In both environments, our
learning policy partitions the entire time horizon into K phases, such that the partition is specified by (t1 = 1, t2, · · · , tK ,
tK+1 = T + 1). The k-th phase spans between the tk-th stage and the (tk+1 − 1)-th stage with length `k = tk+1 − tk. Let
Ek be the set of stages in phase k.

At the beginning of the k-th phase, we update the estimation of σ using the buyer’s bids from the (k − 1)-th phase, denoted
by σ̂k. For the estimation, we sample wt uniformly from [0, 1] for t ∈ Êk−1, where Êk−1 = {t ∈ Ek−1 | tk−1 − t >
c log `k−1} for some constant c. In other words, we will only use the information from the stages that are at least c log `k−1

ahead of the end of phase (k − 1). σ̂k is set to be

arg min
‖σ‖≤1

Lk−1(σ),

where

Lk−1(σ) = −
∑

t∈Êk−1

[
1{bt ≥ at · wt} log

(
1−Mt(wt − 〈σ, ζt〉)

)
+ 1{bt < at · wt} log

(
Mt(wt − 〈σ, ζt〉)

)]
.

Since we run the estimation after the (k − 1)-th phase, the seller has access to all information required to compute the loss
function Lk−1(σ), i.e., the buyer’s bids in the (k − 1)-th phase.

Note that when the buyer reports truthfully, Lk−1(σ) is exactly the negative of log-likelihood corresponding to σ. We do
not change our estimation throughout the k-th phase and the next update happens at the beginning of the (k + 1)-phase. As
a result, based on the estimate σ̂k, we compute the estimated distribution in phase k as F̂t(vt) = Mt

(
vt
at
− 〈σ̂k, ζt〉

)
for

all t ∈ Ek.

We say a lie is a misreport from the buyer that results in 1{bt ≥ at · wt} 6= 1{vt ≥ at · wt}. Let Lk−1 =
{
t ∈ Êk−1 |

1{bt ≥ at · wt} 6= 1{vt ≥ at · wt}
}

be the set of stages in which the buyer lies. For a dynamic mechanism that is
η(1,T )-DIC, we have vt − ηt ≤ bt ≤ vt + ηt. Hence, if |at ·wt − vt| > ηt, any misreport from the buyer does not result in a
lie. Therefore, a lie occurs only if vt ∈ [at ·wt − ηt, at ·wt + ηt]. By a martingale argument on the sequence of lies, we can
obtain that the total number of lies caused by the dynamic mechanism is O

(∑
t∈Êk−1

ηt
at

)
. Moreover, the buyer has an

additional motivation to misreport to change the seller’s estimation for the future phases. However, for t ∈ Êk−1, such a
gain is relatively small since the buyer discounts the future.

Let B(λ(1,K)) be a mechanism by mixing a dynamic mechanism B with the random posted-price auction with probability
λk for stage t ∈ Ek. In the random posted-price auction at stage t, the price is drawn from [0, at] uniformly at random.
Lemma A.1. In a dynamic mechanism B(λ(1,K)) constructed from a η(1,T )-DIC dynamic mechanism B, the additional

misreport at stage t ∈ Êk is O
(

1√
λk·`2k

)
. Moreover, |Lk| = O

(
1√
λk·`k

+ log `k +
∑
t∈Êk

ηt
at

)
with probability 1− 1

`k
.

Given this upper bound on |Lk−1|, the following lemma bounds the estimation error of σ̂k.
Lemma A.2 (Proposition 7.1 (Golrezaei et al., 2019)). With probability 1 − 1

`k−1
, the estimation error for phase k is

∆k ≡ ‖σ̂k − σ‖ = O
(
d · |Lk−1|

`k−1
+
√

log(`k−1·d)
`k−1

)
.

A.2. No-regret Policy in the Clairvoyant Environment

In the clairvoyant environment, our learning policy simply partitions the entire time horizon into two phases, such that the
first phase spans between stage 1 and stage Tα and the second phase spans between stage (Tα + 1) and T . For stages in the
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first phase, we will run the random posted-price auction with probability 1. Therefore, by Lemma A.1 and letting ηt = 0
for t ∈ E1, we have |L1| = O(α log T ), which implies that ∆2 = Õ(T−α/2) the with probability at least 1 − T−α by
Lemma A.2.

Applying Theorem 4.9, the revenue loss at phase 2 is at most Õ(T 1−α/6) when ∆2 = Õ(T−α/2). Under Assumption 5.1,
the total revenue loss is at most Õ(Tα + T 1−α/6). By setting α = 6

7 , we have,

Theorem A.3. The T -stage regret of a contextual auction in a clairvoyant environment is Õ(T
6
7 ) against the optimal

clairvoyant dynamic mechanism that knows the buyer’s preference vector in advance.

A.3. No-regret Policy in the Semi-Clairvoyant Environment

A.3.1. SEMI-CLAIRVOYANT MECHANISM

To begin with, we first design a semi-clairvoyant mechanism when the seller’s distributional information is perfect, i.e.,
F̂(1,T ) = F(1,T ). Let the optimal bank account mechanism for stages in Bj be 〈gj∗, yj∗〉. We show that the revenue loss of
running 〈gj∗, yj∗〉 separately for Bj against the optimal clairvoyant mechanism is Õ

(
V(B(1,W ), a(1,T )

)
.

Lemma A.4.
W∑
j=1

Rev
(
B(gj∗, yj∗; F̂(τj ,τj+1−1)), F̂(τj ,τj+1−1))

)
≥ Rev

(
B∗(F̂(1,T )), F̂(1,T )

)
− Õ

(
V(B(1,W ), a(1,T ))

)
.

To obtain a no-regret policy, we make an assumption on the measure that V(B(1,W ), a(1,T )) = o(T ); or otherwise the
semi-clairvoyant environment will degenerate to a non-clairovyant environment, in which it is impossible to obtain a
no-regret policy.

A.3.2. LEARNING POLICY

In the semi-clairvoyant environment, Our learning policy partitions the entire time horizon into K = dlog T e phases where
T is the time horizon, such that the partition is specified by (t1 = 1, t2, · · · , tK , tK+1 = T + 1), in which tk = 2k−1. The
k-th phase spans between the tk-th stage and the (tk+1 − 1)-th stage, and therefore, the length of phase k is exactly `k = tk.
Note that the partition can be implemented even when T is not known in advance.

To align our learning policy with the arrival of batches in the semi-clairvoyant environment, for each Bj that has stages
in phase k and also stages in future phases, we will split Bj into two batches such that the first batch is Bj ∩ Ek and the
second batch is Bj \Ek. We will continue this process until all batches are contained in some phase Ek. Notice that such an
operation will create at most K = O(log T ) more batches, and therefore, the revenue loss by running the optimal dynamic
mechanisms for new batches is at most Õ(V(B(1,W ), a(1,T ))) by Lemma A.4. Therefore, we will focus on the case in which
all batches are contained in some phase Ek from now on.

A.3.3. HYBRID MECHANISM

If a static mechanism is offered in each phase, since the estimation is fixed in each phase, the only incentive for the buyer
to misreport is to change the estimation in the future. However, in a dynamic mechanism, the buyer has an incentive
to misreport in order to change the stage mechanism offered in the future stages within the same phase. As previously
mentioned, the buyer’s misreport is related to estimation error for each phase, but if the average magnitude of the misreport
in a phase is close to the estimation error, or even worse, higher than the estimation error, it is impossible to obtain a much
better estimation in the next phase.

Although the static mechanism does not have a good revenue performance, it does remove the buyer’s incentive to misreport
in order to change the stage mechanism of the same phase. Motivated by this insight, we develop a hybrid mechanism,
which contains both dynamic stages dependent on the historical bids and static stages independent of the history. In other
words, we make a trade-off between the revenue loss and the number of lies. We are able to show that an additional sublinear
revenue loss is enough to substantially reduce the number of lies.

Let 〈g, y〉 be any core bank account mechanism and 〈ghybrid, yhybrid〉 be the hybrid mechanism that modifies 〈g, y〉. In



Robust Pricing in Dynamic Mechanism Design

〈ghybrid, yhybrid〉, we will modify 〈g, y〉 for each phase k. The high level idea is that we are going to offer static mechanisms
for the stages in which at is small and offer dynamic mechanisms for stages in which at is large. One can interpret this
procedure as an implementation of online bundling for the stages in which at is small. More formally, we partition the
stages in Ek into two sets according to the size of at: for a fixed ω ∈ (0, 1), let Eωk = {t ∈ Ek|at ≤ `ωk }. We are going to
offer static mechanisms for stages in Eωk and dynamic mechanism for stages in Ek \ Eωk .

Let t∗ be the minimum index of a stage in Eωk such that
∑
t≤t∗,t∈Eωk

at ≥ ι(k), where ω and ι(k) is an adjustable parameter.
We will then offer a give-for-free mechanism for stages in {t ∈ Ek | t ≤ t∗} such that we always allocate the item to the
buyer without charging anything; and for for stages in {t ∈ Ek | t > t∗},

• If the state gt ≥ E[vt], we will offer a give-for-free mechanism with an extra payment E[vt], i.e., we allocate the item
to the buyer and charge the buyer E[vt], no matter what her bid is;

• otherwise, always allocate nothing to the buyer and charge her nothing;

Due to the martingale nature of the state g, the probability that gt < Et[vt] is small if we properly choose ι(k) that
is sublinear in terms of `k. To limit the magnitude of the buyer’s misreport, we again mix B(ghybrid, yhybrid; F̂(1,T ))
with a random posted price mechanism with probability λk for stage t ∈ Ek as constructed in Definition 4.4 to obtain
B̄(ghybrid, yhybrid; F̂(1,T )).

Lemma A.5. With properly chosen ι(k),

Rev
(
B(ghybrid, yhybrid; F̂(1,T )), F̂(1,T )

)
≥ Rev

(
B(g, y; F̂(1,T )), F̂(1,T )

)
− Õ

(
T

1
2 (ω+1)

)
−
∑
k

λk`k

and in B̄(ghybrid, yhybrid; F̂(1,T )),
∑
t∈Êk

ηt
at
≤ Õ

(
`1−ωk

)
with probability at least 1− 1

`k
for any phase k.

A.3.4. FINAL POLICY

We are now ready to put together our learning policy, the robust bank account mechanism, the semi-clairvoyant mech-
anism, and the hybrid mechanism to obtain a robust dynamic contextual auction policy for the semi-clairvoyant envi-
ronment: (1) at the start of phase k, estimate σ̂k = arg min‖σ‖≤1 Lk−1(σ); (2) then construct the semi-clairvoyant
hybrid mechanism 〈gsemi,hybrid,k, ysemi,hybrid,k〉; and then implement the robust semi-clairvoyant hybrid mechanism
〈g̃semi,hybrid,k, ỹsemi,hybrid,k〉.

For the first few phases with length less than T 5/6, we simply bound the regret by
∑
k

∑
t∈Ek at = O(T 5/6). For

`k > T 5/6, from Lemma A.4 and Lemma A.5 the revenue loss from the semi-clairvoyant hybrid mechanism is
Õ
(
V(B(1,W ), a(1,T )) + T

1
2 (ω+1) +

∑
k λk`k

)
. As for the robust semi-clairvoyant hybrid mechanism, by Lemma 4.7,

the revenue loss is O
(∑

k `kλk + `k

√
∆k

λk

)
. By Lemma A.2, ∆k = Õ(`−ωk ) and we can set λk = `

− 1
3ω

k and ω = 1
2 , which

yields:

Theorem A.6. The T -stage regret of the robust dynamic contextual auction policy in the semi-clairvoyant environment is
Õ
(
T

5
6 + V(B(1,W ), a(1,T ))

)
against the optimal dynamic mechanism. When V(B(1,W ), a(1,T )) = o(T ), then our policy is

with no-regret.

B. Helper Lemmas
Lemma B.1. In a single buyer setting, every stage IC and IR mechanism 〈x, p〉 can be represented by a mixture of
posted-price auctions such that the probability density to offer a posted price r is f(r) = dx(r)

dr .

Proof. We show that such a mixture of posted price auctions preserve the allocation rule and payment rule. By the celebrated
Myerson’s lemma (Myerson, 1981), a mechanism is IC if and only if the allocation rule is monotonically non-decreasing,
i.e., dx(r)

dr ≥ 0 for all valid r. Therefore, the density function of posted prices f(r) is well-defined. Moreover, for a buyer
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with bid b, his allocation probability is
∫ b

0
f(r)dr =

∫ b
0
dx(r)
dr dr = x(r), which implies that the allocation probability is

preserved. Moreover, Myerson’s lemma (Myerson, 1981) demonstrated that the payment rule is uniquely determined by the
allocation rule: p(b) =

∫ b
0
r · dx(r)

dr dr, which is exactly the payment collected from our mixture of posted price auctions for
valuation v.

Lemma B.2. For v ∈ [v̂ −∆, v̂ + ∆] and any stage IC and IR mechanism 〈x, p〉, we have u(v)−∆ ≤ u(v̂) ≤ u(v) + ∆
where u(v) = x(v) · v − p(v).

Proof. Since 〈x, p〉 is a stage IC and IR mechanism, by Lemma B.1, we can equivalently offer a mixture of posted price
auctions such that the probability density to post a price r is f(r) = dx(r)

dr . Therefore, we can express the utility of the buyer
for valuation vt as

∫ dx(r)
dr (v − r)+dr. We first show the first inequality:

x(v) · v − p(v) =

∫
dx(r)

dr
(v − r)+dr

≤
∫
dx(r)

dr
(v̂ + ∆− r)+dr

≤
∫
dx(r)

dr
(v̂ − r)+dr + ∆

= x(v̂) · v̂ − p(v̂) + ∆

where the first equality follows that 〈x, p〉 is stage-IC and Lemma B.1. By a similar argument, we can prove the second
inequality.

The following is a corollary of Lemma B.2, which demonstrates that the difference of expected utility due to the mismatch
of distributional information can be related to the estimation error.
Corollary B.3. For F(1,T ) and F̂(1,T ) satisfying Assumption 2.1, and for any stage IC and IR mechanism 〈x, p〉, we have

Evt∼Ft [u(vt)]−∆at ≤ Evt∼F̂t [u(vt)] ≤ Evt∼Ft [u(vt)] + ∆at.

The following lemma demonstrates that the difference of expected welfare due to the mismatch of distributional information
can be related to the estimation error.
Lemma B.4. For F(1,T ) and F̂(1,T ) satisfying Assumption 2.1, and for any stage IC and IR mechanism 〈x, p〉, we have

Evt∼Ft [xt(vt) · vt]− (cf + 1)∆at ≤ Evt∼F̂t [xt(vt) · vt] ≤ Evt∼Ft [xt(vt) · vt] + (cf + 1)∆at

Proof. Since 〈x, p〉 is an stage IC and IR mechanism, by Lemma B.1, we can equivalently offer a mixture of posted price
auctions such that the probability density to post a price r is f(r) = dx(r)

dr . Denote the distribution that εt follows as Gt.

We first show the first inequality:

Evt∼Ft [xt(vt) · vt] = Evt∼F̂t [xt(vt + εtat) · (vt + εtat)]

=

∫
dxt(r)

dr
· Evt∼F̂t [1{vt + εtat ≥ r} · (vt + εtat)]dr

≤
∫
dxt(r)

dr
· Evt∼F̂t [1{vt + ∆at ≥ r} · (vt + ∆at)]dr

≤
∫
dxt(r)

dr
· Evt∼F̂t [1{vt + ∆at ≥ r} · (vt + ∆at)]dr

≤
∫
dxt(r)

dr
· Evt∼F̂t [1{vt + ∆at ≥ r} · vt]dr + ∆at

=

∫
dxt(r)

dr
· Evt∼F̂t [1{vt ≥ r} · vt + 1{r −∆at ≤ vt ≤ r} · vt]dr + ∆at

= Evt∼F̂t [xt(vt) · vt] +

∫
dxt(r)

dr
·
[∫ r

r−∆at

vt · ft(vt)dvt
]
dr + ∆at

≤ Evt∼F̂t [xt(vt) · vt] + (cf + 1)∆at (9)
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where the last inequality follows that vt ≤ at and ft(vt) ≤ cf
at

. By a similar argument, we can prove the second
inequality.

C. Omitted Proofs of Section 3
C.1. Proof of Lemma 3.3

Proof of Lemma 3.3. Consider the expression in (7) and notice that from Definition 3.1, yt(v′(1,t)) corresponds to the stage
allocation rule, and thus, yt(v′(1,t)) · v

′
t adds the reported stage welfare, i.e., the stage welfare computed from the reported

bid, to the result. Therefore, all that remains to show is that gT (v′(1,T )) equals to the buyer’s reported utility plus µT (g).
Notice that that

gT (b(1,T )) = g0 +

T∑
t=1

(
gt(b(1,t))− gt−1(b(1,t−1))

)
(10)

where by (6), we have

gt(b(1,t))− gt−1(b(1,t−1)) = ût(balt(b(1,t−1)), bt)− Evt∼F̂t [ût(balt(b(1,t−1)), vt)]− χt(g) (11)

Moreover, by (4), the additional payment st under g is

st
(
balt(b(1,t−1))

)
= Evt∼F̂t [ût(balt(b(1,t−1)), vt)] + χt(g)− µt−1(g) + µt(g) (12)

Let ut(bal, ·) = ût(bal, ·)− st(bal). Plugging (12) into (11), we have

gt(b(1,t))− gt−1(b(1,t−1)) = ut(balt(b(1,t−1)), bt)− µt−1(g) + µt(g) (13)

Plugging (13) into (10), we have

gT (b(1,T )) = g0 +

T∑
t=1

(
ut
(
balt(b(1,t−1)), bt

)
− µt−1(g) + µt(g)

)
=

T∑
t=1

ut
(
balt(b(1,t−1)), bt

)
+ µT (g)

where the second equality follows the telescoping sum of µ and the fact that µ0 = g0.

C.2. Proof of Lemma 3.5

Proof. First, it is straightforward to verify that y′t is a sub-gradient of g′t with respect to bt and g′t is symmetric, convex in bt,
and weakly increasing in bt. For the consistency of g′, we will show that χt(g′) = 0 for all t ∈ A:

Evt∼F̂t [g
′
t(b(1,t−1), vt)] = Evt∼F̂t [g

′
t−1(b(1,t−1)) + gt(b(1,t−1), vt)− gt−1(b(1,t−1)) + χt(g)]

= g′t−1(b(1,t−1)) + Evt∼F̂t [gt(b(1,t−1), vt)]− gt−1(b(1,t−1)) + χt(g)

= g′t−1(b(1,t−1))− χt(g) + χt(g)

= g′t−1(b(1,t−1)).

where the third equality follows the fact that g is consistent. Finally, we show that for all t and b(1,t), g′t(b(1,t)) ≥ 0.

Claim C.1. For a core bank account mechanism 〈g, y〉 with χt(g) = 0 for all t, we have µ0 ≥ µ1 ≥ · · · ≥ µT (g) where
µt(g) = infb(1,t) gt(b(1,t)).

Proof. Let (b(1,t))min = arg minb(1,t) gt(b(1,t)). Notice that we have

µt ≤ gt
(
(b(1,t−1))min, 0

)
= gt

(
(b(1,t−1))min

)
+ ût

(
balt(b(1,t−1))min, 0

)
− Evt∼F̂t [ût

(
balt(b(1,t−1))min, vt

)
]− χt(g)

= gt
(
(b(1,t−1))min

)
− Evt∼F̂t [ût

(
balt(b(1,t−1))min, vt

)
]

= µt−1 − Evt∼F̂t [ût
(
balt(b(1,t−1))min, vt

)
]

≤ µt−1
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where ût(b(1,t)) = xt(b(1,t)) ·bt− p̂t(b(1,t)) and xt, p̂t, and balt are derived fromB(g, y; F̂(1,T )) according to Definition 3.1.
Moreover, the first equality follows the definition of µt.

By Claim C.1, it suffices to show that µT (g′) = infb(1,T )
g′T (b(1,T )) ≥ 0. However, from our construction, we have for all

b(1,t),

g′t(b(1,t)) = g′0 +

t∑
t′=1

(
gt′(b(1,t′))− gt′−1(b(1,t′−1)) + χt′(g)

)
= gt(b(1,t))−

T∑
t′=t+1

χt′(g)− µT (g). (14)

Therefore, for b(1,T ), we have g′T (b(1,T )) = gT (b(1,T ))− µT (g), which implies that µT (g′) = µT (g)− µT (g) = 0. Thus,
we have finished showing that 〈g′, y′〉 is a valid core bank account mechanism for F̂(1,T ).

As for the revenue performance, notice that, (14) implies that

g′t
(
g′t−1(b(1,t−1)), bt

)
= gt

(
gt−1(b(1,t−1)), bt

)
−

T∑
t′=t+1

χt′(g)− µT (g)

= gt

(
g′t−1(b(1,t−1)) +

T∑
t′=t

χt′(g) + µT (g), bt

)
−

T∑
t′=t+1

χt′(g)− µT (g).

Thus, for all ξ ≥ 0, we have

g′t(ξ, bt) = gt

(
ξ +

T∑
t′=t

χt′(g) + µT (g), bt

)
−

T∑
t′=t+1

χt′(g)− µT (g) (15)

For convenience, let θt(ξ) = ψt(ξ;B(g′, y′; F̂(1,T )); F̂(1,T )) and ρt(ξ) = ψt(ξ;B(g, y; F̂(1,T )); F̂(1,T )). By Lemma 3.3
and the fact that µT (g′) = 0, all that remains to show is that θ0(g0 −

∑
t χt(g)− µT (g)) = ρ0(g0) + µT (g). We prove by

a backward induction from t = T to t = 0 to show that for all t and ξ ≥ 0.

θt

(
ξ −

T∑
t′=t+1

χt′(g)− µT (g)

)
= ρt(ξ) + µT (g).

It is obvious that the base case t = T is true since θT (ξ − µT (g)) = −ξ + µT (g) = ρT (ξ) + µT (g) by the boundary
condition. Assume it is true for all t′ ≥ t and for t− 1, notice that by the construction of y′t and (14), we have

y′t
(
g′t−1(b(1,t−1)), bt

)
= yt

(
gt−1(b(1,t−1)), bt

)
= yt

(
g′t−1(b(1,t−1)) +

T∑
t′=t

χt′(g) + µT (g), bt

)
(16)

Therefore, we have

θt−1

(
ξ −

T∑
t′=t

χt′(g)− µT (g)

)

= Evt∼F̂t

[
y′t

(
ξ −

T∑
t′=t

χt′(g)− µT (g), vt

)
· vt + θt

(
g′t(ξ −

T∑
t′=t

χt′(g)− µT (g), vt)

)]

= Evt∼F̂t

[
yt(ξ, vt) · vt + ρt

(
g′t(ξ −

T∑
t′=t

χt′(g)− µT (g), vt) +

T∑
t′=t+1

χt′(g) + µT (g)

)
+ µT (g)

]
= Evt∼F̂t

[
yt(ξ, vt) · vt + ρt

(
gt(ξ, vt)

)]
+ µT (g)

= ρt−1(ξ) + µT (g)

where the second equality follows (16) and the induction hypothesis, while the third equality follows (15).
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C.3. Proof of Lemma 3.6

Proof. We prove by a backward induction from t = T to t = 0. It is true for the base case when t = T since
φT (ξ + δ; F̂(1,T )) = −ξ − δ = φT+1(ξ; F̂(1,T ))− δ by the boundary condition.

Suppose it is true for all t′ ≥ t. For t− 1 and ξ ≥ 0, let the local-stage mechanism 〈zt(ξ, ·), q̂t(ξ, ·)〉 be the optimal solution
of the program OPT-BAM for φt−1(ξ; F̂(1,T )). Notice that since ξ + δ > ξ, 〈zt(ξ, ·), q̂t(ξ, ·)〉 is also a feasible solution
of the program OPT-BAM for φt−1(ξ + δ; F̂(1,T )). By using 〈zt(ξ, ·), q̂t(ξ, ·)〉 as a solution, the corresponding transition
function h′t satisfies

h′t(ξ + δ, vt) = ξ + δ + ût(ξ, vt; vt)− Ev′t∼F̂t [ût(ξ, v
′
t; v
′
t)] = ht(ξ, vt) + δ.

Therefore, we have

φt−1(ξ + δ; F̂(1,T )) ≥ Evt∼F̂t [zt(ξ, vt) · vt + φt(h
′
t(ξ + δ, vt); F̂(1,T ))]

= Evt∼F̂t [zt(ξ, vt) · vt + φt(ht(ξ, vt) + δ; F̂(1,T ))]

≥ Evt∼F̂t [zt(ξ, vt) · vt + φt(ht(ξ, vt); F̂(1,T ))− δ]

= φt−1(ξ; F̂(1,T ))− δ

where the last inequality follows the induction hypothesis.

C.4. Proof of Lemma 3.7

Proof. The first inequality directly follows the choice of ξ̂∗0 . For the second inequality, we prove by a backward induction
from t = T to t = 0 to show that for all t and ξ ≥ 0

φt

(
ξ + 2∆

T∑
t′=t+1

at′ ; F̂(1,T )

)
≥ φt(ξ;F(1,T ))− (cf + 5)∆

T∑
t′=t+1

at′ . (17)

It is obvious that the base case is true for t = T . Suppose it is true for all t′ ≥ t. For t− 1 and ξ ≥ 0, let the local-stage
mechanism 〈zt(ξ, ·;F(1,T )), q̂t(ξ, ·;F(1,T ))〉 be the optimal solution of the program OPT-BAM for φt−1(ξ;F(1,T )).

Since 〈zt(ξ, ·;F(1,T )), q̂t(ξ, ·;F(1,T ))〉 is a stage IC and IR mechanism, such a mechanism can be a feasible solution for
φt−1(ξ+ 2∆

∑T
t′=t at′ ; F̂(1,T )) if it satisfies the consistency constraints of program OPT-BAM. By Corollary B.3, we have

Evt∼Ft [ût(ξ, vt; vt)]−∆at ≤ Evt∼F̂t [ût(ξ, vt; vt)] ≤ Evt∼Ft [ût(ξ, vt; vt)] + ∆at (18)

Let ht(ξ, ·;F(1,T )) be the transition function for φt−1(ξ;F(1,T )) and let h′t(ξ + ∆
∑T
t′=t at′ , ·; F̂(1,T )) be the transition

function when using 〈zt(ξ, ·;F(1,T )), p̂t(ξ, ·;F(1,T ))〉 for φt−1(ξ + ∆
∑T
t′=t at′ ; F̂(1,T )). Therefore, we have

h′t(ξ + 2∆

T∑
t′=t

at′ , vt; F̂(1,T )) = ξ + 2∆

T∑
t′=t

at′ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼F̂t [ût(ξ, v
′
t; v
′
t;F(1,T ))] (19)

where ût(ξ, vt; vt;F(1,T )) = vt · zt(ξ, vt;F(1,T ))− q̂t(ξ, vt;F(1,T )). Moreover,

ht(ξ, vt;F(1,T )) = ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v
′
t; v
′
t;F(1,T ))] (20)

Comparing (19) and (20) and combining with (18), we have

ht(ξ, vt;F(1,T )) + ∆at + 2∆

T∑
t′=t+1

at′ ≤ h′t(ξ + 2∆

T∑
t′=t

at′ , vt; F̂(1,T ))

≤ ht(ξ, vt;F(1,T )) + 3∆at + 2∆

T∑
t′=t+1

at′ (21)
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Therefore, 〈zt(ξ, ·;F(1,T )), q̂t(ξ, ·;F(1,T ))〉 is a feasible solution for φt−1(ξ + 2∆
∑T
t′=t at; F̂(1,T )).

By Lemma 3.6 and (21), we have

φt
(
h′t(ξ + 2∆

T∑
t′=t

at′ , vt; F̂(1,T )); F̂(1,T )

)
≥ φt

(
ht(ξ, vt;F(1,T )) + ∆at + 2∆

T∑
t′=t+1

at′ ; F̂(1,T )

)
− 2∆at

≥ φt
(
ht(ξ, vt;F(1,T )) + ∆at;F(1,T )

)
− 2∆at − (cf + 5) ·∆ ·

T∑
t′=t+1

at′ (22)

where the last inequality is by the induction hypothesis. Since φt−1(·|F̂ ) optimizes over all possible choice of local-stage
mechanisms and 〈zt(ξ, ·;F(1,T )), q̂t(ξ, ·;F(1,T ))〉 is a feasible solution for φt−1(ξ + ∆

∑T
t′=t at; F̂(1,T )), we have

φt−1(ξ + 2∆

T∑
t′=t

at′ ; F̂(1,T ))

≥ Evt∼F̂t

[
zt(ξ, vt;F(1,T )) · vt + φt

(
h′t(ξ + 2∆

T∑
t′=t

at′ , vt; F̂(1,T )); F̂(1,T )

)]

≥ Evt∼F̂t

[
zt(ξ, vt|F ) · vt + φt

(
ht(ξ, vt;F(1,T )) + ∆at;F(1,T )

)
− 2∆at − (cf + 5) ·∆ ·

T∑
t′=t+1

at′

]
= φt(ξ;F(1,T ))−

(
Evt∼Ft [zt(ξ, vt;F(1,T )) · vt]− Evt∼F̂t [zt(ξ, vt;F(1,T )) · vt]

)
−
(
Evt∼Ft [φt

(
ht(ξ, vt;F(1,T ));F(1,T )

)
]− Evt∼F̂t [φt

(
ht(ξ, vt;F(1,T )) + ∆at;F(1,T )

)
]
)

− (cf + 5) ·∆ ·
T∑

t′=t+1

at′ − 2∆at (23)

where the second inequality follows (22). All that remains to show is the two terms in the big brackets of (23) can be
bounded. Using Lemma B.4 for the first term, we have

Evt∼Ft [zt(ξ, vt;F(1,T )) · vt] ≤ Evt∼F̂t [zt(ξ, vt;F(1,T )) · vt] + (cf + 1)∆at (24)

Moreover, for the second term, we have

Evt∼Ft [φt
(
ht(ξ, vt;F(1,T ));F(1,T )

)
]

= Evt∼Ft
[
φt
(
ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))];F(1,T )

)]
= Evt∼F̂t

[
φt
(
ξ + ût(ξ, vt + εtat; vt + εtat;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))];F(1,T )

)]
(25)

By Lemma B.2, we have

ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v
′
t; v
′
t;F(1,T ))]−∆at

≤ ξ + ût(ξ, vt + εtat; vt + εtat;F(1,T ))− Ev′t∼Ft [ût(ξ, v
′
t; v
′
t;F(1,T ))]

≤ ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v
′
t; v
′
t;F(1,T ))] + ∆at

By Lemma 3.6, we have

φt
(
ξ + ût(ξ, vt + εtat; vt + εtat;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))];F(1,T )

)
≤ φt

(
ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))] + ∆at;F(1,T )

)
+ 2∆at (26)
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Combining (25) and (26), we have

Evt∼Ft [φt
(
ht(ξ, vt;F(1,T ));F(1,T )

)
]

= Evt∼Ft
[
φt
(
ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))];F(1,T )

)]
= Evt∼F̂t

[
φt
(
ξ + ût(ξ, vt + εtat; vt + εtat;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))];F(1,T )

)]
≤ Evt∼F̂t

[
φt
(
ξ + ût(ξ, vt; vt;F(1,T ))− Ev′t∼Ft [ût(ξ, v

′
t; v
′
t;F(1,T ))] + ∆at;F(1,T )

)]
+ 2∆at (27)

We finish the induction by plugging (24) and (27) into (23).

D. Omitted Proofs of Section 4
D.1. Proof of Lemma 4.2

Proof. SinceB(g, y; F̂(1,T )) = 〈x, p,balU〉 is stage-IC and BU for F̂(1,T ), the mechanism is also stage-IC and BU for F(1,T )

by the observation that these two properties do not depend on the underlying distributions. Recall that BU implies ex-post
IR. Therefore, B(g, y; F̂(1,T )) is also ex-post IR for F(1,T ).

As for the balance independence property, since the local-stage mechanism 〈xt, p̂t〉 constructed by B(g, y; F̂(1,T )) according
to Definition 3.1 is a stage-IC and IR mechanism, by Corollary B.3, for any bal ≥ 0, we have

Evt∼Ft [vt · xt(bal, vt)− p̂t(bal, vt)]−∆at ≤ Evt∼F̂t [vt · xt(bal, vt)− p̂t(bal, vt)]

≤ Evt∼Ft [vt · xt(bal, vt)− p̂t(bal, vt)] + ∆at.

Using the fact that pt(bal, vt) = p̂t(bal, vt) + st(bal) and 〈xt, pt〉 is BI for F̂(1,T ), we have

Evt∼Ft [vt · xt(bal, vt)− pt(bal, vt)] ∈ [c−∆at, c+ ∆at]

where c = Evt∼F̂t [vt · xt(bal, vt)− pt(bal, vt)] is a constant independent of bal. Therefore, we prove that B(g, y; F̂(1,T ))
is δ(1,T )-BI with δt = 2∆at for F(1,T ).

D.2. Proof of Lemma 4.3

Proof. We consider a fixed combination of b(1,t) and vt. Let (Xt′ , Pt′) be a random variable representing the stage

mechanism at stage t′. Let
(
XOPT
t′ , POPTt′

)T
t′=t+1

be the sequence of stage mechanisms corresponding to the optimal play

for stages between t and (T−1) and let
(
XTruthful
t′ , PTruthfult′

)T
t′=t+1

be the sequence of stage mechanisms corresponding

to playing truthfully for stages between t and (T − 1).

By playing truthfully for all stages between t and T , the buyer’s utility is

uTruthfult = E
(XTruthfult′ ,PTruthful

t′ )
T

t′=t+1

[
T∑

t′=t+1

γt
′−t · Evt′∼Ft′

[
vt′ ·XTruthful

t′ (vt′)− PTruthfult′ (vt′)
]]
.

As for the optimal play, the buyer’s utility is at most

uOPTt = E(XOPTt′ ,POPT
t′ )

T

t′=t+1

[
T∑

t′=t+1

γt
′−t · Evt′∼Ft′

[
max
b

{
vt′ ·XOPT

t′ (b)− POPTt′ (b)
} ]]

= E
(XOPTt′ ,POPT

t′ )
T

t′=t+1

[
T∑

t′=t+1

γt
′−t · Evt′∼Ft′

[
vt′ ·XOPT

t′ (vt′)− POPTt′ (vt′)
]]
.

where the second equality is due to the fact that the mechanism is stage-IC for F(1,T ). Since the mechanism is δ(1,T )-BI, we
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have

Ut(b(1,t);F(1,T ); F̂(1,T )) ≤ uOPTt

≤ uTruthfult +

T∑
t′=t+1

γt
′−t · βt′

≤ Ut(b(1,t−1), vt;F(1,T ); F̂(1,T )) +

T∑
t′=t+1

γt
′−t · βt′ .

D.3. Proof of Lemma 4.5

Proof. Since for each stage, both the stage mechanism 〈x, p〉 and the random posted price mechanism are stage-IC, the
mixing of them are also stage-IC. For δ(1,T )-BI, notice that we apply the same random posted price mechanism for all
bal ≥ 0, which is indeed a mechanism does not depend on bal. Therefore, the random posted price mechanism is BI for any
distribution. Mixture of a δ(1,T )-BI mechanism and a BI mechanism result in a δ(1,T )-BI mechanism. Moreover, it is easy to
check that the mechanism is BU since the balance update rule is scaled to keep track on 〈x, p〉 only and the random posted
price mechanism generates non-negative utility for the buyer. Recall that BU implies ex-post IR. Therefore, the mechanism
is also ex-post IR.

For η(1,T )-DIC, notice that the buyer’s expected utility gain in the t-th round is at most δt because the mechanism is
δ(1,T )-BI. Therefore, for a buyer who discounts the future with discounting factor γ, the expected gain in the future by
misreporting at round t is at most

∑T
t′=t+1 γ

t′−tδt′ . However, in the random posted price mechanism at round t, the utility
loss of a buyer with true valuation vt from overbidding in a magnitude of mt is∫ vt+mt

vt

b− vt
at

db =
m2
t

2at
.

By a similar calculation, the utility loss of a buyer with true valuation vt from underbidding in a magnitude of mt is also
m2
t

2at
. Thus, we have

λ · m
2
t

2at
≤

T∑
t′=t+1

γt
′−t · δt′ ⇒ mt ≤

√√√√2at
λ
·

T∑
t′=t+1

γt′−t · δt′ .

D.4. Proof of Claim D.1

Claim D.1.
∑
t ηt = O(

√
∆
λ T ).

Proof. Notice that we have

∑
t

ηt =
∑
t

√√√√4at∆

λ
·

T∑
t′=t+1

γt′−tat′ =

√
4∆

λ

∑
t

√
at

√√√√ T∑
t′=t+1

γt′−tat′

≤
√

4∆

λ

√∑
t

at

√√√√∑
t

T∑
t′=t+1

γt′−tat′ ≤
√

4∆

λ

√∑
t

at

√
γ

1− γ
∑
t

at

≤

√
4γ∆

(1− γ)λ
· caT.

where the first inequality follows the Cauchy-Schwarz inequality.
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D.5. Revenue Robust Mechanism

Definition D.2 (Revenue Robust Mechanism). For a core bank account mechanism 〈g, y〉 for F̂(1,T ), assuming the misreport
of the buyer at stage t is at most ηt, we construct a revenue robust core bank account mechanism 〈g̃, ỹ〉 such that g̃0 = g0

and

• g̃t(b(1,t)) = gt(g̃t−1(b(1,t−1)), bt) + βt + ηt;

• ỹt(b(1,t)) = yt(g̃t−1(b(1,t−1)), bt).

where βt ≥ ∆at for all t.

Lemma D.3. 〈g̃, ỹ〉 constructed according to Definition D.2 is a core bank account mechanism for F̂(1,T ).

Proof. We verify that 〈g̃, ỹ〉 is a core bank account mechanism for F̂(1,T ) by checking the requirements in Definition 3.1.

First, ỹt(b(1,t)) is the sub-gradient of g̃t(b(1,t)) with respect to bt since

∂g̃t(b(1,t))

∂bt
=
∂gt(g̃t−1(b(1,t−1)), bt)

∂bt
= yt(g̃t−1(b(1,t−1)), bt) = ỹt(b(1,t))

where the second equality uses the fact that yt is a sub-gradient of gt with respect to bt.

Next, g̃t(b(1,t)) is convex in bt and weakly increasing in bt since gt(g̃t−1(b(1,t−1)), bt) is convex in bt and weakly increasing
in bt. Moreover, by the definition of g̃, g̃ is symmetric. Finally, to check the consistency of g̃, we have

g̃t−1(b(1,t−1))− Evt∼F̂t [gt(b(1,t))] = g̃t−1(b(1,t−1))− Evt∼F̂t [gt(g̃t−1(b(1,t−1)), bt) + βt + ηt]

= g̃t−1(b(1,t−1))−
(
g̃t−1(b(1,t−1)) + βt + ηt

)
= −βt − ηt

where the second inequality uses the fact that g is consistent. Therefore, we have

g̃t−1

(
b(1,t−1)

)
− Evt∼F̂t

[
g̃t
(
b(1,t−1), vt

)]
= χt(g̃)

where χt(g̃) = −βt − ηt. Moreover, since we shift the state up, g̃t(b(1,t)) ≥ 0 for all b(1,t).

For convenience, we consider a program θt(ξ) = ψt(ξ;B(g, y; F̂(1,T )); F̂(1,T )).
Lemma D.4. When βt = ∆at and θ satisfies θt(ξ + δ) ≥ θt(ξ)− δ for all t, ξ ≥ 0, and δ ≥ 0, we have

Rev
(
B(g̃, ỹ; F̂(1,T )), F(1,T )

)
≥ Rev

(
B(g, y; F̂(1,T )), F̂(1,T )

)
− (cf + 3)

∑
t

(∆at + ηt).

Proof. Let 〈zt(ξ, ·), q̂t(ξ, ·)〉 be the local-stage mechanism in B(g, y; F̂(1,T )). Moreover, let ût(ξ, ·) be the utility function
of 〈zt(ξ, ·), q̂t(ξ, ·)〉. Notice that by our construction, the local-stage mechanism used by B(g̃, ỹ; F̂(1,T )) is the same as
B(g, y; F̂(1,T )) when they share the same state.

For convenience, let ρt(ξ) = ψt(ξ;B(g̃, ỹ; F̂(1,T ));F(1,T )). By Lemma 3.3 and the fact that µT (g̃) ≥ 0 from our
construction, we have

ρ0(g̃0) ≤ Rev
(
B(g̃, ỹ; F̂(1,T )), F(1,T )

)
(28)

θ0(g0) = Rev
(
B(g, y; F̂(1,T )), F̂(1,T )

)
(29)

Next, we prove by a backward induction from t = T to t = 0 to show that for all t,

ρt(ξ) ≥ θt(ξ)−
T∑

t′=t+1

(
(cf + 2)∆at′ + βt′ + (cf + 3)ηt

)
(30)
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For the base case where t = T , it is true since we have θt(ξ) = ρt(ξ) = −ξ by the boundary condition. Assume it is true
for all t′ ≥ t, for t− 1, we have

ρt−1(ξ) = Evt∼Ft
[
zt(ξ, v

′
t) · v′t + ρt

(
g̃t(ξ, v

′
t)
)]

= Evt∼Ft
[
zt(ξ, v

′
t) · v′t + ρt

(
ξ + ût(ξ, v

′
t)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )] + βt + ηt

)]
= Ev̂t∼F̂t

[
zt(ξ, v

′
t) · v′t + ρt

(
ξ + ût(ξ, v

′
t)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )] + βt + ηt

)]
(31)

In the last equality, we assume ε follows Gt and we let v̂t be the valuation drawn from F̂t and v′t be the reported bid given
the buyer’s true valuation is vt + atεt. Therefore, we have v′t ∈ [vt −∆at − ηt, vt + ∆at + ηt]. By Lemma B.4, we have

Ev̂t∼F̂t [zt(ξ, v
′
t) · v′t] ≥ Ev̂t∼F̂t [zt(ξ, v̂t) · v̂t]− (cf + 1)(∆at + ηt) (32)

Moreover, by Lemma B.2, we have

ξ + ût(ξ, v̂t)− Ev′′t ∼F̂t [ût(ξ, v
′′
t )]−∆at + βt

≤ ξ + ût(ξ, v
′
t)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )] + βt + ηt

≤ ξ + ût(ξ, v̂t)− Ev′′t ∼F̂t [ût(ξ, v
′′
t )] + ∆at + βt + 2ηt (33)

Henceforth, from (33), we have

ρt
(
ξ + ût(ξ, v

′
t)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )] + βt + ηt

)
≥ θt

(
ξ + ût(ξ, v

′
t)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )] + βt + ηt

)
−

T∑
t′=t+1

(
(cf + 2)∆at′ + βt′ + (cf + 3)ηt′

)
≥ θt

(
ξ + ût(ξ, vt)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )]−∆at + βt

)
− 2∆at − 2ηt −

T∑
t′=t+1

(
(cf + 2)∆at′ + βt′ + (cf + 3)ηt′

)
≥ θt

(
ξ + ût(ξ, vt)− Ev′′t ∼F̂t [ût(ξ, v

′′
t )]
)
−∆at − βt − 2ηt −

T∑
t′=t+1

(
(cf + 2)∆at′ + βt′ + (cf + 3)ηt′

)
(34)

where the first inequality follows the induction hypothesis and the last two inequalities follows the assumption in the lemma
statement that θt(ξ + δ) ≥ θt(ξ)− δ for δ > 0. We finish the induction by plugging (32) and (34) into (31). Finally, we
finish the proof by combining (30) with t = 0, (28), (29), and the fact that g̃0 = g0.

E. Omitted Proofs of Appendix A
E.1. Proof of Lemma A.1

Proof. First, since the mechanism is η(1,T )-DIC, the misreport within phase k at stage t is bounded by ηt. We next bound
the additional misreport for changing the estimation for the next phase. Note that the utility gain starting from phase k is at
most

∑
t′≥`k γ

t′−t · at′ . Under Assumption 5.1, at′ ≤ ca · t′. Therefore, we have for t ∈ Êk−1,

∑
t′≥`k

γt
′−t · at′ ≤ ca ·

γ`k−t

(1− γ)2
≤ ca

(1− γ)2 · `5k

Recall that at round t, our robust dynamic mechanism is mixed with a random posted price auction with price uniformly
drawn from [0, at] with probability λ. Therefore, the additional misreport m̄t for t ∈ Êk−1 is at most

λk ·
m̄2
t

2at
≤ ca

(1− γ)2 · `5k
⇒ m̄t ≤

√
2ca · at

λk · (1− γ)2 · `5k
≤
√

2

λ
· ca

(1− γ) · `2k

where the last inequality is due to at ≤ ca · t ≤ ca · `k.
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To bound the number of lies, for t ∈ Êk−1, Let L(j) be the number of lies for the first j stages in Êk−1 and EL(j) be the
expected number of lies from stage (`k−1 + j). Recall that since we sample wt uniformly from [0, 1] and notice that a lie
occurs only if

vt − ηt − m̄t ≤ at · wt ≤ vt + ηt + m̄t,

which happens with probability at most 2cf · ηt+m̄tat
. Therefore,

EL(j) ≤ 2cf ·

(
ηt
at

+
c′√
λk · `2k

)
.

with t = `k−1 + j and c′ =
√

2ca
1−γ . Notice that E[L(j)− L(j − 1)− EL(j)] = 0, which implies that L(j)−

∑j
j′=0 EL(j′)

forms a martingale. Henceforth, by multiplicative Azuma’s inequality (see Lemma 10 (Koufogiannakis & Young, 2014))
and denoting ` = |Êk−1|, we have

Pr[L(`) ≥ 2(1 + δ)

`−1∑
j′=0

EL(j′)] ≤ exp

−δ
2
·
`−1∑
j′=0

EL(j′)


By setting δ = 2 log `k/

(∑`−1
j′=0 EL(j′)

)
, with probability at least 1− 1

`k
, we have

L(`) = O

log `k +
∑
t∈Êk

(
ηt
at

+
1√

λk · `2k

) = O

log `k +
∑
t∈Êk

ηt
at

 .

E.2. Omitted Proofs for Semi-clairvoyant Mechanism

Our semi-clairvoyant mechanism is simply to run the optimal dynamic mechanism for each batch separately. To prove
Lemma A.4, we first show that:

Lemma E.1. There exists a dynamic mechanism for F(1,T ) such that its revenue performance is
∑T
t=1 E[vt] −

O

(
log T ·

√∑T
t=1 a

2
t

)
.

Proof. Let t∗ be the first stage t such that
∑t
t′=1 E[vt′ ] ≥ 3 log T ·

√∑T
t′=1 a

2
t′ . Consider the following simple bank

account mechanism.

• For the first t∗ stages, run a give for free mechanism, in which the item is always allocated to the buyer without payment
while the balance update policy increases the balance by the buyer’s reported bid. Formally, for t ≤ t∗,

xt(bal, bt) = 1, pt(bal, bt) = 0, and balUt(bal, bt) = bal + bt;

• For the remaining stages, run a give for free mechanism with entry fee E[vt] if the balance is enough. Formally, for
t > t∗, if bal ≥ E[vt],

xt(bal, bt) = 1, pt(bal, bt) = E[vt], and balUt(bal, bt) = bal + bt − E[vt];

otherwise, when bal < E[vt], run a null mechanism

xt(bal, bt) = 0, pt(bal, bt) = 0, and balUt(bal, bt) = bal.
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Let yt =
∑t
t′=1 E[vt′ ] for t ≤ t∗ and yt =

∑t∗

t′=1 E[vt′ ]. Notice that the balance balt − yt forms a martingale. Therefore,
by Azuma’s inequality, we have for t > t∗,

Pr [balt < E[vt]] = Pr [balt − yt∗ < −(yt∗ − E[vt])]

≤ exp

(
− (yt∗ − E[vt])

2

2
∑t
t′=1 a

2
t′

)

≤ exp

(
−

4
∑T
t′=1 a

2
t′ log T

2
∑T
t′=1 a

2
t′

)
≤ 1

T 2
.

where the second inequality is due to E[vt] ≤ at ≤
√∑T

t′=1 a
2
t′ . Therefore, by union bound, we have

Pr [∃ t,balt < E[vt]] ≤
1

T
.

As a result, with probability at least 1− 1
T , we can obtain revenue

T∑
t′=t∗+1

E[vt] =

T∑
t′=1

E[vt]−
t∗∑
t′=1

E[vt] ≥
T∑
t′=1

E[vt]− 4 log T ·

√√√√ T∑
t′=1

a2
t′ ,

which concludes the proof.

Therefore, by running the optimal dynamic mechanism separately for batch j suffers a revenue loss at most Õ(
√∑

t∈Bj a
2
t ).

Taking the summation over batches concludes the proof of Lemma A.4.

F. Hybrid Mechanism
To reduce the the number of lies, observe that the buyer has no incentive to misreport if the mechanism is static, i.e., the
mechanism does not depend on the history. However, offering a static mechanism may cause huge revenue loss (Papadim-
itriou et al., 2016). We make a trade-off between the dynamic mechanism and the static mechanism to develop a hybrid
mechanism, which contains both dynamic stages dependent on the history and static stages independent of the history. The
full proofs of this section are deferred to Appendix F.3.

We first partition the stages in Ek into two sets according to the size of at. More precisely, for a fixed ω ∈ (0, 1), let
Eωk = {t ∈ Ek|at ≤ `ωk } be a subset of Ek in which the magnitude of at is bounded by `ωk . We are going to offer static
mechanisms for stages in Eωk and dynamic mechanism for stages in Ek \ Eωk .

Moreover, let t∗ be the minimum index of a stage in Ek such that
∑
t≤t∗,t∈Eωk

at ≥ 4`
1
2 (ω+1)

k log `k and let Ẽωk = {t|t ≤
t∗, at ∈ Eωk } be the set of stages that are in Eωk and before t∗. If such t∗ does not exist, simply set t∗ = `k+1 − 1.

Definition F.1 (Hybrid Mechanism). For a core bank account mechanism 〈g, y〉 for F̂(1,`k+1−1), we construct a hybrid
mechanism 〈ghybrid,k, yhybrid,k〉 for phase k:

• ghybrid,k0 = g0 +
∑
t∈Ẽωk

Evt∼F̂t [vt];

• For t < `k,

– ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + gt(b(1,t))− gt−1(b(1,t−1));

– yhybrid,kt (b(1,t)) = yt(b(1,t));

As for t ∈ Ek,

• For t ∈ Ek \ Eωk , if ghybrid,kt−1 (b(1,t−1)) ≥ gt−1(b(1,t−1))
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– ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + gt(b(1,t))− gt−1(b(1,t−1));

– yhybrid,kt (b(1,t)) = yt(b(1,t));

otherwise, ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) and yhybrid,kt (b(1,t)) = 0.

• and for t ∈ Ẽωk : ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + bt − Evt∼F̂t [vt] and yhybrid,kt (b(1,t)) = 1;

• and finally for t ∈ Eωk \ Ẽωk , if ghybrid,kt−1 (b(1,t−1)) ≥ Evt∼F̂t [vt]

– ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + bt − Evt∼F̂t [vt];
– yhybrid,kt (b(1,t)) = 1;

otherwise, ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) and yhybrid,kt (b(1,t)) = 0.

It is easy to verify that 〈ghybrid,k, yhybrid,k〉 satisfies the requirements in Definition 3.1, except that ghybrid,k might not be
symmetric. However, (1)-(5) is still well-defined with respect to the historical bids b(1,t) and Lemma 3.3 still holds. We can
apply the technique in (Mirrokni et al., 2016b; 2018) to make it symmetric without any revenue loss while maintaining all
the desired properties given in this section.

Intuitively, we first shift the initial state up by
∑
t∈Ẽωk

Evt∼F̂t [vt] and for the first (k−1) phases, we apply follow-the-history
operations so that the constructed hybrid mechanism implements the same local-stage mechanism as 〈g, y〉. For phase k, if
the state is smaller than a threshold dependent on t, we offer a null local-stage mechanism in which the allocation probability
is always 0. Otherwise, for stage t ∈ Ek \Eωk , i.e., the stage in which at is large, we apply a follow-the-history operation so
that the local-stage mechanism is the same as 〈g, y〉. As for the stages with small at, we change the local-mechanism such
that the allocation probability is always 1 no matter what the reported bid is. In particular, for t ∈ Ẽωk , ghybrid,kt (b(1,t)) ≥ 0
for all b(1,t) since the initial state is shifted up by

∑
t∈Ẽωk

Evt∼F̂t [vt].

Lemma F.2. Let I1 =
⋃
t∈Ek I

t
1 and I2 =

⋃
t∈Ek I

t
2 be the events such that

It1 = {v(1,t−1) | t ∈ Ek \ Eωk , g
hybrid,k
t−1 (v(1,t−1)) < gt−1(v(1,t−1))}

and
It2 = {v(1,t−1) | t ∈ Eωk \ Ẽωk , g

hybrid,k
t−1 (v(1,t−1)) < Evt∼F̂t [vt]}.

We have Prv(1,`k+1−1)∼F̂(1,`k+1−1)
[I1 ∪ I2] ≤ 1

`k
.

Lemma F.2 demonstrate that the probability that a null mechanism is offered is small, assuming the buyer reports truthfully.
The argument is based on the martingale nature of ghybrid,kt (b(1,t))− gt(b(1,t)). In particular, due to our construction of
ghybrid,k, we have

ghybrid,kt−1 (b(1,t−1))− gt−1(b(1,t−1)) = ghybrid,kt (b(1,t))− gt(b(1,t))

for t < `k or t ∈ Ek \ Eωk when I1 does not happen. As a result, the martingale dynamic of ghybrid,kt (b(1,t))− gt(b(1,t))
only happens for t ∈ Eωk , in which at is small. The next lemma demonstrates the revenue loss of our hybrid mechanism is
small.

Lemma F.3.

Rev
(
B(ghybrid,k, yhybrid,k; F̂(1,`k+1)), F̂(1,`k+1)

)
≥ Rev

(
B(g, y; F̂(1,`k+1−1)), F̂(1,`k+1)

)
−O(`

1
2 (ω+1)

k log `k).

The revenue loss simply depends on the choice of ω. To show the revenue performance, the key observation is that once
neither event I1 nor I2 happens, the total welfare obtained in 〈ghybrid,k, yhybrid,k〉 is at least the total welfare obtained
in 〈g, y〉 since 〈ghybrid,k, yhybrid,k〉 either follow the local-stage mechanism of 〈g, y〉 or its local-stage mechanism is a
mechanism that always allocates the item. Moreover, we exploit the martingale nature of ghybrid,k and g to show that the
expected final utility of the buyer in 〈ghybrid,k, yhybrid,k〉 is at most O(`

1
2 (ω+1)

k log `k) higher than the expected final utility
in 〈g, y〉.
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F.1. Misreport in Hybrid Mechanism

Let B̄(ghybrid,k, yhybrid,k; F̂(1,`k+1−1)) be the bank account mechanism mixing B(ghybrid,k, yhybrid,k; F̂(1,`k+1−1)) with
a random posted price mechanism with probability λk as constructed in Definition 4.4. As a result, Theorem 4.8 and

Claim D.1 applies. We will then shift the initial state in Definition F.1 with an addition amount O(
√

∆k

λk
`k) so that

Lemma F.2 holds even when the buyer misreports while the additional revenue loss is O(
√

∆k

λk
`k). Let next(t) = min{t′ ∈

Ek | t′ ∈ Ek \ Eωk , t′ > t}, which computes the minimum index of the future stage that is not in Eωk . The following lemma
characterizes the number of lies.

Lemma F.4. In B̄(ghybrid,k, yhybrid,k; F̂(1,`k+1−1)), |Lk| = O
(
`1−ωk log `k

)
with probability at least 1− 1

`k
.

Intuitively, the local-stage mechanisms for t ∈ Ẽωk are static and moreover, the local-stage mechanisms for t ∈ Eωk \ Ẽωk are
static, because the probability that event I2 happens is small even when the buyer misreports. Therefore, the gain from the
misreport in stage t ∈ Eωk with next(t)− t ≥ 3 log `k can only be obtained after 3 log `k rounds, which is relatively small.
Thus, the buyer has less incentive to misreport in these stages, which results in a small number of lies.

F.2. Direct Computation of the Hybrid Mechanism

In order to apply the framework of revenue robust mechanism in Section 4.2, it requires that θt(ξ) =
ψt(ξ;B(ghybrid, yhybrid; F̂(1,T )); F̂(1,T )) satisfies that θt(ξ + δ) ≥ θt(ξ)− δ for all t, ξ ≥ 0, and δ ≥ 0.

In order to fulfill the requirement, we directly compute the optimal hybrid mechanism. For convenience, let
φhybridt−1 (ξ; F̂(1,`k+1−1)) be the optimal revenue for the sub-problem consisting of stages t to (`k+1 − 1) with distribu-
tion F̂(1,`k+1−1), when gt−1 maps the history to ξ. For the boundary cases, φhybrid,k`k+1

(ξ; F̂(1,`k+1−1)) = −ξ. We compute

φhybrid,kt−1 (ξ; F̂(1,T )) from program OPT-BAM with φt(ξ; F̂(1,T )) replaced by φhybrid,kt−1 (ξ; F̂(1,T )):

• For t ≤ `k or t ∈ Ek \ Eωk , apply program OPT-BAM to compute φhybrid,kt−1 (ξ; F̂(1,T ));

• For t ∈ Ẽωk ,

– if ξ ≥ Evt∼F̂t [vt], set 〈zt, q̂t〉 such that zt(ξ, vt) = 1 and qt(ξ, vt) = 0 for all vt;

– otherwise, set φhybrid,kt−1 (ξ; F̂(1,T )) = −∞.

• For t ∈ Eωk \ Ẽωk ,

– if ξ ≥ Evt∼F̂t [vt], set 〈zt, q̂t〉 such that zt(ξ, vt) = 1 and qt(ξ, vt) = 0 for all vt;
– otherwise, set 〈zt, q̂t〉 such that zt(ξ, vt) = 0 and qt(ξ, vt) = 0 for all vt.

Notice that the mechanism derived from φhybrid,kt is static for t ∈ Ẽωk and for t ∈ Eωk \ Ẽωk is static with high probability,
since the probability that event I2 happens is small. Moreover, for other stages, the local-stage mechanism is computed from
program OPT-BAM, in which Lemma 3.6 is applicable. Therefore, with high probability, φhybrid,kt has the desired property
for us to apply the framework of revenue robust mechanism in Section 4.2.

Lemma F.5. For any t, ξ ≥ 0, and δ ≥ 0, with probability 1 − 1
`k

, φhybrid,kt (ξ + δ; F̂(1,T )) ≥ φhybrid,kt (ξ; F̂(1,T )) − δ,
except for t ∈ Eωk \ Ẽωk and ξ < Evt∼F̂t [vt].

F.3. Proofs of Hybrid Mechanism

F.3.1. A VALID CORE BANK ACCOUNT MECHANISM

We first verify the hybrid mechanism in Definition F.1 is a valid core bank account mechanism, except that ghybrid,k might
not be symmetric.

First, it is straightforward to verify that yhybrid,kt is a sub-gradient of ghybrid,kt with respect to bt and ghybrid,kt is symmetric,
convex in bt, and weakly increasing in bt.
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For the consistency of ghybrid,k, we will show that χt(ghybrid,k) = 0 for all t. First, for t < `k, ghybrid,k simply follows g,
and thus, χt(ghybrid,k) = χt(g) = 0. For t ∈ Ek \ Eωk , if ghybrid,kt−1 (b(1,t−1)) ≥ gt−1(b(1,t−1)), we have

Evt∼F̂t [g
hybrid,k
t (b(1,t−1), vt)] = Evt∼F̂t [g

hybrid,k
t−1 (b(1,t−1)) + gt(b(1,t−1), vt)− gt−1(b(1,t−1))]

= ghybrid,kt−1 (b(1,t−1)) + Evt∼F̂t [gt(b(1,t−1), vt)]− gt−1(b(1,t−1))]

= ghybrid,kt−1 (b(1,t−1))− χt(g)

= ghybrid,kt−1 (b(1,t−1))

where the third equality follows the fact that g is consistent and the last equality uses the fact that χt(g) =

0. If ghybrid,kt−1 (b(1,t−1)) < gt−1(b(1,t−1)), we have ghybrid,kt (b(1,t−1), vt) = ghybrid,kt−1 (b(1,t−1)). Therefore,
Evt∼F̂t [g

hybrid,k
t (b(1,t−1), vt)] = ghybrid,kt−1 (b(1,t−1)), and thus, χt(ghybrid,k) = 0.

For t ∈ Eωk , if ghybrid,kt−1 (b(1,t)) ≥ Evt∼F̂t [vt], then we have

Evt∼F̂t [g
hybrid,k
t (b(1,t−1), vt)] = Evt∼F̂t [g

hybrid,k
t−1 (b(1,t−1)) + vt − Evt∼F̂t [vt]]

= ghybrid,kt−1 (b(1,t−1)) + Evt∼F̂t [vt − Evt∼F̂t [vt]]

= ghybrid,kt−1 (b(1,t−1))

Otherwise, when ghybrid,kt−1 (b(1,t)) < Evt∼F̂t [vt], we provide a null mechanism and thus χt(ghybrid,k) = 0. Finally, we
show that for all t and b(1,t), g

hybrid,k
t (b(1,t)) ≥ 0. By Claim C.1, it suffices to show that µ`k+1−1(ghybrid,k) ≥ 0.

We first show that for all t ≤ t∗,

ghybrid,kt (b(1,t)) ≥ gt(b(1,t)) +
∑

t′∈Ẽωk ,t<t′≤t∗
Evt′∼F̂t′ [vt′ ]

by an induction from t = 0 to t = t∗. The base case t = 0 is obviously true since ghybrid,k0 = g0 +
∑
t∈Ẽωk

Evt∼F̂t [vt].
Assume it is true for all t′ < t and for t, if t ∈ Ẽωk , we have

ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + bt − Evt∼F̂t [vt]

≥ gt−1(b(1,t−1)) + bt +
∑

t′∈Ẽωk ,t<t′≤t∗
Evt′∼F̂t′ [vt′ ]

≥ gt(b(1,t)) +
∑

t′∈Ẽωk ,t<t′≤t∗
Evt′∼F̂t′ [vt′ ]

where the first inequality follows the induction hypothesis and the second inequality follows (6) such that

gt(b(1,t))− gt−1(b(1,t−1)) = ût
(
balt(b(1,t−1)), bt

)
− Evt∼F̂t [ût

(
balt(b(1,t−1)), vt

)
] ≤ bt

where ût(b(1,t)) = xt(b(1,t)) · bt − p̂t(b(1,t)) and xt and p̂t is derived from B(g, y; F̂(1,T )) according to Definition 3.1. The
inequality follows ût

(
balt(b(1,t−1)), bt

)
≤ bt and Evt∼F̂t [ût

(
balt(b(1,t−1)), vt

)
] ≥ 0. On the other hand, if t 6∈ Ẽωk , we

have

ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + gt(b(1,t))− gt−1(b(1,t−1))

≥ gt−1(b(1,t−1)) + gt(b(1,t))− gt−1(b(1,t−1)) +
∑

t′∈Ẽωk ,t<t′≤t∗
Evt′∼F̂t′ [vt′ ]

= gt(b(1,t)) +
∑

t′∈Ẽωk ,t<t′≤t∗
Evt′∼F̂t′ [vt′ ].

Therefore, we finish the proof of the induction. As a result, we have µt∗ ≥ 0. As for t > t∗, by our construction,
the update rule is in the form of either ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)) + Ca − Cb if ghybrid,kt−1 (b(1,t−1)) > Cb

or ghybrid,kt (b(1,t)) = ghybrid,kt−1 (b(1,t−1)). Thus, ghybrid,kt (b(1,t)) ≥ 0 for all b(1,t) and t > t∗, which implies that
µ`k+1−1(ghybrid,k) ≥ 0.
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F.3.2. PROOF OF LEMMA F.2

Proof. Let dt(v(1,t)) = ghybrid,kt (v(1,t))− gt(v(1,t))−
∑
t∈Ẽωk

Evt∼F̂t [vt] and we have

dt(v(1,t)) = dt−1(v(1,t−1)) +
(
ghybrid,kt (v(1,t))− ghybrid,kt−1 (v(1,t−1))

)
−
(
gt(v(1,t))− gt−1(v(1,t−1))

)
.

For t ∈ Ek \ Eωk , by the construction of ghybrid,kt , we have dt(v(1,t)) = dt−1(v(1,t−1)). Moreover, since χt(g) =

χt(g
hybrid,k) = 0, for t ∈ Eωk , we have

Evt∼F̂t [dt(v(1,t))]

= dt−1(v(1,t−1)) +
(
Evt∼F̂t [g

hybrid,k
t (v(1,t))]− ghybrid,kt−1 (v(1,t−1))

)
−
(
Evt∼F̂t [gt(v(1,t))]− gt−1(v(1,t−1))

)
= dt−1(v(1,t−1)).

and in addition, we have |dt(v(1,t)) − dt−1(v(1,t−1))| ≤ 2at. Therefore, dt(v(1,t)) forms a martingale with bounded
difference 2at for t ∈ Eωk and d0 = 0.

Notice that event I1 occurs when t ∈ Ek \ Eωk and

ghybrid,kt (v(1,t))− gt(v(1,t)) = dt(v(1,t)) +
∑
t′∈Ẽωk

Evt′∼F̂t′ [vt′ ] < 0.

Moreover, event I2 occurs when t ∈ Eωk \ Ẽωk and

ghybrid,kt (v(1,t)) = dt(v(1,t)) + gt(v(1,t)) +
∑
t′∈Ẽωk

Evt′∼F̂t′ [vt′ ] < Evt∼F̂t [vt] ≤ at ≤ `
ω
k .

Since gt(v(1,t)) ≥ 0, the above inequality holds only if

dt(v(1,t)) ≤ `ωk −
∑
t′∈Ẽωk

Evt′∼F̂t′ [vt′ ] ≤ −
1

2

∑
t′∈Ẽωk

Evt′∼F̂t′ [vt′ ]

where the last inequality is due to
∑
t∈Ẽωk

Evt∼F̂t [vt] ≥ 4`
1
2 (ω+1)

k log `k � `ωk . Thus, either event I1 or event I2 happens
only if

dt(v(1,t)) ≤ −
1

2

∑
t′∈Ẽωk

Evt′∼F̂t′ [vt′ ]

From Azuma’s inequality again, we have

Pr

dt(v(1,t)) < −
1

2

∑
t∈Ẽωk

Evt∼F̂t [vt]

 ≤ exp

(
−

4`ω+1
k log `k

2
∑
t′∈Eωk ,t′≤t

a2
t

)
≤ exp

(
−

2`ω+1
k log `k∑
t′∈Eωk

a2
t

)
≤ 1

`2k
.

where we use the fact that
∑
t∈Eωk

a2
t ≤ `1+ω

k due to
∑
t∈Ek at = Θ(`k), in which the maximum is obtained when there are

`1−ωk stages with at = `ωk . Finally, applying union bounds on `k stages, the probability that either event I1 or event I2 is at
most O( 1

`k
).

F.3.3. PROOF OF LEMMA F.3

Proof. For simlicity, let T = `k+1 − 1 in this proof. Let

ρt(ξ) = ψt(ξ;B(ghybrid,k, yhybrid,k; F̂(1,T )); F̂(1,T ))

and
θt(ξ) = ψt(ξ;B(g, y; F̂(1,T )); F̂(1,T )).
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From Lemma 3.3, we have

Rev
(
B(ghybrid,k, yhybrid,k; F̂(1,T )), F̂(1,T )

)
= ρ0(ghybrid,k0 ) + µT (ghybrid,k) ≥ ρ0(ghybrid,k0 )

Rev
(
B(g, y; F̂(1,T )), F̂(1,T )

)
= θ0(g0) + µT (g) = θ0(g0)

where we use the fact that µT (ghybrid,k) ≥ 0 and µT (g) = 0. If neither I1 nor I2 happens, from our construc-
tion of 〈ghybrid,k, yhybrid,k〉, we have for each b(1,T ), if t ∈ Eωk , then yhybrid,kt (b(1,t)) = 1 ≥ yt(b(1,t)); otherwise,
yhybrid,kt (b(1,t)) = yt(b(1,t)). Recall that from (7), we have

ρ0(ghybrid,k0 ) = Ev(1,T )∼F̂(1,T )
[
∑
t

yhybrid,kt (v(1,t)) · vt]− Ev(1,T )
[ghybrid,kT (v(1,T ))]

θ0(ghybrid,k0 ) = Ev(1,T )∼F̂(1,T )
[
∑
t

yt(v(1,t)) · vt]− Ev(1,T )
[gT (v(1,T ))]

Therefore, we have

Ev(1,T )∼F̂(1,T )
[
∑
t

yhybrid,kt (v(1,t)) · vt] ≥ Ev(1,T )∼F̂(1,T )
[
∑
t

yt(v(1,t)) · vt]. (35)

Next, we compare Ev(1,T )
[ghybrid,kT (v(1,T ))] and Ev(1,T )

[gT (v(1,T ))]. Notice that we have

ghybrid,kT (v(1,T ))

= ghybrid,k0 +
∑
t

(
ghybrid,kt (v(1,t))− ghybrid,kt−1 (v(1,t−1))

)
= ghybrid,k0 +

∑
t∈Eωk

(
ghybrid,kt (v(1,t))− ghybrid,kt−1 (v(1,t−1))

)
+

∑
t∈Ek\Eωk

(
ghybrid,kt (v(1,t))− ghybrid,kt−1 (v(1,t−1))

)
= g0 +

∑
t∈Ẽωk

Evt∼F̂t [vt] +
∑
t∈Eωk

(
ghybrid,kt (v(1,t))− ghybrid,kt−1 (v(1,t−1))

)
+

∑
t∈Ek\Eωk

(
gt(v(1,t))− gt−1(v(1,t−1))

)

Let dt(v(1,t)) = ghybrid,kt (v(1,t))− gt(v(1,t))−
∑
t∈Ẽωk

Evt∼F̂t [vt], which forms a martingale with d0 = 0, and bounded
difference 2at for t ∈ Eωk and difference 0 for t ∈ Ek \ Eωk .

Notice that
∑
t∈Eωk

a2
t ≤ `1+ω

k , in which the maximum is obtained when there are T 1−ω stages with at = `ωk . By Azuma’s
inequality, we have

Pr[|dT (v(1,T ))| ≥ t] ≤ 2 exp

(
−t2

2
∑
t∈Eωk

4a2
t

)
≤ 2 exp

(
−t2

8`1+ω
k

)
.

Let t = 4`
1
2 (ω+1)

k log `k and we have

Pr
[
|dT (v(1,T ))| ≥ 4`

1
2 (ω+1)

k log `k

]
≤ 2

T 2
.

Finally, since |dT (v(1,T ))| ≤ 2
∑
t at = cT for some constant c, we have

−Ev(1,T )
[ghybrid,kT (v(1,T ))] ≥ −Ev(1,T )

[gT (v(1,T ))]−
∑
t∈Ẽωk

Evt∼F̂t [vt]−
(

4`
1
2 (ω+1)

k log `k +
2

T 2
· 2cT

)

≥ −Ev(1,T )
[gT (v(1,T ))]− 8`

1
2 (ω+1)

k log `k −
2c

T
(36)

By Lemma F.2, the probability that either I1 or I2 happens is O( 1
T ). Moreover, the revenue loss when either event happens

is at most
∑
t at = cT . Therefore, the revenue loss caused from events I1 and I2 is at most c. Combining with (35) and

(36), we finish the proof.
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F.3.4. PROOF OF LEMMA F.4

Proof. Since 〈ghybrid,k, yhybrid,k〉 is a valid core bank account mechanism for F̂(1,T ), the bank account mechanism
B(ghybrid,k, yhybrid,k; F̂(1,T )) is stage-IC, δ(1,T )-BI, BU and ex-post IR for F(1,T ) with δt ≤ ∆kat for all t by Lemma 4.2.
As for t ∈ Ẽωk , the stage mechanism 〈xt, p̂t〉 is indeed static such that xt(ξ, bt) = 1 and p̂t(ξ, bt) = 0 for all ξ ≥ 0 and bt.
Therefore, δt = 0 for t ∈ Eωk . To bound the total magnitude of misreport, we apply Claim D.1 to obtain an upper bound

O(`k

√
∆k

λk
).

By Lemma 4.5, we have B̄(ghybrid,k, yhybrid,k; F̂(1,T )) is stage-IC, δ(1,T )-BI, BU and ex-post IR for F(1,T ). Moreover,

B̄(ghybrid,k, yhybrid,k; F̂(1,T )) is η(1,T )-DIC with ηt =
√

2at
λk
·
∑T
t′=t+1 γ

t′−tδt′ for F(1,T ). Therefore, for t ∈ Ek \ Eωk ,
we have

∑
t∈Ek\Eωk

ηt
at

=

√
2∆k

λk

∑
t∈Ek\Eωk

√
1

at

√√√√ T∑
t′=t+1

γt′−tat′

≤
√

2∆k

λk
·

√√√√ ∑
t∈Ek\Eωk

1

at

√√√√ ∑
t∈Ek\Eωk

T∑
t′=t+1

γt′−tat′

≤
√

2∆k

λk
·
√
`1−2ω
k ·

√
c`k = `1−ωk

√
2c∆k

λk
(37)

for some constant c, where the first inequality follows the Cauchy-Schwarz inequality and we use the fact that∑
t∈Ek\Eωk

1
at
≤ `1−2ω

k in which the maximum is obtained when at = `ωk for all t ∈ Ek\Eωk . When `1−ωk

√
∆k

λk
� `

1
2 (1+ω)

k ,
the misreport is relatively small compared to

∑
t∈Ẽωk

Evt∼F̂t [vt]. Therefore, Lemma F.2 still holds even the buyer misreports.

Therefore, with probability 1−O( 1
T ), the buyer is indeed facing a static mechanism even for stage t ∈ Eωk \ Ẽωk . Finally,

for t ∈ Eωk with next(t)− t ≥ 3 log 1
γ
T , we have

ηt =

√√√√2at
λk
·

T∑
t′=t+1

γt′−tδt′ ≤

√√√√√2at
λk
·

T∑
t′=t+3 log 1

γ
T

γt′−tδt′

≤

√√√√√2at∆k

λk
·

T∑
t′=t+3 log 1

γ
T

at′

T 3
≤ 1

T

√
2cat∆k

λk
≤ at
T

√
2c∆k

λk
.

where the last inequality is due to at ≥ 1. Therefore, we have∑
t∈Eωk ,next(t)−t≥3 log 1

γ
T

ηt ≤
√

2c∆k

λk
.

For t ∈ Eωk but next(t) − t < 3 log 1
γ
T , we simply use the fact that ηt ≤ at, which implies ηt/at ≤ 1. Moreover, the

number of such t is at most |Ek \Eωk | · 3 log 1
γ
T = O(`1−ωk log `k). We finish the proof of bounding the number of lies by

combining all three cases and applying Lemma A.1, and thus, we have

|Lk| = O

(
`1−ωk (

√
∆k

λk
+ log `k) + log `k

)
= O

(
`1−ωk log `k

)
because we assume ∆k

λk
< 1.

F.3.5. PROOF OF LEMMA F.5

Proof. We prove by a backward induction from t = T to t = 0. It is true for the base case when t = T since
φT (ξ + δ; F̂(1,T )) = −ξ − δ = φT+1(ξ; F̂(1,T ))− δ by the boundary condition.
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Suppose it is true for all t′ ≥ t. For t− 1 and ξ ≥ 0, if t ∈ Ek \ Eωk , we can apply a similar argument as in the proof of
Lemma 3.6. For t ∈ Ẽωk , we can again apply a similar argument as in the proof of Lemma 3.6 since the stage mechanisms
are the same for all ξ ≥ 0.

For t ∈ Eωk \ Ẽωk , Lemma F.2 holds when we shift the initial state up by an additional O(
√

∆k

λk
· `k). Therefore, with

probability 1−O( 1
T ), the buyer is facing a static mechanism, and thus, we can apply a similar argument as in the proof of

Lemma 3.6.


