
Appendix

The appendix consists of two parts. Section A contains the details for our proof. Section B
provides more detailed descriptions of our experiments and attaches additional experiments.

A Omitted Proofs

We provide a sketch of omitted proofs in this part. For future convenience, we state the expres-
sion of the following quantities for f :
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A.1 Proof of Lemma 4.1

Lemma A.1. There exists a threshold mmin = ⌦(d5/2), so that for each m > mmin, there exists
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Z 1

0
e
tP
⇣
|

mX

r=1

p
dur| >

p
t/2

⌘
dt+

Z 1

0
e
tP
⇣
|

mX

r=1

p
dvr| >

p
t/2

⌘
dt 6 2.

Thus, by chaining, we know,
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and as �! 0, B ! 0 with high probability.
Now, we prove that
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where ⇠ir is the i-th coordinate of ⇠r. By concentration of sub-gaussian, we know when t =
O(

p
log d), the probability is small.

At last, let us provide the lower bound, in which we use central limit theorem. We denote
⇠r(0) as &r. The covariance matrix of &r
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T
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It can be derived directly by using the multi-variate Berry Esseen bound: for any convex set
C,
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Thus, plugging in the expression for the gradient
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Lemma A.2. Under the assumptions of Lemma A.1, then with high probability,
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for all � 2 B(0, "), where Mu,Ku are of order ⇥(1).

Proof. The proof is almost the same as Lemma A.1. We will not reiterate it here.

[Proof of Lemma 4.1] Under the result of Lemma A.1, Lemma A.2 and L < |y �
f(a,W , � + x)| < U , notice that when � is in the interior of the ball,
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Since m = ⌦(d5/2), ⌘max(m) = ⇥
�
(logm)�1

�
, we can obtain the final result easily.

A.2 Proof of Lemma 4.2

We first provide lemmas for the proof of main theorems of the behavior of projected gradient
method on the sphere. The techniques are mainly adopted from [10], we include them here for
completeness.

Lemma A.3. For any � and �0 on the sphere with radius ", denoted as "Sd�1
, let T0 = T (�0),

then
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Furthermore, if k� � �0k < ", we will also have
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Combine Eq. (8) with (9), it gives

kPT c
0
(� � �0)k2 6 k� � �0k4

4"2
. (10)

Notice k� � �0k2 = kPT c
0
(� � �0)k2 + kPT0(� � �0)k2, plugging into Eq. (9), we can obtain

kPT c
0
(� � �0)k 6 kPT c

0
(� � �0)k2

"
, or kPT c

0
(� � �0)k > " (abandoned).
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[Proof of Lemma 4.2] For any v̂ 2 "Sd�1, let �̃1 = �0 + ⌘v̂ and �̃2 = �0 + ⌘PT0 · v̂
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Let v1 = �0 + PT0(z1 � �0), then
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A.3 Proof of Lemma 4.3 and 4.4
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Besides, for any constant \[@f(�), �] 6 �, notice that �/" 2 Sd�1

k�(�)k >
p
1� �2k@f(�)k.

Combined with the lower bound obtained in Lemma A.1 kf(�)k > LBl, we can obtain the
result.

A.4 Proof of Lemma 4.5

By Lemma 4.3, we know if \[@f(�), �] 6 �,
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That is due to the following fact: �? 2 �+
⌘ = {� : \[@f(�), �] > 1 � p

⌘/(LBl), � 2 "Sd�1},
where �? k @f(�?). Then, for any � 2 "Sd�1,
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Combined with the fact arccos(\[@f(�?), �?]) = 1, we know the corresponding solid angle with
respect to �+

⌘ will be less or equal to ⇡/2. Similar proof can be obtained for ��
⌘ .

Notice if a point � in the ball reaches the sphere at �̃ by gradient descent, then the tangent
direction along longitude at �̃ and the direction of �? should be smaller than the angle between
the @f(�) and @f(�?). Then, by basic geometry, we know if
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⇤, �t 2 �+
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A.5 Proof of Theorem 3.1 and Corollary 3.1

With the previous results, we are ready to state our main results. Recall for �, �0 2 "Sd�1, if
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Meanwhile, by Lemma 4.2, there exists approximation of PGD:
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By Lemma A.2, we have ⌫ 6 Mu logm, ⇢ 6 Ku(logm)3/2 for some Mu,Ku of order ⇥(1)
with high probability under the conditions given. Thus, there exists a threshold ⌘max(m, ") =
min{⇥

�
(logm)�2

�
, "

2}, if ⌘ 6 ⌘max(m, "), whenever �t, �t+1 2 "Sd�1 and k�(�t)k > p
⌘,

L(�t+1)� L(�t) 6 �⌦(⌘2).

We conclude the above statements by the following lemma.
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for all � 2 B(0, "), where Mu,Ku are of order ⇥(1) with high probability, besides whenever

�t 2 "Sd�1
and k�(�t)k > p

⌘,

L(�t+1)� L(�t) 6 �⌦(⌘2).

Proof. By the nature of PGD, we know �t+1 is either in the ball B(0, ") or on the sphere
"Sd�1. When �t+1 2 "Sd�1, by the analysis above, we have L(�t+1) � L(�t) 6 �⌦(⌘2). When
�t+1 2 B�(0, "), by Lemma 4.1,

L(�t+1)� L(�t) 6 �⌦(⌘).

Thus, to sum up, we have for both cases

L(�t+1)� L(�t) 6 �⌦(⌘2).

Then, we need to deal with the case when k�(�t)k 6 p
⌘. If we further denote the region

⇤+ = {� : vT⌅(�)v > �, � 2 "Sd�1} and ⇤� = {� : vT⌅(�)v 6 ��, � 2 "Sd�1}, where �
is the universal constant specified in Lemma 4.4. By Lemma 4.3 and 4.4, we know if

p
⌘ 6

LBl

p
1� �2, we have �+

⌘ ✓ ⇤+ and ��
⌘ ✓ ⇤�. �+

⌘ are those points near local optimums,
which we try to avoid being stuck at. Lemma 4.5 provides insights how can the trajectory
avoids being stuck near the local optimums.

The following corollary can help us realize Lemma 4.5. Specifically, by zooming into the
proof of Lemma 4.1, it is straightforward to obtain the following corollary.

Corollary A.1. For any �, �0 2 B(0, ")

\[@f(�), @f(�0)] ! 1,

as "! 0 in Eq. 7 under the setting of Lemma A.1 .

Proof. Once we notice that
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E
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and k@f(�)k > LBl, the proof is straightforward.

Thus, if ⌘, " are smaller than some constant thresholds, then
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�
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�
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(LBl)2

⌘
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4

stands. As a result, the trajectory can successfully avoid being stuck near local maximums.
The only case left is when k�(�t)k 6 p

⌘ and �t 2 ��
⌘ . If �⇤ is one of the local minimums

and we focus on studying the case when �t falls at the local neighborhood belongs to ��
⌘

corresponding to �⇤.
Notice that

�(�t) = �(�⇤) +

Z 1

0
r�(�⇤ + t(�t � �⇤))dt · (�t � �⇤).

By looking up the derivative of �(�), we have the following characterization:

r�(�) = ⌅(�)�rc(�)r�⇤(�)T . (11)

20



Denote
N(�) = �rc(�)r�⇤(�)T .

If � 2 "Sd�1, rc(�) = 2� is parallel to the normal vector of the tangent space at �, thus, we
have for any v, N(�)v 2 T c(�).

The fact that r�(�) = ⌅(�) + N(�) is very important, since it gives the following extra
characterization of �t: for small enough ⌘, if k�(�t)k 6 p

⌘, then k�t � �⇤k = O(
p
⌘). Besides,

since �(�⇤) = 0, if k�(�t)k 6 p
⌘, �t falls into a neighborhood of �⇤ such that ⌅ has smallest

eigenvalue larger or equal than � > 0 as long as ⌘ is small enough. Besides, we have when
k�t � �⇤k = ⌦(

p
⌘), then k�(�t)k = ⌦(

p
⌘). The previous discussion can be formalized as the

following lemma.

Lemma A.6. For small enough ⌘, if k�(�t)k 6 p
⌘, and �t is in the neighborhood of �⇤ such

that ⌅ has smallest eigenvalue larger or equal than �, then

k�t � �⇤k = O(
p
⌘).

Furthermore, we have

�(�t)
T (�t � �⇤) > �

2
k�t � �⇤k2.

Proof. By Lemma A.3, we know that for �t, �⇤ 2 "Sd�1

kPT c
�t
(�t � �⇤)k 6 k�t � �⇤k2

2"
.

As �⇤ is one of the minimizer on the sphere, we must have �(�⇤) = 0. Thus, for small enough
↵, if we denote �Pv = ⇧B(0,")(� + ↵v), for any v 2 T (�) with norm 1

k�(�Pv )� �(�⇤)k ⇡ kr�(�⇤)(�Pv � �⇤)k
> k⌅(�⇤)(�Pv � �⇤)k � kN(�⇤)(�Pv � �⇤)k

> �↵� 4↵2

"
(k⌅k+ kNk)

> �↵

2
.

If we further denote R as the region where � has the following properties:

• smallest eigenvalue of ⌅(�) larger or equal to �;

• the distance from � to one of the minimizers is at least ⌦(⌘),

with abuse of notations, we want to prove for any � belongs to R, there is a path {�t} to the
region that the distance from � to one of the minimizers is at most O(⌘), where �0 = �, such
that k�(�t)k is decreasing along the path. If that statement is true let ↵ = c

p
⌘ for some

constant c, and ⌘/"4 is small enough, then we know k�(�)k 6 p
⌘ implies � being very close to

one of the minimizers, distance up to O(
p
⌘). So

�(�t)
T (�t � �) = (�t � �⇤)T

Z 1

0
r�(�⇤ + t(�t � �⇤))dt · (�t � �⇤)

> �k�t � �⇤k2 �O(k�t � �⇤k3)

> �

2
k�t � �⇤k2.

Finally, we show we can always find such path that of decreasing norm of �. Notice

dk�(�)k2

2dt
= h�(�t),⌅

d�t
dt

i.
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If d�t/dt = �$�(�t) for some constant $, then h�(�t),⌅d�t
dt i 6 �$�k�(�t)k2, which implies

the norm is decreasing along the path. Thus, for discrete version �t+1 = ⇧B(0,")(�t�$rL(�t)),
as long as $ is small enough (can be much smaller than ⌘), combine with Lemma 4.2, the
dominating term of dk�(�t))k2/dt will be negative, thus, the proof is complete.

Now we are ready to state the convergence result when �t 2 "Sd�1 is in a neighborhood of
one of the minimizers �⇤. We have shown that eventually for some t, k�t � �⇤k 6 O(

p
⌘). We

need further to show that the trajectory will remain near �⇤ ever since.

Lemma A.7. For small enough ⌘, for a T > 0 such that k�(�T )k 6 p
⌘, and is in the neigh-

borhood of a minimizer �⇤ and ⌅ has smallest eigenvalue larger or equal than �, for any t > T ,

k�t � �⇤k 6 O(
p
⌘).

Proof. Notice that if k�t � �⇤k 6 c
p
⌘ for some constant c > 0,

k�t+1 � �⇤k2 = k�t � ⌘�(�t) + ◆t � �⇤k2

= k�t � �⇤k2 � 2⌘�(�t)
T (�t � �⇤) + 2◆Tt (�t � �⇤) + k⌘�(�t)� ◆tk2

6 (1� �⌘)k�t � �⇤k2 + k2◆tkk�t � �⇤k+ 2c⌘3 +
32⌘4

"2

6 (1� �⌘)k�t � �⇤k2 + 8⌘2.5

"
+ o(⌘2).

Then, k�t+1 � �⇤k 6 p
⌘ for small enough ⌘ and ⌘0.5/" = o(1). Further,

k�t+1 � �⇤k2 � 9⌘

�
6 (1� �⌘)(k�t � �⇤k2 � 9⌘

�
).

Then, the proof is straightforward.

Shrinking step size ⌘t The above discussions are all about constant ⌘. Now, we further
discuss about shrinking step size. Specifically, after k�(�t)k reaches

p
⌘, we can shrink the

learning rate with suitable ⌘0 < ⌘, and {⌘s}s>0 are strictly decreasing with respect to s > 0,
such that

�t+s+1 = ⇧B(0,")
⇥
�t+s � ⌘srL(�t+s)

⇤

By Lemma A.7, for small enough ⌘ and ⌘0.5/" = o(1), notice that k�t+s � �⇤k 6 ", we can still
have

k�t+1+s � �⇤k2 6 (1� �⌘s)k�t+s � �⇤k2 + 9⌘2s .

For simplicity, we denote k�t+s � �⇤k2 as Ds. We would show if ⌘s ! 0, Ds ! 0.

Lemma A.8. As long as ⌘s ! 0 and ⇧k
i=0(1��⌘i/2) ! 0, we can obtain Ds ! 0. Furthermore,

if

⌘s⇧
k
i=0(1�

�⌘s+i

2
) 6 ⌘s+k+1

for all s, k 2 N, then for all s 2 N,
Ds 6 O(⌘s).

Specifically, if ⌘s = 1/(s+ z) for large enough integer z,

Ds 6 O(
1

z + s
).
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Proof. First, if there exists S 2 N+, such that for all s > S, we have

Ds >
18⌘s
�

,

then we have
Ds+1 6 (1� �⌘s)Ds + 9⌘2s 6 (1� �⌘s

2
)Ds.

As a result, 8s > S, and k 2 N+

Ds+k+1 6 ⇧s+k
i=s (1�

�⌘i

2
)Ds.

On the other hand, if there does not exist such S, there exists infinitely many s, such that

Ds <
18⌘s
�

.

Moreover, if Ds < 18⌘s/�

Ds+1 6 (1� �⌘s)Ds + 9⌘2s

6 (1� �⌘s)
18⌘s
�

+ 9⌘2s

6 18⌘s
�

.

So, for any " > 0, we can choose large enough s, such that Ds <
18⌘s

� , and Ds+1+i < " for

any i > 0. So, we will always have Dt ! 0 as t ! 1 as long as ⇧k
i=0(1� �⌘i/2) !k!1 0 and

⌘k !k!1 0.
Besides, we have

Ds+1 6 max
n
(1� �⌘s

2
)Ds,

18⌘s
�

o
.

Notice if
⌘s⇧

k
i=0(1�

�⌘s+i

2
) 6 ⌘s+k+1 (12)

for all s, k 2 N, then for all s 2 N, we can obtain

Ds 6
18⌘s
�

.

For example, if ⌘s = 2/(�s+�z) for large enough integer z, Eq. 12 is satisfied by simple algebra
and we have

Ds 6 O(
1

z + s
).

Now we are ready to state the proof of our main theorem.

[Proof of Theorem 3.1 and and Corollary 3.1] Under the assumptions, we have the
following properties hold simultaneously:

a .

Bl 6
���
@f(a,W , � + x)

@�

��� 6 Bu

p
log d,

for all � 2 B(0, "), where Bl, Bu is of order ⇥(1).
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b .

���
@
2
f(a,W , � + x)

@�2

��� 6 Mu logm ,

���
@
2
f(a,W , � + x)

@�2
�@

2
f(a,W , �0 + x)

@�2

��� 6 Ku(logm)3/2k���0k,

for all � 2 B(0, "), where Mu,Ku are of order ⇥(1).

c.

arccos
�
min
�,�0

\[@f(�), @f(�0)]
�
+ arccos

⇣r
1� ⌘

(LBl)2

⌘
6 ⇡

4
.

d. There exists a threshold "max(m) = ⇥((logm)�1), if " < "max, with high probability, there
exists universal constants �, � > 0, for any � 2 "Sd�1, such that

\[@f(�), �] > �,

then for all kvk = 1,

sgn
⇣
(y � u)�T@f(�)

⌘
· vT⌅v > �.

As a result, whenever �t+1 2 B�(0, ")

L(�t+1)� L(�t) 6 �⌦(⌘).

Whenever �t 2 "Sd�1, condition c will ensure �t /2 ��
⌘ so that he trajectory will not stuck near

local maximums. Besides, we have k�(�)k > p
⌘ if � /2 �+

⌘ for � 2 "Sd�1. That can ensure

L(�t+1)� L(�t) 6 �⌦(⌘2) for �t, �t+1 2 "Sd�1.
From the above discussions, we divide the ball into three regions. Let R1 = B�(0, ") be the

interior of the ball. Let R2 = �+
⌘ and R3 = B(0, ") \ (R1 [R2)c. Since there exists L,U > 0

such that L < |y � f(a,W , � + x)| < U for all � 2 B(0, "), we claim at most O(⌘�2) iterations,
the trajectory will arrive at R2. That is because each step will have at least O(⌘2) progress in
decreasing the value of loss if �t /2 R2.

Lastly, when k�(�)k 6 p
⌘, the results follow by applying Lemma A.7 and A.8.

A.6 Proof of Theorem 5.1

Formal Statement of Theorem 5.1 Recall from Lemma 4.4, for m = ⌦(d5/2), there
exists a threshold "max(m) = ⇥((logm)�1), if " < "max, with high probability, there exists
universal constants �, � > 0, for any � 2 "Sd�1, such that

\[@f(�), �] > �,

then for all kvk = 1,

sgn
⇣
(y � u)�T@f(�)

⌘
· vT⌅v > �.

Based on that, there also exists a threshold ⌧" > 0, such that when " < ⌧",

min
�,�0

\[@f(�), @f(�0)]
�
> �,

and there is only one minimum on the sphere in that case.

Proof. Notice min�,�0 \[@f(�), @f(�0)]
�
! 1 as " ! 0, so we know if " is small enough, we will

have min�,�0 \[@f(�), @f(�0)]
�
> �. That means the solid cone formed by @f(�) is included in

the corresponding solid cone of ⇤+ = {� : vT⌅(�)v > �, � 2 "Sd�1}.
Assume there are two local minimums, actually in ⇤+ the local minimums are strict , then

there exists a path on the sphere such that there is a local maximum on this path. However,
that is impossible since the Hessian approximate is positive definite.
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B More About Experiments

B.1 Implementation Details

Loss landscapes on simulated data. In our experiments, we use a two-layer neural network
with the hidden size of 16 and the initialization is as Sec. 2. We first randomly choose an
two-dimensional input x with a norm smaller than the input scale. The epsilon ✏ is the product
of the perturbation ratio r and the input scale. We then randomly choose 10000 perturbations
in the epsilon ball. The adversarial losses of these perturbations on the input x are shown in
Figure 1. The choice of the input x is not important in our experiments and the landscapes
based on another random choice is shown in Sec. B.2. The impact of the width of the hidden
layer is also shown in Sec. B.2.
Trajectories on simulated data. We use the same settings for neural networks as those in
the landscapes. We choose the perturbation with the maximal loss among the 10000 random
sampled perturbations as our local maxima. To show the trajectories, we conduct PGD 10 times
with the best learning rate from 1e�6, 1e�5, 1e�4, 1e�3, 1e�2, 1e�1, 1, 1e 1, 1e2, 1e3.
Trajectories on real-world data. Our experiments in Fig. 2 are based on a real-world
dataset MNIST. We use the same multiple-layer CNN architecture except the dropout in
https://github.com/pytorch/examples/tree/master/mnist. We change the original ten-
class classification to binary classification to distinguish odd and even numbers. Because the
inputs are high-dimensional (28⇥ 28), we instead show the loss of PGD from the local maxima
to the local minima. We first randomly sample an image from MNIST as our input x. We
then start with a random perturbation and use PGD to find the local maxima. After tuning
the hyperparameters, we find that running 1000 epochs of PGD with a learning rate of 1.0 can
achieve good enough local maxima. After that, we run 1000 epochs of PGD with a learning rate
of 1.0 to show the adversarial loss of each point on the trajectory from the local maxima to the
local minima.
Dynamics of trajectories on real-world data. We use the same setting as that in Fig. 2.
To train the CNN model, we randomly sample 100 images with odd numbers and 100 figures
with even numbers from MNIST as our training data. We set the learning rate of adversarial
training as 0.01⇥ r, where r is the perturbation ratio.

B.2 Additional Results

We further analyze the impact of the hidden layer’s width on the landscapes in Fig 4 and the
landscapes with a di↵erent random seed are shown in Fig 5. We try several di↵erent random
seeds and find that the results are all consistent with our analysis. More details can be found
in the code.
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(a) Input scale=0.01, hidden

size=16

(b) Input scale=0.01, hidden

size=128

(c) Input scale=0.01, hidden

size=1024

(d) Input scale=1.0, hidden size=16 (e) Input scale=1.0, hidden

size=128

(f) Input scale=1.0, hidden

size=1024

(g) Input scale=100, hidden size=16 (h) Input scale=100, hidden

size=128

(i) Input scale=100, hidden

size=1024

Figure 4: Landscapes of adversarial losses on simulated data with di↵erent hidden sizes and di↵erent
input scales. We here fix the perturbation ratio as 10. We find that wider neural networks lead to
more regular landscapes in general.
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(a) Input scale=0.01, ratio=0.1 (b) Input scale=0.01, ratio=1.0 (c) Input scale=0.01, ratio=10

(d) Input scale=1.0, ratio=0.1 (e) Input scale=1.0, ratio=1.0 (f) Input scale=1.0, ratio=10

(g) Input scale=100, ratio=0.1 (h) Input scale=100, ratio=1.0 (i) Input scale=100, ratio=10

Figure 5: Landscapes of adversarial losses on simulated data with another random seed.
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