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In this supplementary material, we prove the convergence in §1 and show the experimental setup in §2.

1. Convergence Analysis

1.1. Background

The continuous-time replica exchange Langevin diffusion (reLD) {βt}t≥0 :=

{(
β

(1)
t

β
(2)
t

)}
t≥0

is a Markov process

compounded with a Poisson jump process. In particular, the Markov process follows the stochastic differential equations

dβ
(1)
t = −∇U(β

(1)
t )dt+

√
2τ1dW

(1)
t

dβ
(2)
t = −∇U(β

(2)
t )dt+

√
2τ2dW

(2)
t ,

(1)

where β(1)
t ,β

(2)
t are the particles (parameters) at time t in Rd,W (1),W (2) ∈ Rd are two independent Brownian motions,

U : Rd → R is the energy function, τ1 < τ2 are the temperatures. The jumps originate from the swaps of particles β(1)
t and

β
(2)
t and follow a Poisson process where the jump rate is specified as the Metropolis form rS(β

(1)
t ,β

(2)
t )dt. Here r ≥ 0 is a

constant, and S follows

S(β
(1)
t ,β

(2)
t ) = e

(
1
τ1
− 1
τ2

)(
U(β

(1)
t )−U(β

(2)
t )
)
.

Under such a swapping rate, the probability νt associated with reLD at time t is known to converge to the invariant measure

(Gibbs distribution) with density

π(β(1),β(2)) ∝ e−
U(β(1))
τ1

−U(β(2))
τ2 .

In practice, obtaining the exact energy and gradient for reLD (1) in a large dataset is quite expensive. We consider the replica

exchange stochastic gradient Langevin dynamics (reSGLD), which generates iterates {β̃
η
(k)}k≥1 as follows

β̃
η(1)

(k + 1) = β̃
η(1)

(k)− η∇Ũ(β̃
η(1)

(k)) +
√

2ητ1ξ
(1)
k

β̃
η(2)

(k + 1) = β̃
η(2)

(k)− η∇Ũ(β̃
η(2)

(k)) +
√

2ητ2ξ
(2)
k ,

(2)

where η is considered to be a fixed learning rate for ease of analysis, and ξ(1)
k and ξ(2)

k are independent Gaussian ran-

dom vectors in Rd. Moreover, the positions of the particles swap based on the stochastic swapping rate. In particular,
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S̃(β(1),β(2)) := S(β(1),β(2)) + ψ, and the stochastic gradient ∇Ũ(·) can be written as ∇U(·) + φ, where both ψ ∈ R1

and φ ∈ Rd are random variables with mean not necessarily zero. We also denote µk as the probability measure associated

with {β̃
η
(k)}k≥1 in reSGLD (2) at step k, which is close to νkη in a suitable sense.

1.2. Overview of the analysis

We aim to study the convergence analysis of the probability measure µk to the invariant measure π in terms of 2-Wasserstein

distance,

W2(µ, ν) := inf
Γ∈Couplings(µ,ν)

√∫
‖βµ − βν‖2dΓ(βµ,βν), (3)

where ‖ · ‖ is the Euclidean norm, and the infimum is taken over all joint distributions Γ(βµ,βν) with µ and ν being the

marginals distributions.

By the triangle inequality, we easily obtain that for any k ∈ N and t = kη, we have

W2(µk, π) ≤ W2(µk, νt)︸ ︷︷ ︸
Discretization error

+ W2(νt, π)︸ ︷︷ ︸
Exponential decay

.

We start with the discretization error first by analyzing how reSGLD (2) tracks the reLD (1) in 2-Wasserstein distance. The

critical part is to study the discretization of the Poisson jump process in mini-batch settings. To handle this issue, we follow

Dupuis et al. (2012) and view the swaps of positions as swaps of temperatures. Then we apply standard techniques in

stochastic calculus (Chen et al., 2019; Yin and Zhu, 2010; Sato and Nakagawa, 2014; Raginsky et al., 2017) to discretize the

Langevin diffusion and derive the corresponding discretization error.

Next, we quantify the evolution of the 2-Wasserstein distance between νt and π. The key tool is the exponential decay of

entropy (Kullback-Leibler divergence) when π satisfies the log-Sobolev inequality (LSI) (Bakry et al., 2014). To justify LSI,

we first verify LSI for reSGLD without swaps, which is a direct result given a proper Lyapunov function criterion (Cattiaux

et al., 2010) and the Poincaré inequality (Chen et al., 2019). Then we follow Chen et al. (2019) and verify LSI for reLD

with swaps by analyzing the Dirichlet form. Finally, the exponential decay of the 2-Wasserstein distance follows from the

Otto-Villani theorem by connecting the 2-Wasserstein distance with the entropy (Bakry et al., 2014).

Before we move forward, we first lay out the following assumptions:

Assumption 1 (Smoothness). The energy function U(·) is C-smoothness, which implies that there exists a Lipschitz constant

C > 0, such that for every x, y ∈ Rd, we have ‖∇U(x)−∇U(y)‖ ≤ C‖x− y‖. 1

Assumption 2 (Dissipativity). The energy function U(·) is (a, b)-dissipative, i.e. there exist constants a > 0 and b ≥ 0

such that ∀x ∈ Rd, 〈x,∇U(x)〉 ≥ a‖x‖2 − b.

Here the smoothness assumption is quite standard in studying the convergence of SGLD, and the dissipativity condition is

widely used in proving the geometric ergodicity of dynamic systems (Raginsky et al., 2017; Xu et al., 2018). Moreover, the

convexity assumption is not required in our theory.

1‖ · ‖ denotes the Euclidean L2 norm.
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1.3. Analysis of discretization error

The key to deriving the discretization error is to view the swaps of positions as swaps of the temperatures, which has been

proven equivalent in distribution (Dupuis et al., 2012). Therefore, we model reLD using the following SDE,

dβt = −∇G(βt)dt+ ΣtdW t, (4)

whereG(βt) =

(
U(β

(1)
t )

U(β
(1)
t )

)
,W ∈ R2d is a Brownian motion, Σt is a random matrix in continuous-time that swaps between

the diagonal matrices M1 =

(√
2τ1Id 0

0
√

2τ2Id

)
and M2 =

(√
2τ2Id 0

0
√

2τ1Id

)
with probability rS(β

(1)
t ,β

(2)
t )dt,

and Id ∈ Rd×d is denoted as the identity matrix.

Moreover, the corresponding discretization of replica exchange SGLD (reSGLD) follows:

β̃
η
(k + 1) = β̃

η
(k)− η∇G̃(β̃

η
(k)) +

√
ηΣ̃η(k)ξk, (5)

where ξk is a standard Gaussian distribution in R2d, and Σ̃η(k) is a random matrix in discrete-time that swaps between M1

and M2 with probability rS̃(β̃
η(1)

(k), β̃
η(2)

(k))η. We denote {β̃
η

t }t≥0 as the continuous-time interpolation of {β̃
η
(k)}k≥1,

which satisfies the following SDE,

β̃
η

t = β̃0 −
∫ t

0

∇G̃(β̃
η

bs/ηcη)ds+

∫ t

0

Σ̃ηbs/ηcηdW s. (6)

Here the random matrix Σ̃ηbs/ηcη follows a similar trajectory as Σ̃η(bs/ηc). For k ∈ N+ with t = kη, the relation

β̃
η

t = β̃
η

kη = β̃
η
(k) follows.

Lemma 1 (Discretization error). Given the smoothness and dissipativity assumptions (1) and (2), and the learning rate η

satisfying 0 < η < 1 ∧ a/C2, there exists constants D1, D2 and D3 such that

E[ sup
0≤t≤T

‖βt − β̃
η

t ||2] ≤ D1η +D2 max
k

E[‖φk‖2] +D3 max
k

√
E [|ψk|2], (7)

where D1 depends on τ1, τ2, d, T, C, a, b; D2 depends on T and C; D3 depends on r, d, T and C.

Proof Based on the replica exchange Langevin diffusion {βt}t≥0 and the continuous-time interpolation of the stochastic

gradient Langevin diffusion {β̃
η

t }t≥0, we have the following SDE for the difference βt − β̃
η

t . For any t ∈ [0, T ], we have

βt − β̃
η

t = −
∫ t

0

(∇G(βs)−∇G̃(β̃
η

bs/ηcη)ds+

∫ t

0

(Σs − Σ̃ηbs/ηcη)dW s

Indeed, note that

sup
0≤t≤T

‖βt − β̃
η

t ‖ ≤
∫ T

0

‖∇G(βs)−∇G̃(β̃
η

bs/ηcη)‖)ds+ sup
0≤t≤T

∥∥∥∥∫ t

0

(Σs − Σ̃ηbs/ηcη)dW s

∥∥∥∥
We first square both sides and take expectation, then apply the Burkholder-Davis-Gundy inequality and Cauchy-Schwarz

inequality, we have

E[ sup
0≤t≤T

‖βt − β̃
η

t ‖2] ≤ 2E

(∫ T

0

‖∇G(βs)−∇G̃(β̃
η

bs/ηcη)‖ds

)2

+ sup
0≤t≤T

∥∥∥∥∫ t

0

(Σs − Σ̃ηbs/ηcη)dW s

∥∥∥∥2


≤ 2TE

[∫ T

0

‖∇G(βs)−∇G̃(β̃
η

bs/ηcη)‖2ds

]
︸ ︷︷ ︸

I

+ 8E

[∫ T

0

‖Σs − Σ̃ηbs/ηcη‖
2ds

]
︸ ︷︷ ︸

J

(8)
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Estimate of stochastic gradient: For the first term I, by using the inequality

‖a+ b+ c‖2 ≤ 3(‖a‖2 + ‖b‖2 + ‖c‖2),

we get

I =2TE

[∫ T

0

∥∥∥(∇G(βs)−∇G(β̃
η

s)
)

+
(
∇G(β̃

η

s)−∇G(β̃
η

bs/ηcη)
)

+
(
∇G(β̃

η

bs/ηcη)−∇G̃(β̃
η

bs/ηcη)
)∥∥∥2

ds

]

≤ 6TE

[∫ T

0

‖∇G(βs)−∇G(β̃
η

s)‖2ds

]
︸ ︷︷ ︸

I1

+ 6TE

[∫ T

0

‖∇G(β̃
η

s)−∇G(β̃
η

bs/ηcη)‖2ds

]
︸ ︷︷ ︸

I2

+ 6TE

[∫ T

0

‖∇G(β̃
η

bs/ηcη)−∇G̃(β̃
η

bs/ηcη)‖2ds

]
︸ ︷︷ ︸

I3

≤I1 + I2 + I3.

(9)

By using the smoothness assumption 1, we first estimate

I1 ≤ 6TC2E

[∫ T

0

‖βs − β̃
η

s‖2ds

]
.

By applying the smoothness assumption 1 and discretization scheme, we can further estimate

I2 ≤ 6TC2E

[∫ T

0

‖β̃
η

s − β̃
η

bs/ηcη‖2ds

]

≤ 6TC2

bT/ηc∑
k=0

E

[∫ (k+1)η

kη

‖β̃
η

s − β̃
η

bs/ηcη‖2ds

]

≤ 6TC2

bT/ηc∑
k=0

∫ (k+1)η

kη

E

[
sup

kη≤s<(k+1)η

‖β̃
η

s − β̃
η

bs/ηcη‖2
]
ds

(10)

For ∀ k ∈ N and s ∈ [kη, (k + 1)η), we have

β̃
η

s − β̃
η

bs/ηcη = β̃
η

s − β̃
η

kη = −∇G̃(β̃
η

kη) · (s− kη) + Σ̃ηkη

∫ s

kη

dW r

which indeed implies

sup
kη≤s<(k+1)η

‖β̃
η

s − β̃
η

bs/ηcη‖ ≤ ‖∇G̃(β̃
η

kη)‖(s− kη) + sup
kη≤s<(k+1)η

‖Σ̃ηkη
∫ s

kη

dW r‖

Similar to the estimate (8), square both sides and take expectation, then apply the Burkholder-Davis-Gundy inequality, we

have

E

[
sup

kη≤s<(k+1)η

‖β̃
η

s − β̃
η

bs/ηcη‖2
]
≤ 2E[‖∇G̃(β̃

η

kη)‖2(s− kη)2] + 8

2d∑
j=1

E

[(
Σ̃ηkη(j)〈

∫ ·
kη

dW r〉1/2s

)2
]

≤ 2(s− kη)2E[‖∇G̃(β̃
η

kη)‖2] + 32dτ2(s− kη),

where the last inequality follows from the fact that Σ̃ηkη is a diagonal matrix with diagonal elements
√

2τ1 or
√

2τ2. For the

first term in the above inequality, we further have

2(s− kη)2E[‖∇G̃(β̃
η

kη)‖2] = 2(s− kη)2E[‖(∇G(β̃
η

kη) + φk)‖2]

≤ 4η2E[‖∇G(β̃
η

kη)−∇G(β∗)‖2 + ‖φk‖2]

≤ 8C2η2E[‖β̃
η

kη‖2 + ‖β∗‖2] + 4η2E[‖φk‖2],
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where the first inequality follows from the separation of the noise from the stochastic gradient and the choice of stationary

point β∗ of G(·) with ∇G(β∗) = 0, and φk is the stochastic noise in the gradient at step k. Thus, combining the above two

parts and integrate E
[
supkη≤s<(k+1)η ‖β̃

η

s − β̃
η

kη‖2
]

on the time interval [kη, (k + 1)η), we obtain the following bound∫ (k+1)η

kη

E

[
sup

kη≤s<(k+1)η

‖β̃
η

s − β̃
η

kη‖2
]
ds ≤ 8C2η3

(
sup
k≥0

E[‖β̃
η

kη‖2 + ‖β∗‖2]

)
+ 4η3 max

k
E[‖φk‖2] + 32dτ2η

2

(11)

By plugging the estimate (11) into estimate (10), we obtain the following estimates when η ≤ 1,

I2 ≤ 6TC2(1 + T/η)

[
8C2η3

(
sup
k≥0

E[‖β̃
η

kη‖2 + ‖β∗‖2]

)
+ 4η3 max

k
E[‖φk‖2] + 32dτ2η

2

]
≤ δ̃1(d, τ2, T, C, a, b)η + 24TC2(1 + T ) max

k
E[‖φk‖2],

(12)

where δ̃1(d, τ2, T, C, a, b) is a constant depending on d, τ2, T, C, a and b. Note that the above inequality requires a result on

the bounded second moment of supk≥0 E[‖β̃
η

kη‖2], and this is proved in Lemma C.2 in Chen et al. (2019) when we choose

the stepzise η ∈ (0, a/C2). We are now left to estimate the term I3 and we have

I3 ≤ 6T

bT/ηc∑
k=0

E

[∫ (k+1)η

kη

‖∇G(β̃
η

kη)−∇G̃(β̃
η

kη)‖2ds

]
≤ 6T (1 + T/η) max

k
E[‖φk‖2]η

≤ 6T (1 + T ) max
k

E[‖φk‖2].

(13)

Combing all the estimates of I1, I2 and I3, we obtain

I ≤ 6TC2

∫ T

0

E
[

sup
0≤s≤T

‖βs − β̃
η

s‖2
]
ds︸ ︷︷ ︸

I1

+ δ̃1(d, τ2, T, C, a, b)η + 24TC2(1 + T ) max
k

E[‖φk‖2]︸ ︷︷ ︸
I2

+ 6T (1 + T ) max
k

E[‖φk‖2]︸ ︷︷ ︸
I3

.

(14)

Estimate of stochastic diffusion: For the second term J , we have

J = 8E

[∫ T

0

‖Σs(j)− Σ̃bs/ηcη(j)‖2ds

]

≤ 8

2d∑
j=1

bT/ηc∑
k=0

∫ (k+1)η

kη

E
[
‖Σs(j)− Σ̃ηkη(j)‖2

]
ds

≤ 8

2d∑
j=1

bT/ηc∑
k=0

∫ (k+1)η

kη

E
[
‖Σs(j)− Σηkη(j) + Σηkη(j)− Σ̃ηkη(j)‖2

]
ds

≤ 16

2d∑
j=1

bT/ηc∑
k=0


∫ (k+1)η

kη

E
[
‖Σs(j)− Σηkη(j)‖2

]
ds︸ ︷︷ ︸

J1

+

∫ (k+1)η

kη

E
[
‖Σηkη(j)− Σ̃ηkη(j)‖2

]
ds︸ ︷︷ ︸

J2



. (15)

where Σηkη is the temperature matrix for the continuous-time interpolation of {βη(k)}k≥1, which is similar to (6) without

noise generated from mini-batch settings and is defined as below

βηt = β0 −
∫ t

0

∇G(βηkη)ds+

∫ t

0

ΣηkηdW s. (16)



Non-convex Learning via Replica Exchange Stochastic Gradient MCMC

We estimate J1 first, considering that Σs and Σηbs/ηcη are both diagonal matrices, we have

J1 = 4(
√
τ2 −

√
τ1)2

∫ (k+1)η

kη

P(Σs(j) 6= Σηkη(j))ds

= 4(
√
τ2 −

√
τ1)2E

[∫ (k+1)η

kη

P(Σs(j) 6= Σηkη(j)|βηkη)ds

]

= 4(
√
τ2 −

√
τ1)2r

∫ (k+1)η

kη

[(s− kη) +R(s− kη)]ds

≤ δ̃2(r, τ1, τ2)η2,

where δ̃2(r, τ1, τ2) = 4(
√
τ2 −

√
τ1)2r, and the equality follows from the fact that the conditional probability P(Σs(j) 6=

Σηkη(j)|βηkη) = rS(β
η(1)
kη ,β

η(2)
kη ) · (s− η) + rR(s− kη). Here R(s− kη) denotes the higher remainder with respect to

s− kη. The estimate of J1 without stochastic gradient for the Langevin diffusion is first obtained in Chen et al. (2019), we

however present here again for reader’s convenience. As for the second term J2, it follows that

J2 = 4(
√
τ2 −

√
τ1)2

∫ (k+1)η

kη

P(Σkη(j) 6= Σ̃kη(j))ds

= 4(
√
τ2 −

√
τ1)2rηE

[∣∣∣∣S(β
η(1)
kη ,β

η(2)
kη )− S̃(β̃

η(1)

kη , β̃
η(2)

kη )

∣∣∣∣]

≤ δ̃2(r, τ1, τ2)η

√√√√E

[∣∣∣∣S(β
η(1)
kη ,β

η(2)
kη )− S̃(β̃

η(1)

kη , β̃
η(2)

kη )

∣∣∣∣2
]

≤ δ̃2(r, τ1, τ2)η
√
E [|ψk|2],

(17)

where ψk is the noise in the swapping rate. Thus, one concludes the following estimates combing I and J .

E[ sup
0≤t≤T

‖βt − β̃
η

t ||2] ≤ 6TC2

∫ T

0

E
[

sup
0≤s≤T

‖βs − β̃
η

s‖2
]
ds︸ ︷︷ ︸

I1

+ δ̃1(d, τ2, T, C, a, b)η + 24TC2(η + T ) max
k

E[‖φk‖2]︸ ︷︷ ︸
I2

+ 6T (1 + T )E[‖φk‖2]︸ ︷︷ ︸
I3

+ 32d(1 + T )δ̃2(r, τ1, τ2)

(
η + max

k

√
E [|ψk|2]

)
︸ ︷︷ ︸

J

.

(18)

Apply Gronwall’s inequality to the function

t 7→ E
[

sup
0≤u≤t

‖βu − β̃
η

u‖2
]
,

and deduce that

E[ sup
0≤t≤T

‖βt − β̃
η

t ||2] ≤ D1η +D2 max
k

E[‖φk‖2] +D3 max
k

√
E [|ψk|2], (19)

where D1 is a constant depending on τ1, τ2, d, T, C, a, b; D2 depends on T and C; D3 depends on r, d, T and C.

1.4. Exponential decay of Wasserstein distance in continuous-time

We proceed to quantify the evolution of the 2-Wasserstein distance between νt and π. We first consider the ordinary

Langevin diffusion without swaps and derive the log-Sobolev inequality (LSI). Then we extend LSI to reLD and obtain the

exponential decay of the relative entropy. Finally, we derive the exponential decay of the 2-Wasserstein distance.
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In order to distinguish from the replica exchange Langevin diffusion βt defined in (4), we call it β̂t which follows,

dβ̂t = −∇G(β̂t)dt+ ΣtdW t. (20)

where Σt ∈ R2d×2d is a diagonal matrix with the form

(√
2τ1Id 0

0
√

2τ2Id

)
. The process β̂t is a Markov diffusion

process with infinitesimal generator L in the following form, for x1 ∈ Rd and x2 ∈ Rd,

L = −〈∇x1f(x1, x2),∇U(x1)〉+ τ1∆x1f(x1, x2)

−〈∇x2
f(x1, x2),∇U(x2)〉+ τ2∆x2

f(x1, x2)

Note that since matrix Σt is a non-degenerate diagonal matrix, operator L is an elliptic diffusion operator. According to the

smoothness assumption (1), we have that∇2G ≥ −CI2d, where C > 0, the unique invariant measure π associate with the

underlying diffusion process satisfies the Poincare inequality and LSI with the Dirichlet form given as follows,

E(f) =

∫ (
τ1‖∇x1f‖2 + τ2‖∇x2f‖2

)
dπ(x1, x2), f ∈ C2

0(R2d). (21)

In this elliptic case with G being convex, the proof for LSI follows from standard Bakry-Emery calculus (Bakry and émery,

1985). Since, we are dealing with the non-convex function G, we are particularly interested in the case of ∇2G ≥ −CI2d.

To obtain a Poincaré inequality for invariant measure π, Chen et al. (2019) adapted an argument from Bakry et al. (2008)

and Raginsky et al. (2017) by constructing an appropriate Lyapunov function for the replica exchange diffusion without

swapping β̂t. Denote νt as the distribution associated with the diffusion process {β̂t}t≥0, which is absolutely continuous

with respect to π. It is a direct consequence of the aforementioned results that the following log-Sobolev inequality holds.

Lemma 2 (LSI for Langevin Diffusion). Under assumptions (1) and (2), we have the following log-Sobolev inequality for

invariant measure π, for some constant cLS > 0,

D(νt||π) ≤ 2cLSE(

√
dνt
dπ

).

where D(νt||π) =
∫
dνt log dνt

dπ denotes the relative entropy and the Dirichlet form E(·) is defined in (21).

Proof

According to Cattiaux et al. (2010), the sufficient conditions to establish LSI are:

1. There exists some constant C ≥ 0, such that∇2G < −CI2d.

2. π satisfies a Poincaré inequality with constant cp, namely, for all probability measures ν � π, χ2(ν||π) ≤ cpE(
√

dνt
dπ ),

where χ2(ν||π) := ‖ dνdπ − 1‖2 is the χ2 divergence between ν and π.

3. There exists a C2 Lyapunov function V : R2d → [1,∞) such that LV (x1,x2)
V (x1,x2) ≤ κ − γ(‖x1‖2 + ‖x2‖2) for all

(x1, x2) ∈ R2d and some κ, γ > 0.

Note that the first condition on the Hessian is obtained from the smoothness assumption (1). Moreover, the Poincaré

inequality in the second condition is derived from Lemma C.1 in Chen et al. (2019) given assumptions (1) and (2).

Finally, to verify the third condition, we follow Raginsky et al. (2017) and construct the Lyapunov function V (x1, x2) :=
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exp
{
a/4 ·

(
‖x1‖2
τ1

+ ‖x2‖2
τ2

)}
. From the dissipitive assumption 2, V (x1, x2) satisfies the third condition because

L(V (x1, x2)) =

(
a

2τ1
+

a

2τ2
+

a2

4τ2
1

‖x1‖2 +
a2

4τ2
2

‖x2‖2 −
a

2τ2
1

〈x1,∇G(x1)− a

2τ2
2

〈x1,∇G(x2)〉
)
V (x1, x2)

≤
(
a

2τ1
+

a

2τ2
+

ab

2τ2
1

+
ab

2τ2
2

− a2

4τ2
1

‖x1‖2 −
a2

4τ2
2

‖x2‖2
)
V (x1, x2)

≤
(
κ− γ(‖x1‖2 + ‖x2‖2)

)
V (x1, x2),

(22)

where κ = a
2τ1

+ a
2τ2

+ ab
2τ2

1
+ ab

2τ2
2

, and γ = a2

4τ2
1
∧ a2

4τ2
2

. 2 Therefore, the invariant measure π satisfies a LSI with the constant

cLS = c1 + (c2 + 2)cp, (23)

where c1 = 2C
γ + 2

C and c2 = 2C
γ

(
κ+ γ

∫
R2d(‖x1‖2 + ‖x2‖2)π(dx1dx2)

)
.

We are now ready to prove the log-Sobolev inequality for invariant measure associated with the replica exchange Langevin

diffusion (4). We use a similar idea from Chen et al. (2019) where they prove the Poincaré inequality for the invariant

measure associated with the replica exchange Langevin diffusion (4) by analyzing the corresponding Dirichlet form. In

particular, a larger Dirichlet form ensures a smaller log-Sobolev constant and hence results in a faster convergence in the

relative entropy and Wasserstein distance.

Lemma 3 (Accelerated exponential decay of W2). Under assumptions (1) and (2), we have that the replica exchange

Langevin diffusion converges exponentially fast to the invariant distribution π:

W2(νt, π) ≤ D0e
−kη(1+δS)/cLS , (24)

where D0 =
√

2cLSD(ν0||π), δS := inft>0
ES(
√
dνt
dπ )

E(
√
dνt
dπ )
− 1 is a non-negative constant depending on the swapping rate S(·, ·)

and obtains 0 only if S(·, ·) = 0.

Proof Consider the infinitesimal generator associated with the diffusion process (4), denoted as LS , contains an extra

term arising from the temperature swapping. The operator LS in this particular case, indeed, has the following form

LS = L+ S(x1, x2) · (f(x2, x1)− f(x1, x2)). (25)

According to Theorem 3.3 (Chen et al., 2019), the Dirichlet form associated with operator LS under the invariant measure π

has the form

ES(f) = E(f) +
1

2

∫
S(x1, x2) · (f(x2, x1)− f(x1, x2))2dπ(x1, x2)︸ ︷︷ ︸

acceleration

, f ∈ C2
0(R2d), (26)

where f corresponds to dνt
dπ(x1,x2) , and the asymmetry of νt

π(x1,x2) is critical in the acceleration effect (Chen et al., 2019).

Given two different temperatures τ1 and τ2, a non-trivial distribution π and function f , the swapping rate S(x1, x2) is

positive for almost any x1, x2 ∈ Rd. As a result, the Dirichlet form associated with LS is strictly larger than L. Therefore,

there exists a constant δS > 0 depending on S(x1, x2), such that δS = inft>0
ES(
√
dνt
dπ )

E(
√
dνt
dπ )
− 1. From Lemma 2, we have

D(νt||π) ≤ 2cLSE(

√
dνt
dπ

) ≤ 2cLS sup
t

E(
√

dνt
dπ )

ES(
√

dνt
dπ )
ES(

√
dνt
dπ

) = 2
cLS

1 + δS
ES(

√
dνt
dπ

). (27)

2a ∧ b denotes min{a, b}.
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Thus, we obtain the following log-Sobolev inequality for the unique invariant measure π associated with replica exchange

Langevin diffusion {βt}t≥0 and its corresponding Dirichlet form ES(·). In particular, the LSI constant cLS
1+δS

in replica ex-

change Langevin diffusion with swapping rate S(·, ·) > 0 is strictly smaller than the LSI constant cLS in the replica exchange

Langevin diffusion with swapping rate S(·, ·) = 0. By the exponential decay in entropy (Bakry et al., 2014)[Theorem 5.2.1]

and the tight log-Sobolev inequality in Lemma 2, we get that, for any t ∈ [kη, (k + 1)η),

D(νt||π) ≤ D(ν0||π)e−2t(1+δS)/cLS ≤ D(µ0||π)e−2kη(1+δS)/cLS . (28)

Finally, we can estimate the termW2(νt, π) by the Otto-Villani theorem (Bakry et al., 2014)[Theorem 9.6.1],

W2(νt, π) ≤
√

2cLSD(νt||π) ≤
√

2cLSD(µ0||π)e−kη(1+δS)/cLS . (29)

1.5. Summary: Convergence of reSGLD

Now that we have all the necessary ingredients in place, we are ready to derive the convergence of the distribution µk to the

invariant measure π in terms of 2-Wasserstein distance,

Theorem 1 (Convergence of reSGLD). Let the assumptions (1) and (2) hold. For the unique invariant measure π associated

with the Markov diffusion process (4) and the distribution {µk}k≥0 associated with the discrete dynamics {β̃
η
(k)}k≥1, we

have the following estimates, for 0 ≤ k ∈ N+ and the learning rate η satisfying 0 < η < 1 ∧ a/C2,

W2(µk, π) ≤ D0e
−kη(1+δS)/cLS +

√
δ1η + δ2 max

k
E[‖φk‖2] + δ3 max

k

√
E [|ψk|2] (30)

where D0 =
√

2cLSD(µ0||π), δS := mink
ES(

√
dµk
dπ )

E(

√
dµk
dπ )
− 1 is a non-negative constant depending on the swapping rate S(·, ·)

and obtains the minimum zero only if S(·, ·) = 0.

Proof We reduce the estimates into the following two terms by using the triangle inequality,

W2(µk, π) ≤ W2(µk, νt) +W2(νt, π), t ∈ [kη, (k + 1)η). (31)

The first termW2(µk, νt) follows from the analysis of discretization error in Lemma.1. Recall the very definition of the

W2(·, ·) distance defined in (3). Thus, in order to control the distanceW2(µk, νt), t ∈ [kη, (k + 1)η), we need to consider

the diffusion process whose law give µk and νt, respectively. Indeed, it is obvious that νt = L(βt) for t ∈ [kη, (k + 1)η).

For the other measure µk, it follows that µk = ν̃kη for t = kη, where ν̃kη = L(β̃
η

t ) is the probability measure associated

with the continuous interpolation of reSGLD (5). By Lemma.1, we have that for k ∈ N and t ∈ [kη, (k + 1)η),

W2(µk, νt) =W2(ν̃kη, νt) ≤
√

E[ sup
0≤s≤t

‖βs − β̃
η

s‖2] ≤
√
δ1η + δ2 max

k
E[‖φk‖2] + δ3 max

k

√
E [|ψk|2], (32)

Recall from the accelerated exponential decay of replica exchange Langevin diffusion in Lemma.3, we have

W2(νt, π) ≤
√

2cLSD(ν0||π)e−kη(1+δS)/cLS =
√

2cLSD(µ0||π)e−kη(1+δS)/cLS . (33)

Combing the above two estimates completes the proof.
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2. Hyper-parameter Setting for Bayesian GANs

In the semi-supervised learning tasks, we fine-tune the hyper-parameters for Bayesian GANs and report them in Table

1. In particular, Ns is the number of labeled data; η(1) and η(2) are the learning rates for the low-temperature chain and

high-temperature chain, respectively; τ1 and τ2 are the temperatures; F̂ is the correction factor, which often yields several

swaps. In addition, the learning rates also follow a truncated exponential decay, for example, η(1)
k =

(
0.05 ∨ e− k

800

)
η(1)

and η(2)
k =

(
0.05 ∨ e− k

800

)
η(2), where k is the number of iterations.

Dataset Ns η(1) η(2) τ1 τ2 F̂

CIFAR10
2000 ∼ 3500 4.5e-4 7.0e-4 0.01 1 3.0e5
4000 ∼ 5000 4.5e-4 7.0e-4 0.01 1 2.0e5

CIFAR100
2000 ∼ 2500 5.0e-4 7.5e-4 0.04 1 1.0e4
3000 ∼ 3500 5.0e-4 7.5e-4 0.02 1 2.5e4
4000 ∼ 5000 5.0e-4 7.5e-4 0.01 1 5.0e4

SVHN
2000 ∼ 4000 4.5e-3 5.0e-3 0.01 1 8.0e4
4500 ∼ 5000 4.5e-3 7.0e-3 0.01 1 8.0e4

Table 1. Hyper-parameter setting of Bayesian GANs for Semi-Supervised Learning experiments.
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