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Abstract
We provide an end-to-end differentially private
spectral algorithm for learning LDA, based on
matrix/tensor decompositions, and establish the-
oretical guarantees on utility/consistency of the
estimated model parameters. We represent the
spectral algorithm as a computational graph.
Noise can be injected along the edges of this
graph to obtain differential privacy. We identify
subsets of edges, named “configurations”, such
that adding noise to all edges in such a subset
guarantees differential privacy of the end-to-end
spectral algorithm. We characterize the sensi-
tivity of the edges with respect to the input and
thus estimate the amount of noise to be added
to each edge for any required privacy level. We
then characterize the utility loss for each config-
uration as a function of injected noise. Overall,
by combining the sensitivity and utility charac-
terization, we obtain an end-to-end differentially
private spectral algorithm for LDA and iden-
tify which configurations outperform others un-
der specific regimes. We are the first to achieve
utility guarantees under a required level of differ-
ential privacy for learning in LDA. We addition-
ally show that our method systematically outper-
forms differentially private variational inference.

1. Introduction
Topic modeling has been used extensively in document
categorization, social sciences, machine translation and so
forth. Learning topic modeling involves projecting high
dimensional observations (documents) to a lower dimen-
sional latent structure (topics), and outputting a model pa-
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rameter estimation that describes the generative process of
observed documents. This paper focuses on the popular
topic model — Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). There exist multiple learning algorithms for
LDA, but the output of these algorithms may leak sensi-
tive information in domains where privacy is a concern.
This can limit the applicability of LDA in legal, financial,
and medical domains. For instance, consider a situation in
which the corpus D contains medical records, an adversary
could potentially trace a learned topic t of an LDA learn-
ing algorithm back to an individual document d. This is a
realistic threat model because topic t is high-dimensional
and may contain a unique combination of words that only
appear in d. We refer readers to (Carlini et al., 2019) for
a concrete example of a learned high-dimensional machine
learning model leaking credit card and social security num-
bers. Differential privacy (DP) (Dwork et al., 2006) is a for-
mal definition of privacy that provides provable and quan-
tifiable protection against such re-identification attacks. A
generic method to convert an algorithm A to be differen-
tially private is to add sufficient noise to A’s output.

The existing state-of-the-art differentially private algorithm
for learning LDA is differentially private variational infer-
ence (DP VI) (Park et al., 2016; 2020), in which noise is
added at each iteration of variational inference to guaran-
tee privacy. However, VI (Blei et al., 2003)-based LDA
— even without privacy considerations — is not guaran-
teed to consistently learn LDA in polynomial time1. After
all, it aims at solving a non-convex optimization problem
that maximizes the likelihood function with (a variational
approximation) of expectation-maximization.

The spectral learning method for LDA (Anandkumar et al.,
2014a), on the other hand, circumvents the nonconvex op-
timization problem by solving a moment-matching equa-
tion using tensor decomposition, thereby enjoying provable
computational efficiency and statistical consistency.

The goals of our work are twofolds. (1) to introduce a fam-
1Note that VI is shown to be statistically consistent (Wang &

Blei, 2018) if the optimal variational posterior can be found, but
it requires a potentially unbounded number of iterations. The DP
extension has a total privacy loss that composes over the many
iterations, therefore cannot afford to run many iterations.
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Figure 1. Algorithmic flow of end-to-end spectral learning algorithm to learning LDA topic model.

ily differentially private extensions to spectral-LDA that are
guaranteed to be achieve a prescribed budget of differential
privacy for all possible input datasets; (2) to show that they
are able to provably recover high quality estimates of the
LDA model parameters and to compare the privacy-utility
tradeoff of these methods using theory and experiments.

Figure 1 illustrates a computation graph of the spectral
LDA algorithm. Each edge represents a potential place
where noise could be added. We define configurations as
subsets of edges E of edges {ei}9i=0. When E is a cut that
separates the input and the output, differentially privately
releasing (e.g., adding noise to) all nodes preceding the
edges in E guarantees the overall differential privacy ac-
cording to the composition theorem and the closure to post
processing. For instance, privately releasing nodes preced-
ing E = (e0, e2) provides no privacy as the non-private in-
formation could flow to the output through the path below.
However, when E = {e5, e6}, then such information-flow
is cut off which guarantees overall differential privacy.

Summary of results. Our main contributions are:

(1) We provide bounds for the sensitivities of intermediate
quantities on the computation graph and identify four
configurations of interest. For each configuration, we
propose methods that achieve either pure-✏-DP or ap-
proximate (✏, �)-DP for all choices of ✏, � > 0. When-
ever applicable, we design data-dependent DP mecha-
nisms that exploit a small local sensitivity and provide
differential privacy even when the global sensitivity is
large or unbounded.

(2) We analyze the impact of the noise-injected by our al-
gorithms and establish high-probability error bounds
for estimating true model parameters. In some config-
urations, we show that the impact of differential pri-
vacy is in a low-order term, which says that for a large
dataset, the utility cost of ensuring differential privacy
is almost for free.

(3) We conduct empirical studies with synthetic and real-
life datasets, which confirm that the DP spectral algo-
rithm systematically outperforms DP variational infer-

ence.

Compared to differentially private VI, the proposed ap-
proach is advantageous in that it (1) retains consistency
guarantees, (2) is computationally efficient, (3) achieves
higher accuracy in synthetic and real data experiments,
moreover, (4) does not require performing composition
across multiple iterations. We note that empirically VI
is known to be more data-efficient than spectral learning
methods for topic modeling when privacy is not a concern.
Interestingly, we observe that for almost all experiments,
our proposed differentially private spectral learning algo-
rithm outperforms its VI counterpart in all commonly ac-
cepted ranges of privacy budgets (✏  1, � < 1/n). This
difference should be attributed to the simpler mathematical
structures of spectral learning methods, which allows for
more efficient use of a given privacy budget.

2. Related Work
There are a few works that are private extensions of vari-
ational inference (Schein et al., 2019; Park et al., 2020;
2017). Among these, Schein et al. (2019); Park et al.
(2020) use topic models as examples, even though the
model of (Schein et al., 2019) is a Poisson factorization
model, rather than LDA. (Park et al., 2020) contains an
updated set of experiments to (Park et al., 2016) on LDA
which shows competitive perplexity scores.

Our work focuses on LDA parameter estimation based
on spectral algorithms which, unlike EM-based algo-
rithms (Park et al., 2017; 2016), guarantee parameter re-
covery if a mild set of assumptions are met (Anandkumar
et al., 2012; 2014b). The spectral estimation method relies
on matrix decomposition and tensor decomposition meth-
ods. Thus, differentially private PCA and tensor decompo-
sition are related to our objective.

Differentially private PCA is an established topic, and
(✏, 0) differentially private PCA was achieved using the ex-
ponential mechanism in (Chaudhuri et al., 2012; Kapralov
& Talwar, 2013). The algorithm in (Kapralov & Talwar,
2013) provides guarantees but with complexity O(d6); in
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contrast, (Chaudhuri et al., 2012) introduces an algorithm
that is near optimal but without an analysis of convergence
time. Although (✏, �) differential privacy is a more loose
definition of differential privacy, it leads to better utility.
Comparative experimental results show that the (✏, �) PCA
algorithm of (Imtiaz & Sarwate, 2016) outperform (✏, 0)
significantly, and (Dwork et al., 2014b) introduce a sim-
ple input perturbation algorithm which achieves near opti-
mal utility. In our work, we follow the (✏, �) definition and
use (Dwork et al., 2014b) to obtain a differentially private
matrix decomposition when needed.

Differentially private tensor decomposition is studied
in (Wang & Anandkumar, 2016) with an incoherence ba-
sis assumption. It is not clear the extent to which such
an assumption holds in topic modeling. The authors ex-
clude the possibility of input perturbation as that causes the
privacy parameter to be lower bounded by the dimension
(✏ = ⌦(d)) which is prohibitive. However, the same anal-
ysis on the tensor of a reduced dimension would conclude
that ✏ = ⌦(k), which is acceptable for a reduced dimension
whitened tensor as k ⌧ d.

3. Preliminaries and Notations
Latent Dirichlet Allocation is characterized by two model
parameters: ↵, the dirichlet parameter of the topic prior,
and µ, the topic word matrix. ↵ parameterizes a dirich-
let distribution, which determines the topic mixture in each
document, µ controls the word distribution per topic. We
provide a detailed explanation of LDA in Appendix B. We
use d to denote the number of distinct words in a vocab-
ulary, N to denote the total number of documents, k to
denote the number of topics. The topic prior Dirichlet
distribution is parameterized by ↵ = (↵1, . . . ,↵k) and
↵0 =

Pk
i=1 ↵i. For each document n, topic proportion

is ✓n, document length is ln, and word frequency vector is
denoted as cn. Word tokens are denoted by x. Let D,D

0 be
two datasets. We say datasets D and D

0 are adjacent (de-
noted by D ⇠ D

0) if we can form D
0 by replacing exactly

one document from D.

Definition 1 ((✏, �)-Differential Privacy). Let A : D !
Y be a randomized algorithm. If 8D ⇠ D

0
, 8S ✓ Y

P[A(D) 2 S]  e
✏P[A(D0) 2 S] + �, then A is (✏, �)-

DP (differentially private).

Differential privacy provides any individual data point a
degree of plausible deniability in the sense that attack-
ers, even with arbitrary side-information, could not infer
whether the individual is in the dataset or not.

Definition 2 (Local / Global Sensitivity). The local sen-
sitivity �f (D) := maxD0|D0⇠D kf(D) � f(D0)k and the
global sensitivity �f := maxD �f (D).

The norm k · k could be any vector `p norm, and when the
distinction matters, we say (local or global) `p sensitivity.
Many differentially private algorithms, including those that
we will build upon, are based on perturbing f(D) with a
noise. The level of the noise is calibrated using the sen-
sitivity to ensure DP for some prescribed budgets ✏, � (see
more details in Appendix A).

4. Differentially Private LDA Topic Model
The method of moments principle — dating back at least
to (Pearson, 1894) — provides another class of algorithms
for learning LDA by computation upon data moments. No-
tably, the method of moments algorithm based on spectral
tensor decomposition (Anandkumar et al., 2012; 2014a)
guarantees consistent recovery of the topic-word distribu-
tion (i.e. LDA model parameters) under the constraint that
the third order data moment tensor can be uniquely decom-
posed (the third order data moment denotes the expected
co-occurrence of triplets of words in a document).

To briefly describe the spectral algorithm of learning LDA,
we define the first, second, and third order LDA moments
in Lemma 3. Then, using the properties of LDA, we derive
unbiased estimators of the LDA parameters by decompos-
ing the LDA moments into factors that correspond to each
µi, formalized in Lemma 3. We show that as long as we
empirically estimate the moments M1, M2, and M3 with-
out bias, we obtain the model parameters ↵ and µ via tensor
decomposition on the empirically estimated moments.
Lemma 3 (LDA moments and Moment Decompositions
Recover Model Parameters). Let random variables x1,
x2 and x3 denote the first, second and third tokens in a
document. Tokens are represented as one-hot encodings,
i.e., x1 = ev if the first token is the v-th word in the dic-
tionary. We define the first, second, and third order mo-
ments of LDA M1, M2 and M3 as M1

def
= E[x1], M2

def
=

E[x1 ⌦ x2]� ↵0
↵0+1E[x1]⌦ E[x1] and M3

def
= E[x1 ⌦ x2 ⌦

x3] +
2↵2

0
(↵0+1)(↵0+2)E[x1]⌦E[x1]⌦E[x1]� 1

↵0+2

⇣
E[x1 ⌦

x2 ⌦E[x3]] +E[x1 ⌦E[x2]⌦ x3] +E[E[x1]⌦ x2 ⌦ x3]
⌘

.
The LDA moments relate to the model parameters ↵ and µ

through matrix/tensor decomposition as follows

M1 =
kX

i

↵i

↵0
µi, M2 =

kX

i

↵i

↵0(↵0 + 1)
µi ⌦ µi,

M3 =
kX

i

2↵i

↵0(↵0 + 1)(↵0 + 2)
µi ⌦ µi ⌦ µi. (1)

The proof is given in Appendix E. Note that ↵0 is pre-
specified and thus data-independent. Using the properties
of LDA, the moments are decomposed as factors shown in
Lemma 3, and the factors µi correspond to the LDA model
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parameters we aim to estimate. According to Lemma 3,
decomposing on matrix M2 only will not result in correct
recovery of µi as there are no unique µi’s unless µi ?? µi0

and ↵i 6= ↵i0 . The word distributions under different topics
are only linearly independent instead of orthogonal. How-
ever, tensor decomposition on M3 will yield a unique de-
composition (Anandkumar et al., 2014a).

Method of Moments & Tensor Decomposition Inspired
by Lemma 3, we conclude that tensor decomposition on
M3 will result in consistent estimation of the LDA param-
eters ↵ and µi. We have no access to population moments
M1, M2 and M3, but do have access to word frequency
vectors cn. To solve this problem, we empirically estimate
the moments M1, M2, M3 as in Equations (17)(18)(19)
given the observations of word frequency vectors cn, and
obtain the model parameters ↵ and µ by implementing
tensor decomposition on those empirically estimated mo-
ments. In Lemma 26 in Appendix C, we prove that the
empirical moment estimators are unbiased.

The method of moments uses the property of data moments
of the LDA model (in Lemma 3) to estimate the parameters
of topic model ↵ and µi, 8i 2 k. The algorithm flow is de-
picted in Figure 1 and consists of the following steps: (1)
Using cn for document 8n 2 [N ], estimate M̂2 and M̂3

using equation (18) (e0 in Figure 1) and equation (19) (e1
in Figure 1). (2) Apply SVD on M̂2 to obtain an estimation
of the whitening matrix cW def

= bU b⌃� 1
2 , where bU and b⌃ are

the top k singular vectors and singular values of M̂2 (e2
in Figure 1). (3) Whiten the tensor bT = M̂3(cW,cW,cW )

using multilinear operations 2 on M̂3 with cW (e3 and e4

in Figure 1). (4) Implement tensor decomposition on the
whitened tensor bT and denote the resulting eigenvectors as
µ̄i, 8i 2 [k] (e6 in Figure 1). (5) Obtain the un-whitening
matrix cW † = b⌃ 1

2 bU> (e5 in Figure 1). (6) Un-whiten the
singular vectors to obtain LDA parameters: bµi / (cW †)>µ̄i

and b↵i, 8i 2 k (e7 and e8 in Figure 1). (7) Project bµi

onto a simplex to get the final estimate. The spectral algo-
rithm guarantees the correct learning of topic models (see
Lemma 29).

Differentially Private LDA Problem Statement We as-
sume that the corpus of data is held by a trusted curator and
that an analyst will query for the parameters of the topic
model. The curator has to output the model parameters
↵i, µi in a differentially private manner with respect to the
documents. While it is easy to achieve differential privacy,
the challenge is in guaranteeing high utility. We will use
the Gaussian mechanism described in Proposition 22 in this
paper to achieve (✏, �)-differentially private topic modeling

2The (i, j, k)-th entry of the multilinear operation
M̂3(Ŵ , Ŵ , Ŵ ) is

P
m,n,l[M̂3]m,n,lŴm,iŴn,jŴl,k. Ŵ is

d⇥ k and M̂3 is d⇥ d⇥ d, thus M̂3(Ŵ , Ŵ , Ŵ ) is k ⇥ k ⇥ k.

for each of the configurations. We will compute sensitivi-
ties of edges in each configuration in Section 5 to obtain the
noise level that must be added to each edge. Our derived
utility loss results are demonstrated in Section 6.

5. Sensitivity of Nodes in Algorithmic Flow
The most straightforward method of making an algorithm
differentially private is to add noise to the output. How-
ever, it is also possible to achieve differential privacy by
adding noise earlier in the computation. As long as we
privately release intermediate components (nodes) along a
cut of the algorithm’s computation graph (with bounded
global sensitivity), differential privacy can be achieved via
the composition theorem. For the spectral LDA algorithm,
we list possible cuts on the computational graph as a con-
figuration. Adding noise along different configurations can
be helpful when trying to minimize utility loss for a fixed
level of differential privacy, because the amount of noise
required to reach a given privacy level differs based on
where it is added. In fact, the amount of noise that needs to
be injected is dependent upon the sensitivity of the nodes.
Therefore, in order to determine the ideal regimes for each
configuration, it is necessary to calculate the sensitivities of
the various nodes defined on the computation graph. In this
section, we calculate the sensitivities for the nodes used in
each configuration, and in Section 6 we provide a utility
analysis for each configuration.

�2 global sensitivity of M̂2

�3 global sensitivity of M̂3

�bT (D) local sensitivity of bT
�µ̄(D), �↵̄(D) local sensitivity of µ̄i, ↵̄i

�µ(D), �↵(D) local sensitivity of µi,↵i

�k(M̂2), �k(bT ) k-th singular value of M̂2,bT
�s

1
4 mini2[k] �i(bT )� �i�1(bT )

⌧✏,�
2 ln 1.25/�

✏2

Theorem 4 (Global sensitivity of second and third order
LDA moments). Let �2 and �3 be the `1 sensitivities
for M̂2 and M̂3 respectively. Both �2 and �3 are upper
bounded by O( 1

N ).

Theorem 5 (Local sensitivity of the whitened tensor bT ).
The `1 sensitivity of the whitened tensor bT , denoted as
�bT (D), is upper bounded by �bT (D) = O( k1.5

N(�k(M̂2))1.5
).

Theorem 6 (Local sensitivity of the output of tensor de-
composition µ̄i, ↵̄i). Let µ̄1, . . . , µ̄k and ↵̄1, . . . , ↵̄k be the
results of tensor decomposition before unwhitening. The
sensitivity of µ̄i, denoted as �µ̄(D), and the sensitivity
of ↵̄i, denoted as �↵̄(D), are both upper bounded by
O( k2

�sN(�k(M̂2))1.5
), where �s = mini2[k]

�i(bT )��i+1(bT )
4 .

Theorem 7 (Local sensitivity of the final output µi,↵i).
The sensitivities �µ(D) and �↵(D) of the final output are
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upper bounded by O( k2
p

�1(M̂2)

�sN�1.5
k (M̂2)

).

Remark. The sensitivities before the whitening are O( 1
N ).

The whitening step increases the sensitivity by k1.5

�k(M̂2)1.5
,

leading to O( k1.5

N(�k(M̂2))1.5
). Further, the simultaneous

power method for tensor decomposition increases the sen-
sitivity by k0.5

�s
, leading to O( k2

�sN(�k(M̂2))1.5
). The un-

whitening increases the sensitivity by
q
�1(M̂2), leading

to O( k2
p

�1(M̂2)

�sN(�k(M̂2))1.5
). While we used big-O notation to

present interpretable bounds, explicit bounds are required
to implement our algorithm. A summary of these sensitiv-
ity is presented in the appendix.

5.1. Data-dependent Privacy Calibration
Theorem 5, 6 and 7 are local sensitivities, which are func-
tions of the input data set. Adding noise proportional to the
local sensitivity does not guarantee differential privacy as
the local sensitivity may be sensitive to adding/removing of
individuals and lead to the identification of individuals.

Two seminal solutions to this problem include the smooth
sensitivity framework (Nissim et al., 2007) and the
propose-test-release (PTR) framework (Dwork & Lei,
2009). The idea of the smooth sensitivity framework is to
construct a smooth upper bound of the local sensitivity that
is insensitive and to calibrate noise with a heavier tail that
satisfies certain “dilation” and “shift” properties to achieve
pure-DP. The PTR framework involves proposing bounds
of the local sensitivity and testing its validity. If the test
is passed, we calibrate the noise according to the proposed
test. PTR is often easier to use but can only provide an
(✏, �)-DP with � > 0.

In our problem, the smooth sensitivity itself is unbounded,
thus we cannot apply the smooth sensitivity framework
naively. Instead, we use a variant of propose-test-release
framework that releases a confidence bound of the local
sensitivity in a differentially private manner, and calibrates
noise accordingly, similar to the idea in (Blocki et al., 2012)
and a more recent example in the context of data-adaptive
differentially private linear regression (Wang, 2018). We
formalize the idea using the following lemma.
Lemma 8. Let �f (D) be the local sensitivity of a func-
tion f on a fixed data set D. Let �̃f (D) obeys (✏1, 0)-DP
and that P[�f (D) � �̃f (D)]  �1 (where the probabil-
ity is only over the randomness in releasing �̃f (D)). Then
the algorithm releases f(D)+Z(✏, �, �̃f (D)) that is (✏1+
✏, �1+�)-DP, where Z(✏, �, �̃f (D)) is any way of calibrat-
ing the noise for privacy (for Gaussian mechanism, one can
take Z(✏, �, �̃f (D)) = N (0, �̃f (D)2

2✏2

�p
✏+ log(1/�) +p

log(1/�)
�2
) ).

The proof is in Appendix G.6. In our problem, the local
sensitivities depend on the data only through �k(M̂2) and
�s. A natural idea would be to privately release �k(M̂2)
and �s and construct a high-confidence upper bound of
the local sensitivity through a high-confidence lower bound
of �k(M̂2) and �s. We will show the global sensitivities
of �k(M̂2) and �i(bT ) are small, and release �k(M̂2) and
�i(bT ) differentially privately.

Lemma 9 (Global Sensitivity of �k(M̂2) and �s). The sen-
sitivities of �k(M̂2) and �s are each 2/N .
The proof is in Appendix G.7.

Calibrating Noise Using Lemma 8 and Lemma 9, we de-
scribe an algorithm that guarantees (✏1+✏

0
1+✏, �1+�

0
1+�2)-

DP under local sensitivity �̃f (D) in Procedure 1.

6. Differentially Private Spectral Algorithm
In Figure 1, each node corresponds to an intermediate ob-
jective required for a final output estimation and each edge
denotes certain operation required as a step of the spec-
tral learning algorithm. We consider injecting noise to a
subset E of edges {ei}9i=0 that separates the input and the
output (a cut). When E is a cut, differentially privately re-
leasing all nodes preceding the edges in E under bounded
global sensitivity guarantees the overall differential privacy
according to the composition theorem and the closure to
post processing. We call such a subset of edges as a “con-
figuration” if adding noise to all edges in this configuration
guarantees differential privacy of the overall algorithm.

In this section, We achieve (✏1 + ✏
0
1 + ✏, �1 + �

0
1 + �2)-DP

under local sensitivity �̃f (D) in Procedure 1 Four config-
urations are identified as in Table 1. �̃k and �̃s are deter-
mined by a choice of (✏1, �1) and (✏01, �

0
1). In what follows,

if noise is added to edge ei, then ✏i refers to the associated
differential privacy parameter.

Config. 1 has a global `1 sensitivity O(1/N) and we could
obtain pure-DP if we add Laplace noise instead.

In Config. 2, the whitening matrix results from a noiseless
M̂2, but the pseudo-inverse results from a noisy M̂2. We
add noise to a tensor of a smaller dimension, at the expense
of an increased sensitivity by a factor of k3/2

�3/2
k (M̂2)

.

Config. 3 adds noise to the output of the simultaneous ten-
sor power method and thus the sensitivity after the output
of the simultaneous power iteration increases by a factor of
1
�s

compared to Config. 2.

Config. 4 is arguably the simplest, as the previous config-
urations involve the composition of multiple differentially
private outputs whereas this method only adds noise to one
branch. Adding noise to µi instead of µ̄i means that the
noise vector increases in dimension from k to d.
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Procedure 1 (✏1 + ✏
0
1 + ✏, �1 + �

0
1 + �)-Differential Privacy (DP) Noise Calibration

Input: local sensitivity of the configuration: �f (D), non-DP output of the configuration: f(D)
Output: (✏1 + ✏

0
1 + ✏, �1 + �

0
1 + �)-DP output

1: b�k = �k(M̂2) + Lap(�2/✏1) . (✏1, 0)-DP release of �k(M̂2) via Laplacian mechanism
2: �̃k = max{0, b�k � �2

✏1
log( 1

2�1
)} . high probability lower bound of b�k: P(�̃k < b�k) � 1� �1

3: if config # > 2 then
4: b�s = �s + Lap(�3/✏

0
1) . (✏01, 0)-DP release of �s via Laplacian mechanism

5: �̃s = max{0, b�s � �3
✏01

log( 1
2�01

)} . high probability lower bound of b�s: P(�̃s < b�s) � 1� �
0
1

6: Obtain �̃f (D) — a high prob. upper bound of �f (D) — by replacing �k(M̂2) with �̃k and �s with �̃s in �f (D)
7: else
8: Obtain �̃f (D) by replacing �k(M̂2) with �̃k in �f (D)
9: ✏

0
1 = 0, �01 = 0

10: end if
11: Return f(D) +N (0, �̃f (D)2⌧✏,�)

Table 1. The four configurations identified for DP spectral method for LDA.
Configs Edges DP Mechanism

Config. 1 (e2, e3, e5) perturb M̂2 with N (0,�2
2⌧✏2,�2) for (✏2, �2)-DP W

perturb M̂3 with N (0,�2
3⌧✏3,�3) for (✏3, �3)-DP cM3

perturb M̂2 with N (0,�2
2⌧✏5,�5) for (✏5, �5)-DP cW †

Config. 2 (e5, e6) perturb M̂2 with N (0,�2
2⌧✏5,�5) for (✏5, �5)-DP cW †

perturbation bT with N (0, �̃bT (D)2⌧✏6,�6) for (✏1 + ✏6, �1 + �6)-DP bT

Config. 3 (e5, e7) perturb M̂2 with N (0,�2
2⌧✏5,�5) for (✏5, �5)-DP cW †

perturb µ̄i with N (0, �̃µ̄i(D)2⌧✏7,�7) for (✏1 + ✏
0
1 + ✏7, �1 + �

0
1 + �7)-DP µ̄

Config. 4 (e9)
perturb bµi with N (0, �̃µi(D)2⌧✏9,�9) for (✏1 + ✏

0
1 + ✏9, �1 + �

0
1 + �9)-DP bµ

Though it is possible to perform input perturbation, we ex-
clude this option because this `2 sensitivity does not decay
with the number of records. Therefore the utility of input
perturbation is poor even with many records.

6.1. Utility Guarantees

For each configuration, we compute the noise needed to ob-
tain (✏, �) differential privacy based on sensitivity, thereby
characterizing the utility with necessary noise. The util-
ity of each configuration is listed in Theorems 10, 12, 14
and 16. Proofs of all utility derivations are in Appendix H.

From Lemma 29, we know the utility loss of the non-DP
is upper bounded by kµi � µ̂ik2  O( (↵0+1)2k3

p2
min�k(µ)

p
N
) =

Õ( k3
p
N
), where pmin = mini

↵i
↵0

and Õ hides dependencies
on quantities other than k, d, N and �s.

The utility losses consist of two Õ terms – the first Õ term
is a bound of non-private learning and the second Õ term
bounds the different between the private estimator and the

non-private estimator. Notice that the second Õ term is
negligible for large N when ✏ is a constant. Therefore, the
impact of differential privacy is in a low-order term, which
says that for a large dataset, the utility cost of ensuring dif-
ferential privacy is almost for free.
Theorem 10 (Config. 1 Utility Loss). The util-
ity loss

��µi � µ
DP
i

�� using Config. 1 to guar-
antee (✏2 + ✏3 + ✏5, �2 + �3 + �5)-DP is

O( (↵0+1)2k3

p2
min�k(µ)

p
N
) + O(

p
�1(M̂2)k

�s
((

p
d

N�k(M̂2)3/2
⌧✏2,�2)

3 +
p
d

N�k(M̂2)3/2
⌧✏3,�3) +

p
�1(M̂2)d

�k(M̂2)N
⌧✏5,�5 +

q
�1(M̂2) +

p
d

N ⌧✏5,�5

p
k

�s

h
(

p
d

N�k(M̂2)
⌧✏2,�2)

3 +
p
d

N�k(M̂2)3/2
⌧✏3,�3

i
).

Remark 11. The order of the Config. 1 utility loss to guar-
antee (✏, �)-DP is

Õ

⇣
k
3

p
N

⌘
+ Õ

⇣⇣
k
0.5

�s

⇣p
d

N
+ (

p
d

N
)1.5

⌘
+

p
d

N

⌘ log 1
�

✏2

⌘

(2)
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Theorem 12 (Config. 2 Utility Loss). The utility loss��µi � µ
DP
i

�� using Config. 2 to guarantee (✏1+✏5+✏6, �1+

�5 + �6)-DP is O( (↵0+1)2k3

p2
min�k(µ)

p
N
) + O(

p
�1(M̂2)k2.5

�sN �̃k
3/2 ⌧✏6,�6 +p

�1(M̂2)d

�k(M̂2)N
⌧✏5,�5 +

q
�1(M̂2) +

p
d

N ⌧✏5,�5
k2.5⌧✏6,�6

�sN �̃k
3/2 ).

Remark 13. The order of the Config. 2 utility loss to guar-
antee (✏, �)-DP is

Õ

⇣
k
3

p
N

⌘
+Õ

⇣⇣
k
0.5

�s

⇣
k
0.75

N
+

k
2

N
(

p
d

N
)0.5

⌘
+

p
d

N

⌘ log 1
�

✏2

⌘

(3)

Theorem 14 (Config. 3 Utility Loss). The util-
ity loss

��µi � µ
DP
i

�� using Config. 3 to guar-
antee (✏1 + ✏

0
1 + ✏5 + ✏7, �1 + �

0
1 + �5 + �7)-

DP is O( (↵0+1)2k3

p2
min�k(µ)

p
N
) + O(

p
�1(M̂2)k2.5

�̃sN �̃3/2
k

⌧✏7,�7 +
p

�1(M̂2)d

�k(M̂2)N
⌧✏5,�5 +

q
�1(M̂2) +

p
d

N ⌧✏5,�5
k2⌧✏7,�7

�̃sN �̃3/2
k

).

Remark 15. The order of the Config. 3 utility loss to guar-
antee (✏, �)-DP is

Õ

⇣
k
3

p
N

⌘
+Õ

⇣⇣
k
0.5

�s

⇣
k
0.75

N
+

k
1.5

N
(

p
d

N
)0.5

⌘
+

p
d

N

⌘ log 1
�

✏2

⌘

(4)

Theorem 16 (Config. 4 Utility Loss). The utility loss��µi � µ
DP
i

�� using Config. 4 to guarantee (✏1 + ✏
0
1 + ✏9,

�1 + �
0
1 + �9) is O( (↵0+1)2k3

p2
min�k(µ)

p
N
) +O(

p
�1(M̂2)dk

2

�̃sN �̃3/2
k

⌧✏9,�9).

Remark 17. The order of the Config. 4 utility loss to guar-
antee (✏, �)-DP is

Õ

⇣
k
3

p
N

⌘
+ Õ

⇣
k
0.5

�s

p
d

N

log 1
�

✏2

⌘
(5)

6.2. Comparison of Configurations

We present a pairwise comparison between the utilities of
different configurations using Õ-order utility losses. The
O-order utility losses are too complex for comparison in
theory, but we will implement experiments for compar-
isons. As we illustrate in the remarks in the previous sub-
section 6.1, the utility loss difference are marked as blue.

Remark 18. Configuration 1 vs. 2: When square root of
the dimension (vocabulary size)

p
d is smaller than total

number of documents N , the dominating term in the blue
is Õ(

p
d

N ) for Config. 1 utility loss, and it is larger than the
Õ(k

2

N (
p
d

N )0.5) term in Config. 2. Therefore, for smaller d
Config. 2 is preferred over Config. 1.

More importantly when d is large, Config. 1 requires
adding noise to the third order data moment M̂3, and thus
explicitly forms the large third order data moment object
M̂3 of size d ⇥ d ⇥ d. As a result, Config. 1 does not

scale to large scale real-world experiments such as LDA on
Wikipedia documents. In the experiments, for other config-
urations, we never explicitly form M̂3; the whitened third
order moment bT of size k ⇥ k ⇥ k is formed instead.

Remark 19. Configuration 2 vs. 3: If we do not con-
sider Procedure 1 of calibrating local sensitivity, the utility
loss for Config. 3 seem to be lower than that of Config. 2
by a factor of Õ(k0.5) in the last term of the utility loss dif-
ferences colored blue. However, during the local sensitive
calibration, Config. 3 requires extra differential private re-
lease of �s, which could cause the utility loss of Config. 3
to be larger than Config. 2. To understand how the two
compares, �s is crucial and should be analyzed case by
case.

Remark 20. Configuration 3 vs. 4: When Õ(k0.75) �
Õ(d0.5) and N is sufficiently large, Config. 4 is preferred
over Config. 3, and vice versa. Therefore, smaller k (rel-
ative to d) prefers Config. 3 and larger k (relative to d)
prefers Config. 4.

6.3. Comparison with DP VI

Without privacy constraints, variational inference esti-
mates, although could be trapped in local optima, could
sometimes achieve lower error than spectral methods in
practice,. However, this can differ significantly in the dif-
ferential privacy setting. Due to the fact that the DP VI
algorithm requires adding noise across multiple iterations,
compounded with the non-convexity of the likelihood func-
tion, empirical performance is often compromised. The
guaranteed consistency of the spectral algorithm makes it
a more attractive option in the differential privacy case.

7. Experiments
In a suite of synthetic experiments, we simulate documents
from an LDA model parameterized by varying choice of ↵
and µ. Each are randomly sampled to ensure that bursty
use of a single word under a certain topic is possible in
our experiment.Therefore, our setting covers a wide range
of hyper-parameters and captures some common irregular-
ities in distributional properties. Under this synthetic set-
ting, we have access to the underlying parameters of the
latent dirichlet allocation, and can thus directly calculate
error with respect to the true parameters. This is not fea-
sible with real data. We compare the empirical loss of
each configuration under different hyperparameter settings.
In addition, we compare all configurations of our spec-
tral algorithm against differentially private variational in-
ference (Park et al., 2016) run under the same settings. Our
algorithm universally outperforms state-of-the-art VI quan-
titatively.

To evaluate Configuration 1, we set the vocabulary size and
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Figure 2. Error of our method under all configurations vs the differentially private VI over varying total privacy loss ✏total (in the
range of 0.1 to 2) while fixing the � = 10�5. vi-u and unnoised denote the non-DP version of VI and spectral algorithm respectively.
d = 50, k = 5.
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Figure 3. Perplexity scores of our method under all configurations vs the differentially private VI on Wikipedia data over varying
total privacy loss ✏total while fixing the � = 10�4. Number of words d = 8000, number of documents N = 50000, ↵0 = 0.01.
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the number of topics to be small (d = 50, k = 5) in our
synthetic settings. Configuration 1 requires calculating the
unwhitened third order moment, which is computationally
infeasible for large d or k.

Evaluation Metric: Our experiments evaluate the loss be-
tween the ground-truth µ and the estimated bµDP via a (✏, �)
differentially private algorithm across varying total privacy
loss ✏. The distribution of privacy budget across edges
in each configuration is set to be uniform for simplicity.
We release only differentially private likelihoods by addi-
tionally perturbing the sufficient statistics, as described in
(Park et al., 2016).

VI vs Spectral: Figure 2 exhibits the error for varying to-
tal privacy loss ✏ on different datasets. Under all configu-
rations except for configuration 1, our differentially private
spectral algorithm outperforms differentially private varia-
tional inference, and has higher utility under the same level
of privacy.

Config. 2 vs Config. 3: As described in Remark 19, the
comparison between Config. 2 and Config 3 is unclear and
should be analyzed case by case. In synthetic experiments
with d = 50 and k = 5, Config. 2 outperforms Config.
3 as well as Config. 4. This is due to the noised �̃s (in
Procedure 1). We show the difference between noised �̃s

and unnoised �s in Figure 4b. Config. 2’s gap between
noised �̃s and unnoised �s is always smaller than Config.
3’s when k < 50, suggesting Config. 2 is preferred for
smaller k. However, the difference between the gaps de-
creases as the number of topics increase, suggesting that
Config. 3’s performance would improve as k increases.
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Figure 4. Visualization of (a) the kth singular values of M̂2 and
(b) the smallest singular value gap of bT using 100k documents.

Small ↵0 vs Large ↵0: The concentration parameter of
the topic distribution ↵0 plays an important role in the
utility loss. An interesting observation is that the spectral
method’s performance is more advantageous at smaller val-
ues of ↵0. This leads to less mixing between topics in each
document. Config. 4’s performance is affected by ↵0 more
than other configurations. As ↵0 gets smaller, the utility
loss for Config. 4 converges to that of Config. 3.

Small Corpus vs Large Corpus: Figure 2c considers the
limited data setting, N = 104. Config. 4’s advantage de-
creases as the number of documents decreases. Config. 2
exhibits robustness with a decreased number of documents.

Wikipedia Dataset: We implement our methods on the
wikipedia dataset and verify the performance by compar-
ing with differentially private variational inference. The
vocabulary size is truncated to be d = 8000. Config. 1
is not scalable, since adding noise to the third order mo-
ment (dimensionality d ⇥ d ⇥ d M̂3) is infeasible due to
memory constraints. Storing M̂3 when d = 8000 requires
2 terabytes of memory. We therefore only run Config. 2
- 4, in which dimensionality reduction is used, subverting
the need to explicitly form M̂3.

As shown in Figure 3 where the held-out perplexity scores
on Wikipedia are compared with variational inference, our
method achieves better perplexities under the same privacy
levels. As we observe in the Wiki results in Figure 3, per-
formance of Config.3 is improved under larger number of
topics k, confirming our theory.

An interesting observation from Figure 3 is that sometimes
DP-algorithms which introduces noises could help the al-
gorithm to train better, in analogy to the well-known re-
sult of noisy gradient descent escapes from saddle point
(while gradient descent gets trapped) in nonconvex opti-
mization (Ge et al., 2015). Config. 3 achieves better results
than the unnoised spectral method.

8. Conclusion
We provide an end-to-end analysis of differentially private
Latent Dirichlet Allocation model using a spectral algo-
rithm. The algorithm involves a dataflow that permits dif-
ferent locations for injecting noise and features a delicate
data-dependent method that calibrates the noise to a differ-
entially privately released high-probability upper bound of
the local-sensitivities. We present a detailed utility analysis
which shows that the proposed methods can provably re-
cover the model parameters. To the best of out knowledge,
these are the first differentially private topic methods that
come with a provable consistency guarantee. Moreover,
private spectral-LDA methods dominates the current state-
of-the-art —differentially private variational inference —
in all our experiments, which provides a compelling empir-
ical example of spectral learning methods becoming a more
preferable choice when differential privacy is required.

While we focused on LDA, the same technique can be used
in other models that can be learned using a tensor-spectral
approach. We expect similar improvements in private un-
supervised learning to hold for stochastic block models,
Gaussian mixture models and hidden Markov models.
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