Representing Unordered Data Using Complex-Weighted Multiset Automata

A. Proof of Theorem 3

Our strategy is to form a Jordan decomposition of A and
show that the desired bounds hold for each Jordan block. To
this end, we first prove the following lemmas.

Lemma 8. If J is a Jordan block with nonzero eigenvalue,
then for any € > 0 there is a complex matrix D such that
J + D is diagonalizable in C and

I(J +D)" = J"|
———— < ne
17

Proof. The powers of J look like
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More concisely,

o (kij) Ak if0<k—j<n
"]k =
0 otherwise.

We choose D to perturb the diagonal elements of J towards
zero; that is, let D be a diagonal matrix whose elements are
in [—€4,0) and are all different. This shrinks the diagonal
elements by a factor no smaller than (1 — €). So the powers
of (J+ D)are,forO<k—j<n:

[(J+D)"jk = cji [Tk

cjk = (1—e)" .
Simplifying the bound on c;; (Kozma, 2019):
cik=2l-—(m—-k+jle>1-ne. 4
The elements of J", for 0 < k — j < n, are perturbed by:

[(J+D)" = J"]jx = (cjx — DIJ" ]k
(7 + DY = T < ne |17

Since ||-]| is monotonic,

(7 + D) = J"|| < ne |"|
J+D)yr-J"
I+ Dy ="l _ .
171

Lemma 9. If J is a Jordan block with zero eigenvalue, then
forany € > 0,r > 0, there is a complex matrix D such that
J + D is diagonalizable in C and

1(J+D)"—=J"| <r'e.

Proof. Since the diagonal elements of J are all zero, we
can’t perturb them toward zero as in Lemma 8; instead, let

s—mind” (r )d €
= 1 -, —_— —
2'\2/) d
and let D be a diagonal matrix whose elements are in (0, d]

and are all different. Then the elements of ((J + D)" — J")
are, for 0 < k — j < min{n, d}:

k —
< 2n6n7k+j

< on 5min{0,n—d]+l

and by monotonicity,

[1(J + D)" — J”” < 2n5min{0,n_d]+1d.

To simplify this bound, we consider two cases. If n < d,

I(J+D)*—J"| =2"6d

d ¢
< 2" —d
< (2) :

<r"e.

Ifn>d,

I(J +D)" = J"|| = 2"6"*'a

Now we can combine the above two lemmas to obtain the
desired bounds for a general matrix.

Proof of Theorem 3. Form the Jordan decomposition A =
PJP~!, where

Ji
J

p

and each J; is a Jordan block. Let «(P) = IPINIP~Y| be the
Frobenius condition number of P.

If A is nilpotent, use Lemma 9 on each block J; to find a

D; so that [|(J; + D;)" — ]JT’II K(P)p Combme the D;
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into a single matrix D, so that ||(J + D)" — J"|| < %. Let
E = PDP~!, and then

I(A+ E)" = A™| = [|P((J + D)" = J")P!||
< k(P)I(J+ D) = J|
r'e
< k(P) (P)
=r"e.

If A is not nilpotent, then for each Jordan block J;:

* If J; has nonzero eigenvalue, use Lemma 8 to find a

Jn
D; such that ||(J; + Dj)" = Ji|| < ﬁ”z—p”

* If J; has zero eigenvalue, use Lemma 9 to find a D;

"
such that ||(J; + D;)" — J;’|| < K(nTE)ZT'

Combine the D; into a single matrix D. Then the total
absolute error of all the blocks with nonzero eigenvalue is at
most K(HTE)Z %n” And since p(J)™ < |||, the total absolute
error of all the blocks with zero eigenvalue is also at most

ne /"1l ; ;
PR 2 So the combined total is

ne
k(P)?

I(J+D)" =J" < 7711

Finally, let E = PDP! and

IP((J + D)" = J P
K(P)I((J + D)™ = M|
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I(A+ E)* — A"l
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B. Proof of Proposition 5

First, consider the & operation. Let u;(a) (for all a) be the
transition matrices of M;. For any € > 0, let E;(a) be the
perturbations of the u; (a) such that ||E|(a)|| < €/2 and the
ui(a) + Er(a) (for all a) are simultaneously diagonalizable.
Similarly for M,. Then the matrices (ui(a) + Ei(a)) @
(u2(a)+Ez(a)) (for all a) are simultaneously diagonalizable,
and

l(u1(a) + Ei(a)) ® (n2(a) + Ex(a)) — pi(a) @ pa(a)ll
= |Ei(a) @ Ex(a)|l

IE ()]l + | E2(a) ]l

<e.

IA

Next, we consider the w operation. Let d; and d; be the
number of states in M| and M,, respectively. Let E}(a) be
the perturbations of the y(a) such that ||E|(a)|| < €/(2d>)
and the u (a) + E;(a) are simultaneously diagonalizable by
some matrix P;. Similarly for M.

Then the matrices (u(a) + E1(a)) w (uz(a) + E>(a)) (for
all @) are simultaneously diagonalizable by P; ® P,. To see
why, let A; = uy(a) + E1(a) and Ay = us(a) + E»(a) and
observe that

(P1® P2)(A; wAy)(P1 @ Py~
=(PL®P) (A ®1+1® A)(P;' ® Py
=PIAIP]' @ 1 +1® P,A P!
= PiA P; WP AP,

which is diagonal.

To show that (uy(a) + Ei(a)) w (uz(a) + E>(a)) is close to
(u1(a) w up(a), observe that

(t1(a@) + Ey(a)) W (p2(a) + Ex(a))
= (ni1(a) + Ei(a)) ® I +1® (u2(a) + Ex(a))
=u(@QI+E(a)QI+1® uy(a)+1® E(a)
= (p1(a) W pa(a)) + (Er(a) W Ez(a)).

Therefore,

I(u1(a) + Ei(a)) w (u2(a) + Ex(a)) — pi(a) w pa(a)ll
= |Ei(a) W Ex(a)l|
=Ei(a) @ I +1® Ex(a)l|
< [IEi(a) @ 1] + I ® Ex(a)l

< [IEi(a)lld2 + dill Ex(a)l

<e.
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C. Proof of Proposition 7

Because any set of commuting matrices can be simultane-
ously triangularized by a change of basis, assume without
loss of generality that M’s transition matrices are upper
triangular, that is, there are no transitions from state g to
state r where g > r.

Let M = (Q, %, 4, u, p), and arbitrarily number the symbols
of X as ay,...,ay. Note that M assigns the same weight to
multiset w as it does to the sorted symbols of w. That is, we
can compute the weight of w by summing over sequences of
states g, . . ., ¢m Such that g is an initial state, gy, is a final
state, and M can get from state g;_; to ¢; while reading af,‘,
where k is the number of occurrences of a; in w.

Forall a € Z,q,r € Q, define M, ., to be the automaton
that assigns to a* the same weight that M would going from
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state ¢ to state » while reading a*. That is,

Mq,a,r = (/lq,a,r» HMgq.a,r» pq,a,r)

[ﬂq,a,r]q =1
:uq,a,r(a) = u(a)
[pq,a,r]r =1

and all other weights are zero.

Then we can build a multiset automaton equivalent to M by
combining the M,, ,, , using the union and shuflle operations:

’ — PEEEEY
M = @ /lqoMQO»alaql w w Mmelsam,QmPQm

q05---qm €Q
qo<""<qm

(where multiplying an automaton by a scalar means scaling
its initial or final weight vector by that scalar). The M . ,
are unary, so by Proposition 5, the transition matrices of M’
are ASD. Since M, , has r — g + 1 states, the number of
states in M’ is

m
1=">, [|@-g-1+D
qo < <gqm i=1

which we can find a closed-form expression for using gener-
ating functions. If p(z) is a polynomial, let [z'](p(z)) stand
for “the coefficient of z* in p.” Then

SN (5

i=0 i=0 i=0

() ()

LRl

2m+d
d-1




