Low-Variance and Zero-Variance Baselines for Extensive-Form Games

Trevor Davis' T Martin Schmid> Michael Bowling '

Abstract

Extensive-form games (EFGs) are a common
model of multi-agent interactions with imperfect
information. State-of-the-art algorithms for solv-
ing these games typically perform full walks of
the game tree that can prove prohibitively slow
in large games. Alternatively, sampling-based
methods such as Monte Carlo Counterfactual Re-
gret Minimization walk one or more trajectories
through the tree, touching only a fraction of the
nodes on each iteration, at the expense of requir-
ing more iterations to converge due to the variance
of sampled values. In this paper, we extend recent
work that uses baseline estimates to reduce this
variance. We introduce a framework of baseline-
corrected values in EFGs that generalizes the pre-
vious work. Within our framework, we propose
new baseline functions that result in significantly
reduced variance compared to existing techniques.
We show that one particular choice of such a func-
tion — predictive baseline — is provably optimal
under certain sampling schemes. This allows for
efficient computation of zero-variance value esti-
mates even along sampled trajectories.

1. Introduction

Multi-agent strategic interactions are often modeled as
extensive-form games (EFGs), a game tree representation
that allows for hidden information, stochastic outcomes, and
sequential interactions. Research on solving EFGs has been
driven by the experimental domain of poker games, in which
the Counterfactual Regret Minimization (CFR) algorithm
(Zinkevich et al., 2008) has been the basis of several break-
throughs. Approaches incorporating CFR have been used
to essentially solve one nontrivial poker game (Bowling
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et al., 2015), and to beat human professionals in another
(Moravcik et al., 2017; Brown & Sandholm, 2018).

CFR is in essence a policy improvement algorithm that
iteratively evaluates and improves a strategy for playing
an EFG. As part of this process, it must walk the entire
game tree on every iteration. However, many games have
prohibitively large trees when represented as EFGs. For
example, many commonly played poker games have more
possible game states than there are atoms in the universe
(Johanson, 2013). In such cases, performing even a single
iteration of traditional CFR is impossible.

The prohibitive cost of CFR iterations is the motivation
for Monte Carlo Counterfactual Regret Minimization (MC-
CFR), which samples trajectories to walk through the tree
to allow for significantly faster iterations (Lanctot et al.,
2009). Additionally, while CFR spends equal time updating
every game state, the sampling scheme of MCCFR can be
altered to target updates to parts of the game that are more
critical or more difficult to learn (Gibson et al., 2012b;a).
As a trade-off for these benefits, MCCFR requires more
iterations to converge due to the variance of sampled values.

In the Reinforcement Learning (RL) community, variance
reduction in sampling algorithms has been extensively stud-
ied. In particular, baseline functions that estimate state
values are typically used within policy gradient methods
to decrease the variance of value estimates along sampled
trajectories (Williams, 1992; Greensmith et al., 2004; Bhat-
nagar et al., 2009; Schulman et al., 2016). Recent work by
Schmid et al. (2019) has adapted these ideas to reduce vari-
ance in MCCFR, resulting in the VR-MCCEFR algorithm.

In this work, we generalize and extend the ideas of Schmid
et al. In Section 3, we introduce a framework for variance
reduction of sampled values in EFGs by use of state-action
baselines. In Section 4, we show that VR-MCCEFR is a
specific application of our baseline framework that unnec-
essarily generalizes across dissimilar states. We introduce
alternative baseline functions that take advantage of our ac-
cess to the full hidden state during training, avoiding this
generalization. We improve on prior theoretical analysis
of baseline performance, demonstrating that our baselines
are more directly tailored to reducing error. In Section 5,
we show empirically that our new baselines result in signifi-
cantly reduced variance and faster convergence.



Low-Variance and Zero-Variance Baselines for Extensive-Form Games

The variance of MCCFR updates can be further reduced
through careful choice of sampling scheme. In Section 6
we examine how our baselines perform in a "vectorized"
form of MCCFR introduced by Schmid et al. We show that
with this sampling scheme, our proposed predictive baseline
exactly tracks the expected utility of the current strategies,
thus provably computing zero-variance sampled values. Us-
ing this baseline thus allows for practical computation of the
theoretically optimal "oracle baseline" discussed by Schmid
et al. For the first time, this allows for exact CFR updates to
be performed along sampled trajectories.

Finally, we demonstrate that our framework is also effec-
tive in online game play. Monte Carlo continual re-solving
(MCCR) (Sustr et al., 2019) uses MCCER to solve subgames,
allowing an agent to decide how to act only for situations
encountered during execution while still guaranteeing ap-
proximate equilibrium play. In Section 7, we show that
our baselines improve the convergence speed of subgame
solving, allowing an MCCR agent to make faster decisions.

2. Background

An extensive-form game (EFG) (Osborne & Rubinstein,
1994) is a game tree, formally defined by a tuple
(N,H,P,o.,u,Z). N is a finite set of players. H is a
set of histories, where each history is a sequence of actions
and corresponds to a vertex of the tree. For h, h' € H, we
write h C R’ if h is a prefix of I/. The set of actions avail-
able at h € H that lead to a successor history (ha) € H
is denoted A(h). Histories with no successors are terminal
histories Z C H. P: H\ Z — N U {c} maps each history
to the player that chooses the next action, where c is the
chance player that acts according to the defined distribution
oc(h) € A4y, where A 4p,) is the set of probability dis-
tributions over A(h). The utility functionu: N x Z — R
assigns a value to each terminal history for each player.

For each player ¢ € N, the collection of (augmented) infor-
mation sets T; € T is a partition of the histories H.! Player
i does not observe the true history h, but only the informa-
tion set I;(h). Necessarily, this means that A(h) = A(h')
if Ip(n)(h) = Ip(ny(h'), which we then denote A([). For
brevity, we will omit the subscript from Ip(;)(h) when
considering the acting player’s information set.

Each player selects actions according to a (behavioral) strat-
egy that maps each information set I € Z; where P(I) = i
to a distribution over actions, (1) € A 4(y). The probabil-
ity of taking a specific action at a history is o p(p,)(h,a) =
opmy(I(h),a). A strategy profile, o = {o;|i € N}, spec-
ifies a strategy for each player. The reach probability of a
history his 77 (h) = I (410)ch 0Py (R, @). This product

! Augmented information sets were introduced by Burch et al.
(2014).

can be decomposed as 77 (h) = «{* (h)7” ;" (h), where the
first term contains the actions of player ¢, and the second con-
tains the actions of other players and chance. We also write
77 (h, h'") for the probability of reaching h’ from h, defined
tobe 0 if h [Z h/. A strategy profile defines an expected

utility for each player as u;(0) = > .., ™ (2)uq(2).

In this work, we consider two-player zero-sum EFGs, in
which N = {1,2} and u(z) == u;(2) = —u_;(2). We also
assume that the information sets satisfy perfect recall, which
requires that players do not forget any information that
they once observed. Mathematically, this means that two
histories in the same information set I; must have the same
sequence of past information sets and actions for player <.
All games played by humans exhibit perfect recall. We write
I; C hif there is any history k' € I; such that ' E h, and
we denote that history (unique by perfect recall) by I;[h].

2.1. Solving EFGs

A common solution concept for EFGs is a Nash equilibrium,
in which no player has an incentive to deviate from their
specified strategy. We evaluate strategy profiles by their
distance from equilibrium as measured by exploitability, the
average expected loss against worst-case opponents:

exploit(o) = 1/2 g}g}zc(ug(al, ob) + ui (o, 02)).

Counterfactual Regret Minimization (CFR) is an algorithm
for learning Nash equilibria in EFGs through iterative
self play (Zinkevich et al., 2008). For any h € H, let
Z[h] = {z € Z | h C z} be the set of terminal histories
reachable from h, and define the history’s expected utility
as u(hl|o) = 3__c 7 7 (h, 2)u(z). For each information
set I and action a € A(I), the counterfactual regret is

r'(1a) = > 717 pgy () (u((ha)lo) = u(hlo)) . (1)

hel
CFR accumulates these regrets over time as
RT(I,a) = Zthl r*(I,a). The next strategy pro-

file is then selected with regret matching, which
sets probabilities proportional to the positive regrets:
oT*Y(I,a) o max(RT(I,a),0). Defining the average
strategy @ such that 77 (h,a) < .1, 77 (h)at(h, a),
CFR guarantees that exploit(z’) — 0 as T — oo, thus
converging to a Nash equilibrium.

The empirical convergence rate of CFR is greatly
improved by the CFR' variant, which greedily ze-
roes all negative regrets on every iteration, replacing
R?! with an accumulant Q! recursively defined with
Q°(I,a) =0, Q'(I,a)=max(Q'""*(I,a)+r'(l,a),0)
(Tammelin et al., 2015). It also alternates updates for each
player, and uses linear averaging, which gives greater weight
to more recent strategies.
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CFR(™) requires a full walk of the game tree on each itera-
tion, which can be a very costly operation on large games.
Monte Carlo Counterfactual Regret Minimization (MCCFR)
avoids this cost by only updating along sampled trajectories.
For simplicity, we focus on the outcome sampling (OS) vari-
ant of MCCFR (Lanctot et al., 2009), though all results in
this paper can be trivially extended to other MCCFR vari-
ants. On each iteration ¢, a sampling strategy ¢* € X is used
to sample a single terminal history z! ~ . A sampled
utility is then calculated recursively for each prefix of z! as

1((ha) C 2%)
q'(h,a)
i(hlo', 2"y = Y o'(h,a)i(h,alo’, 2"

acA(h)

a(h,alot, 2") = a((ha)|ot, 2%

2)

where 1 is the indicator function and 4(zt|o?, 2%) = u(2?).
For any h C 2z, the sampled value (h, a|o?, 2*) is an un-
biased estimate of the expected utility u((ha)|c), whether
a is sampled or not. These sampled values are used to cal-
culate a sample of the counterfactual regret 7/ (I, a|z') =

o (h) ;
; 7:;'(’7’5)/1) (a(h,alo’, ") —a(hlo’,2"))  (3)

This gives an unbiased sample of the counterfactual re-
gret 7' (1, a), which is then used to perform unbiased CFR
updates. As long as as the sampling strategies satisfy
74 (z) > 0 for all z € Z, MCCFR guarantees that
exploit(z7) — 0 with high probability, thus converging
to a Nash equilibrium. However, the rate of convergence de-
pends on the variance of 7(7, a|z?) (Gibson et al., 2012b).

3. Baseline framework for EFGs

We now introduce a method for calculating unbiased esti-
mates of utilities in EFGs that has lower variance than the
sampled utilities @(h, a|o?, 2!) defined above. We do this
using baseline functions, which estimate the expected utility
of actions in the game. We will describe specific exam-
ples of such functions in Section 4; for now, we assume
the existence of some function b*: H x A — R such that
bt(h,a) in some way approximates u((ha)|ot). We define
a baseline-corrected sampled utility as

ty(h,alot, 2
_ 1((ha) C 2%)
q'(h,a)

dp(hlot, 2") = Z o'(h,a)iy(h,alo’, 2" 4)
acA(h)

(@ ((ha)lot, z") — b*(h,a)) + b*(h,a)

Equation (4) comes from the application of a control vari-
ate, in which we lower the variance of a random variable

(X = %ﬁb((haﬂat, 2')) by subtracting another

random variable (Y = ﬂ(gf(aifz,%)zt)bt(h, a)) and adding its
known expectation (E [Y] = b'(h,a)), thus keeping the
resulting estimate unbiased. If X and Y are positively cor-
related, then this estimate will have lower variance than X
itself. Because 4iy((ha)|ot, 2?) is defined recursively, its
computation includes the application of independent control
variates at every action taken between h and 2.

These estimates are unbiased, and their variance is directly
proportional to a measure of aggregate squared error in the
baseline function:

Theorem 1. For any h T 2! and any a € A(h), the
baseline-corrected utilities satisfy

E.: [@(h,alo’,2")|2z" 3 h] = u((ha)|o*)

E.: [as(hlo", z")|z" 3 h] = u(h|o?)

Theorem 2. For any h T 2' and any a € A(h), the
baseline-corrected utilities satisfy

Var: [y (h, alo®, 2")|z" O h]

7" ((ha), (K'a’)))?
5 )(( ((ha), (Wa")))

= 7 (h, (W)

(ha’)3(ha

- (u((@ar)lot) - b%hxa’))Q)

Full proofs are given in the supplementary materials. The-
orem | show that we can use 4, (h,alot, 2t) in place of
@(h, alot, 2%) in equation 3 and maintain the convergence
guarantees of MCCFR. Theorem 2 shows that the variance
of the resulting estimates depends only on the squared differ-
ence between the baseline estimates and the true expected
utilities. In particular, using an ideal baseline eliminates all
variance in the MCCFR update. By choosing our baseline
well, we decrease the MCCFR variance and speed up its con-
vergence. Pseudocode for MCCFR with baseline-corrected
values is given in the supplementary materials.

Although we focus on using our baseline-corrected samples
in MCCFR, nothing in the value definition is particular to
that algorithm. In fact, a lower variance estimate of sampled
utilities is useful in any algorithm that performs iterative
training using sampled trajectories, such as policy gradient
methods (Srinivasan et al., 2018) or stochastic first-order
methods (Kroer et al., 2015).

4. Baselines for EFGs

In this section we examine specific baseline functions that
can be used during iterative training. We show how MC-
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CFR (without a baseline) and VR-MCCFR can be be recon-
structed in our baseline framework, and we propose three
novel baseline functions. Theorem 2 shows that we can
minimize variance by choosing a baseline function b* such
that bt (h, a) = u((ha)|c?).

No baseline (MCCFR). We begin by examining MCCFR
under its original definition, where no baseline function is
used. We note that when we run baseline-corrected MCCFR
with a static choice of b*(h, a) = 0 for all h, a, the operation
of the algorithm is identical to MCCFR. Thus, opting to not
use a baseline is, in itself, a choice of a very particular
baseline.

Using b?(h,a) = 0 might seem like a reasonable choice
when we expect the game’s payouts to be balanced between
the players. However, even when the overall expected util-
ity u(o) is very close to 0, there will usually be particu-
lar histories with high magnitude expected utility u(h|o).
For example, in poker games, the expected utility of a his-
tory is heavily biased toward the player who has been dealt
better cards, even if these biases cancel out when consid-
ered across all histories. In fact, often there is no strategy
profile at all that satisfies u((ha)|o) = 0, which makes
bt(h,a) = 0 a poor choice in regards to the ideal criteria
bt(h,a) ~ u((ha)|o?). An example game where a zero
baseline performs very poorly is explored in Section 5.

Static strategy baseline. The simplest way to ensure that
the baseline function does correspond to an actual strategy
is to choose a static, known strategy profile ¢” € ¥ and let
bt(h,a) = u((ha)|o?) for each time . Once the strategy is
chosen, the baseline values only need to be computed once
and stored. In general this requires a full walk of the game
tree, but it is sometimes possible to take advantage of the
structure of the game to greatly reduce this cost. For an
example, see Section 5.

Learned history baseline. Using a static strategy for our
baseline ensures that it corresponds to some expected utility,
but it fails to take advantage of the iterative nature of MC-
CFR. In particular, when attempting to estimate u((ha)|o?),
we have access to past samples 4, ((ha)|o™, 27) for 7 < t.
Because the strategy is changed incrementally, we might
expect the expected utility to change slowly and for these to
be reasonable samples of the utility at time ¢ as well.

Define 7h%(t) = {r < t | (ha) C 27} to be the set of
timesteps on which (ha) was sampled, and denote the jth
such timestep as 7;. The learned history baseline sets

[7" (@)l
bi(h,a) = Z w;ly((ha)|o™, 27) 3)
j=1
where (wj)‘j:r(t)‘ is a sequence of nonnegative weights

ha
with Z‘;l ®© wj < 1. Possible weighting choices

include simple averaging, where w; = 1/|T"%(t)|,
and  exponentially-decaying  averaging, where
wj = a(l - )| 7" (1= for some a € (0, 1].

Learned infoset baseline (VR-MCCFR). The learned his-
tory baseline is similar to the VR-MCCFR baseline defined
by Schmid et al. (2019). The principle difference is that the
VR-MCCER baseline tracks values for each information set,
rather than for each history; we thus refer to it as the learned
infoset baseline. This baseline also updates values for each
player separately, based on their own information sets. This
can be accomplished by tracking separate values for each
player throughout the tree walk, or by running MCCFR
with alternating updates, where only one player’s regrets are
updated on each tree walk. The learned infoset baseline is
defined as b'(h, a) = b*(I;(h), a) where

|5 ()]

V(lna)= Y wis(Llz"a)le™.27)  (6)
j=1

where i is the player being updated, 77:%(¢#) is the set of
timesteps on which (h'a) was sampled for any h' € I;,
and 7; is jth such timestep. Following Schmid et al. we
consider both simple averaging and exponentially-decaying
averaging for selecting the weights w;. Running MCCFR
with this baseline exactly reproduces VR-MCCFR.

Predictive baseline. When we use one of the learned base-
lines with MCCFR, on iteration ¢ we generate sampled
values which are used both to update the baseline estimates
b1 and to update the strategies o**! (via regret match-
ing). Thus b'*! is updated with regards to o, despite the
theory that the optimal value for b**! depends on o'*1. As
an alternative, we can first update the strategy, then use
the new strategy in the baseline update. In particular, the
predictive baseline recursively defines the baseline values
as estimated values with respect to the newly computed
strategy. Formally, it updates

b (h,a) =
u(z?) if (ha) = 2¢
S ot ((ha), a )b+ ((ha),a')  if (ha) T 2t
bt (h,a)

)

otherwise.

The recursive nature of this definition is possible due to
the depth-first order of MCCFR updates. Examining the
recursive value definition (4), it can be seen that (7) is equiv-
alent to the definition b'*1(h,a) = 0,((ha)|ot*t, 2?) for
sampled (ha).” Thus we set b**1(h, a) to an unbiased esti-
mate of u((ha)|ot*!), aiming to minimize the error term in
Theorem 2.

?See Lemma 3 in the supplementary materials.
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5. Experimental comparison

We run our experiments using a commodity desktop ma-
chine in Leduc hold’em (Southey et al., 2005), a small
poker game commonly used as a benchmark in games re-
search®. We compare the effect of the various baselines
on the MCCFR convergence rate. Our experiments use the
regret zeroing and linear averaging of CFR*, as these im-
prove convergence when combined with any of the nonzero
baselines examined in this work. For the static strategy
baseline, we use the “always call” strategy, which matches
the opponent’s bets and makes no bets of its own. Expected
utility under this strategy is determined by the current size
of the pot, which is measurable at run time, and the winning
chance of each player’s cards. Before training, we measure
and store these odds for all possible sets of cards, which
is significantly smaller than the size of the full game. For
both of the learned baselines, we use simple averaging as it
performed best in preliminary experiments.

We run experiments with two sampling strategies. The
first is uniform sampling, in which ¢*(h,a) = 1/]A(h)|.
The second is opponent on-policy sampling, which de-
pends on the player ¢ being updated: we sample uniformly
(q*(h,a) = 1/|A(h)]) at histories h where P(h) = i, and
sample on-policy (¢'(h,a) = o'(h,a)) otherwise. For con-
sistency, we use alternating updates for both schemes.

Figures 1a and 1b show the convergence of MCCFR with the
various baselines, as measured by exploitability (recall that
exploitability converges to zero). All results in this paper are
averaged over 20 runs, with 95% confidence intervals shown
as error bands (often too narrow to be visible). We compare
algorithms in terms of number of iterations in order to avoid
implementation details. In our implementation we found the
choice of baseline to have no noticeable impact on iteration
time. With either sampling scheme, the learned infoset
(VR-MCCFR) baseline improves on using no baseline at
all, while the other three baselines achieve a significant
improvement on top of that.

Many true expected values in Leduc are very close to zero,
making MCCFR without a baseline (i.e. b’(h, a) = 0) bet-
ter than it might otherwise be. To demonstrate the necessity
of a baseline in some games, we ran MCCFR in a modified
Leduc game where player 2 always transfers 100 chips to
player 1 after every game. This utility change is independent
of the player’s actions, so it doesn’t strategically change the
game. However, it means that 0 is now an extremely in-
accurate value estimate for all histories. Figure 1c shows
convergence in Leduc with shifted utilities. Here we see that
using any baseline at all provides a significant advantage

3 An open source implementation of CFR™ and Leduc hold’em
is available from the University of Alberta (http://webdocs.
cs.ualberta.ca/~games/poker/cfr_plus.html).

over not using a baseline, due to the ability to adapt to the
shifted utilities. The always call baseline converges quick-
est because its baseline values are initialized with the shift,
avoiding the need to learn the shift during training. In fact,
the exploitability values for always call are identical to those
in the original Leduc experiment because all utilities and
baseline values are shifted by the same amount, and these
shifts cancel out when calculating counterfactual regret. The
shift causes expected utilities to be strongly correlated be-
tween histories, making generalization in more effective
when learning a baseline; this effect is demonstrated by the
learned infoset baseline outperforming the other learned
baselines early on.

6. Public Outcome Sampling

So far we have shown that using a baseline improves the
convergence rate in outcome sampling MCCFR. The base-
lines effectively reduce the variance of estimating expected
values from sampled trajectories. The baseline framework,
however, does not address an additional source of variance,
in which the counterfactual regret for an information set
is estimated from a single sampled history in the informa-
tion set. Schmid et al. (2019) avoided this variance in their
VR-MCCEFR experiments by using a "vectorized" form of
MCCEFR, which evaluates every possible history consistent
with the players’ shared observations along a sampled tra-
jectory. Schmid et al. do not formally define their algorithm.
We refer to it as Public Outcome Sampling (POS) as the
algorithm samples any actions that are publicly visible to
both players, while exhaustively considering all possible
private states. We give a full formal definition of POS in
the supplementary materials. In this section we examine
how our baselines perform when combined with the reduced
variance of POS sampling. In particular, we show that this
setting allows strong theoretical guarantees for the predic-
tive baseline.

6.1. Baselines in POS

In MCCFR with POS, we still use action baselines b?(h, a)
with the ideal baseline values being b*(h, a) = u((ha)|o?).
Thus the baselines in Section 4 apply to this setting as well.

For the learned infoset baseline, we have more information
available to us than in the OS case. This is because when
POS samples some history-action pair &, a, it also samples
every pair h/,a for b’ € I(h). Thus, rather, than using
one sampled history value to update the baseline, we use
a weighted sample of all of the history values. Following
Schmid et al., we weight the baseline values b*(I;,a) =

T (1)

S Daees T (W (K)o, 7)
j=1 ! Zh’e]i 7rii] (h/)
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Figure 1: Log-log plots of convergence of MCCEFR strategies with various baselines. (a) and (b) Leduc with different
MCCEFR sampling schemes. (¢) Leduc with utilities shifted by 100 and opponent on-policy sampling.

This is the same relative weighting given to each history
when calculating the counterfactual regret.

Zero-variance baseline. POS also has implications for
the predictive baseline. In fact, we can guarantee that after
every outcome of the game has been sampled, the predic-
tive baseline will have learned the true value of the current
strategy. For time ¢, let Z* be the set of sampled terminal his-
tories (consistent with a public outcome), and let samp®(h)
be the event that / is sampled on way to Z¢.

Theorem 3. If each of the terminal states Z|[h] reachable
from history h € H has been sampled at least once under
public outcome sampling (Z[h] C .., Z7), then for all
a € A(h) the predictive baseline satisfies

b (h,a) = u((ha)|c")
Varz: [@y(hlo?, Z")|samp®(h)] = 0.

The proof is in the supplementary materials. In order for the
theorem to hold everywhere in the tree, all outcomes must
be sampled, which could take a large number of iterations.
An alternative is to guarantee that all outcomes are sampled
during the early iterations of MCCFR. For example, one
could do a full CFR tree walk on the very first iteration, and
then sample on subsequent iterations. Alternatively, we can
ensure the theorem always holds with smart initialization
of the baseline. When there are no regrets accumulated,
MCCEFR uses an arbitrary strategy. If we have some strat-
egy with known expected values throughout the tree, we
can use this strategy as the default MCCFR strategy and
initialize the baseline values to the strategy’s expected val-
ues. Either option guarantees that all regret updates will use
zero-variance values.
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Figure 2: Log-log plot of MCCFR convergence with POS.

6.2. POS results

As in Section 5, we run experiments in Leduc and use CFR™
updates. For the learned baselines, we use exponentially-
decaying averaging with o = 0.5, which preliminary exper-
iments found to outperform simple averaging when com-
bined with POS. For simplicity and consistency with the
experiments of Schmid et al. (2019), we use uniform sam-
pling and simultaneous updates.

Figure 2 compares the baselines’ effects on POS MCCFR.
We find that using any baseline provides a significant im-
provement on using no baseline. The always call baseline
performs well early but tales off as it doesn’t learn during
training. Even with POS, where we always see an entire
information set at a time, the learned infoset baseline (VR-
MCCFR) is significantly outperformed by the learned his-
tory and predictive baselines. This is likely because the
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Figure 3: Log-log plot of average variance of counterfactual
values during MCCFR solving with POS.

learned infoset baseline has to learn the relative weighting
between histories in an infoset, while the other baselines
always use the current strategy to weight the learned values.
Finally, we observe that the predictive baseline has a small,
but statistically significant, advantage over the learned his-
tory baseline in early iterations.

In addition, we compare the baselines by directly measur-
ing their variance. To do this we first run MCCFR for the
specified number of iterations, then freeze the strategy. We
then walk every information set-action pair in the game tree,
and for each such pair we run a large number of sampled
trajectories originating at the pair. These trajectories are
walked as if we were running MCCFR with POS, but we do
not update the strategy. Instead, we only calculate the sam-
pled counterfactual value ), _, 7TitP(h) (h)ip((ha)|ot, 2%)
at the initial 7, a pair. From these samples, we compute
an estimate of the true variance of the counterfactual value.
Finally, we average these variance estimates across all infor-
mation set-action pairs in the game.

Results are shown in Figure 3. We see that using no baseline
results in high and relatively steady variance of counterfac-
tual values. Using the always call baselines also results in
steady variance, as nothing is learned, but at approximately
an order of magnitude lower than no baseline. Variance with
the other baselines improves over time, as the baseline be-
comes more accurate. The learned history baseline mirrors
the learned infoset baseline, but with more than an order of
magnitude reduction in variance. The predictive baseline
is best of all, and in fact we see Theorem 3 in action as the
variance drops to zero.

Finally, we examine how the baselines scale with game size
and with the number of histories in information sets, using
two versions of Generic Poker (r,4,4,1) with r = 6 and

r = 13 (Lisy et al., 2015). These games respectively use
decks containing 24 and 52 cards, compared to 6 for Leduc
hold’em, and allow 4 raise actions per betting round instead
of 2. The game sizes are compared in Table 1. Figure 4
shows the convergence of POS MCCFR with various base-
lines in these game. The results in the larger games are
consistent with the Leduc results, showing that baselines
offer considerable improvement in convergence speed, with
the predictive baseline performing best. For the learned
baselines, we used exponentially decaying averages with
a = 0.5 because we found this to work well in Leduc
hold’em—it is possible that a different weighting scheme
would perform better in these games.

Table 1: Sizes of poker games used in experiments.

GAME |H | IZ| max |I|
LEDUC HOLD’EM 9450 936 5
GP(6,4,4,1) ~3-10° =~5.10* 23
GP(13.,4,4,1) ~3-107 =~2-10° 51

7. Baselines in Monte Carlo continual
re-solving

So far in this work we have concentrated on game solving,
in which offline training is used to find a fixed strategy for
playing a game. In contrast, strong agents in perfect infor-
mation games often decide how to act only in situations
encountered during online play. Traditionally, this approach
was intractable in games with imperfect information because
there was no way to guarantee that individually computed
decisions would fit together into a cohesive equilibrium strat-
egy. Recently, however, techniques have been developed
for safe and efficient online computation of strategies in
imperfect information games (Morav¢ik et al., 2017; Brown
& Sandholm, 2017; Brown et al., 2018).

A particular example of this new paradigm, continual re-
solving, was used in the DeepStack agent which defeated
poker professionals (Moravcik et al., 2017). Each time a
continual re-solving agent must select an action, CFR™ is
used to solve a relatively small subgame. Sustr et al. (2019)
replaced the CFRY solver with MCCFR, creating Monte
Carlo continual re-solving (MCCR). It is straightforward to
use our baseline framework within MCCR.

We conducted an experiment examining MCCR and base-
lines in Leduc hold’em. We measure the exploitability of
strategy profiles that are constructed by independently re-
solving each decision point as if they were encountered dur-
ing online self-play. For each decision, we solve a subgame
of depth three (i.e. looking a maximum of three actions into
the future). After three actions, we approximately evaluate
histories by running 100 iterations of CFR™ on the subtree



Low-Variance and Zero-Variance Baselines for Extensive-Form Games

@ 10
IS
©
o
@
o
£
o
3‘10
B
8
© —— no baseline
% _, —%— always call
10 —@— learned history
—#— learned infoset
—&— predictive
10° 10° 10° 10° 10°
iterations

(a) GP(6,4,4,1)

exploitability (chips/game)

10°
107"
no baseline
107 —#— always call
—®— learned history
—4#— learned infoset
—&— predictive
10° 2 3 4 5 6 7
10 10 10 10 10 10
iterations

(b) GP(13,4,4,1)

Figure 4: Log-log plots of POS MCCEFR convergence in Generic Poker games.

rooted at the histories and calculating expected utilities un-
der the resulting strategy.* At each decision point, we run
re-solving until we have performed a maximum number
of evaluations, either at terminal histories or depth-limited
evaluations. We use this as an implementation-independent
way of comparing algorithms, as evaluations take the vast
majority of computation time in continual re-solving.

We compare MCCR with and without baselines. We use
CFR™ updates, which we’ve found to decrease variance
when used with any nonzero baseline, and public outcome
sampling with uniform sampling. Because of the inexact
nature of the evaluation function, Theorem 3 does not hold
in this setting, and we found the learned history baseline to
perform best.”> We also compare to (deterministic) continual
re-solving, with both CFR and CFR™ update rules.

Results are shown in Figure 5. The inclusion of a baseline
significantly decreases the exploitability of MCCR strate-
gies. Without a baseline, MCCR is not competitive with
deterministic continual re-solving. With a baseline, it is
able to clearly outperform continual resolving with CFR
updates, and slightly outperform continual re-solving with
CFR™ updates. This is especially notable because there is
still plenty of room to improve the technique, such as by
tuning the baseline and by refining the sampling strategy.

8. Related Work

As discussed in the introduction, the use of baseline func-
tions has a long history in RL. Typically these approaches

“This strategy, which contains errors because of the low number
of iterations, approximates using a neural net for evaluation.

SResults for other baselines are shown in the supplementary
materials.
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Figure 5: Exploitability of continual re-solving strategies
based on the maximum number of evaluations per resolve.

have used state value baselines, with some recent exceptions
(Liu et al., 2018; Wu et al., 2018). Tucker et al. (2018) sug-
gest an explanation for this by isolating the variance terms
that come from sampling an immediate action and from
sampling the rest of a trajectory. Typical RL baselines only
reduce the action variance, so the additional benefit from
using a state-action baseline is insignificant when compared
to the trajectory variance. In our work, we apply a recursive
baseline to reduce both the action and trajectory variances,
meaning state-action baselines give a noticeable benefit.

In multiagent RL, MADDPG (Lowe et al., 2017) and
COMA (Foerster et al., 2018) are actor-critic methods that
use a critic that evaluates the true game state (rather than
the acting player’s observations) to reduce variance during
training. This is analogous to our baseline functions that
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evaluate histories rather than information sets.

In RL, the doubly-robust estimator (Jiang & Li, 2016) has
been used to reduce variance settings by the recursive ap-
plication of control variates (Thomas & Brunskill, 2016).
Similarly, variance reduction in EFGs via recursive control
variates is the basis of the advantage sum estimator (Zinke-
vich et al., 2008) and AIVAT (Burch et al., 2018). All of
these techniques construct control variates by evaluating
a static policy or strategy, either on the true game or on a
static model. In this sense they are equivalent to our static
strategy baseline. However, to the best of our knowledge,
these techniques have only been used for evaluation of static
strategies, rather than for variance reduction during training.
Our work extends the EFG techniques to the training do-
main; we believe that similar ideas can be used in RL, and
this is an interesting avenue of future research.

Concurrent to this work, Zhou et al. (2018) also suggested
tracking true values of histories in a CFR variant, analogous
to our predictive baseline. They use these values for truncat-
ing full tree walks, rather than for variance reduction along
sampled trajectories. As such, they always initialize their
values with a full tree walk, and don’t examine gradually
learning the values during training.

9. Conclusion and Future Work

In this work we introduced a new framework for variance re-
duction in EFGs through the application of a baseline value
function. We demonstrated that the existing VR-MCCFR
baseline can be described in our framework with a specific
baseline function, and we introduced other baseline func-
tions that significantly outperform it in practice. In addition,
we introduced a predictive baseline and showed that it gives
provably optimal performance under a sampling scheme
that we formally define.

There are three sources of variance when performing sam-
pled updates in EFGs. The first is from sampling trajectory
values, the second from sampling individual histories within
an information set that is being updated, and the third from
sampling which information sets will be updated on a given
iteration. By introducing MCCFR with POS, we provably
eliminate the first two sources of variance: the first because
we have a zero-variance baseline, and the second because
we consider all histories within the information set. For
the first time, this allows us to select the MCCFR sampling
strategy ¢’ entirely on the basis of minimizing the third
source of variance, by choosing the “best” information sets
to update. Doing this in a principled way is an exciting
avenue for future research.

Finally, we close by discussing function approximation. All
of the baselines introduced in this paper require an amount
of memory that scales with the size of the game tree. In

contrast, baseline functions in RL typically use function
approximation, requiring a much smaller number of param-
eters. Additionally, these functions generalize across states,
which can allow for learning an accurate baseline function
more quickly. The framework that we introduce in this work
is completely compatible with function approximation, and
combining the two is an area for future research.
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