
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

Raphaël Dang-Nhu 1 Gagandeep Singh 1 Pavol Bielik 1 Martin Vechev 1

Abstract
We develop an effective generation of adversarial
attacks on neural models that output a sequence
of probability distributions rather than a sequence
of single values. This setting includes recently
proposed deep probabilistic autoregressive fore-
casting models that estimate the probability distri-
bution of a time series given its past and achieve
state-of-the-art results in a diverse set of appli-
cation domains. The key technical challenge we
address is effectively differentiating through the
Monte-Carlo estimation of statistics of the joint
distribution of the output sequence. Additionally,
we extend prior work on probabilistic forecasting
to the Bayesian setting which allows conditioning
on future observations, instead of only on past
observations. We demonstrate that our approach
can successfully generate attacks with small in-
put perturbations in two challenging tasks where
robust decision making is crucial – stock market
trading and prediction of electricity consumption.

1. Introduction
Deep probabilistic autoregressive models have been recently
integrated into the Amazon SageMaker toolkit and success-
fully applied to various kinds of sequential data such as
handwriting (Graves, 2013), speech and music (Oord et al.,
2016a), images (Oord et al., 2016c;b) and time series from
a number of different domains (Salinas et al., 2019). At
a high level, given a sequence of input values (i.e., pen-tip
locations, raw audio signals or stock market prices), the
goal is to train a generative model that outputs an accurate
sequence of next values, conditioned on all the previous
values. The main benefit of such probabilistic models is that
they model the joint distribution of output values, rather than
predicting only a single best realization (i.e., the most likely
value at each step). Predicting a density rather than just a

1Department of Computer Science, ETH Zürich, Switzer-
land. Correspondence to: Raphaël Dang-Nhu <dangn-
hur@student.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

single best value has several advantages – it naturally fits the
inherently stochastic nature of many processes, allowing for
the assessment of uncertainty and its associated risk, and has
been shown to produce better overall prediction accuracy
when used in forecasting tasks (Salinas et al., 2019).

In this work, we develop an efficient approach for gen-
erating adversarial attacks on deep probabilistic autore-
gressive models. The issue of adversarial robustness and
attacks (Szegedy et al., 2013; Goodfellow et al., 2014),
i.e., generating small input perturbations that lead to mis-
predictions, is an important problem with large body of
recent work. Yet, to our best knowledge this is the first work
that explores adversarial attacks in a new challenging setting
where the neural network output is a sequence of probability
distributions. The difficulty in generating adversarial attacks
in this setting is that it requires computing the gradient of
an expectation that it is too complex to be analytically inte-
grated (Schittenkopf et al., 2000; Salinas et al., 2019) and is
approximated using Monte-Carlo methods.

We address the key technical challenge of efficiently differ-
entiating through the Monte-Carlo estimation, a necessary
part of generating white-box gradient based adversarial at-
tacks, by using two techniques to approximate the gradient
of the expectation. The first approach is the score-function
estimator (Glynn, 1990; Kleijnen & Rubinstein, 1996) ob-
tained by inverting the gradient and the expectation’s inte-
gral. The second technique differentiates individual samples
using a random variate reparametrizatrion and originates
from the variational inference literature (Salimans et al.,
2013; Kingma & Welling, 2013; Rezende et al., 2014).

We present the first approach for generating adversarial at-
tacks on deep probabilistic autoregressive models by ap-
plying two techniques that differentiate through Monte-
Carlo estimation of an expectation. We show that the
reparametrization estimator is efficient at generating adver-
sarial attacks and outperforms the score-function estimator
by evaluating on two domains that benefit from stochastic
sequential reasoning – stock market trading and electricity
consumption. We make our code, datasets and scripts to
reproduce our experiments available online1.

1https://github.com/eth-sri/
probabilistic-forecasts-attacks

https://github.com/eth-sri/probabilistic-forecasts-attacks
https://github.com/eth-sri/probabilistic-forecasts-attacks

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

2. Probabilistic Forecasting Models
In this section, we formally describe the probabilistic au-
toregressive model used in prior works and throughout this
paper. Most notably, the model described in Section 2.1 is
based on the recent work of DeepAR (Salinas et al., 2019),
which is now an inherent part of the Amazon SageMaker
toolkit. Further, in Section 2.2 we describe an extension of
this model to the Bayesian setting proposed in our work.

2.1. Sequence Modeling: Preliminaries

Given a sequential process p = (pt)1≤t0≤T and an index t0,
we consider the task of modeling the distribution of pre-
dicted (future) values pt0:T = (pt0 , . . . , pT) given the ob-
served (past) values p1:t0−1 = (p1, . . . , pt0−1). Using the
chain rule, the joint distribution of predicted values condi-
tioned on observed values Pr[pt0:T |p1:t0−1] can be written
as a product of conditional distributions:

Pr[pt0:T |p1:t0−1] =
T∏
i=t0

Pr[pi|p1:i−1] (1)

In deep autoregressive models, a neural network is used to
approximate the conditional distribution Pr[pi|p1:i−1] by
a parametric distribution qθ[pi|p1:i−1] specified by learnable
parameters θ. This yields a joint model:

qθ[pt0:T |p1:t0−1] =
T∏
i=t0

qθ[pi|p1:i−1] (2)

This decomposed form for the joint distribution is general
and independent of the particular neural architecture chosen
for qθ. In principle, any type of sequential model can be used
including well-known architectures such as LSTMs (Hochre-
iter & Schmidhuber, 1997), Temporal Convolutional Net-
works (Bai et al., 2018) or Transformers (Vaswani et al.,
2017). Next, we describe an LSTM based instantiation of
probabilistic autoregressive models.

Probabilistic Autoregressive Models Let h be a function
implemented by a LSTM network. Given h, we compute
the hidden state hi = h(hi−1, pi−1, θ) for each time-step,
conditioned on the previous hidden state hi−1, previous
input value pi−1 and the network parameters θ. Then, the
hidden state hi is used to generate a set of parameters ψ(hi)
that specify a distribution with density `ψ(hi)(pi), giving
the following form for the conditional distribution:

qθ[pt0:T |p1:t0−1] =
T∏
i=t0

`ψ(hi)(pi) (3)

The main difference here compared to the non-probabilistic
models is that the network predicts parameters of a distribu-

tion rather than a single value. Commonly used distributions
in prior works are Gaussian distribution for real-valued data
or the negative binomial distribution for count data (Salinas
et al., 2019). When using the Gaussian distribution, ψ(hi)
has two components ψ(hi) = (µ(hi), σ(hi)), that corre-
spond to the mean and the standard deviation, respectively.
The density is defined as:

`ψ(h)(p) =
1

σ(h)
√
2π

exp

[
−1

2

(
p− µ(h)
σ(h)

)2
]

(4)

Note, that the choice of a Gaussian distribution corresponds
to the assumption that each value is normally distributed
conditioned on past values – a hypothesis which has to be
assessed per application domain. In what follows, to make
a clear distinction between the network inputs and outputs,
we usex = (x1, . . . , xt0−1) := p1:t0−1 to denote the inputs
(i.e., observed values) and y = (y1, . . . , yT+1−t0) := pt0:T
to denote the outputs (i.e., the predicted values).

Inference Performing inference for probabilistic autore-
gressive models corresponds to characterizing the joint dis-
tribution of the output sequence y. This includes estimating
n-steps ahead both, the mean and the standard deviation of
the value yn, via the first and second moments Eqθ[y|x][yn]
and Eqθ[y|x][y2n]. More generally, given the space of output
sequences Y and any statistic χ : Y → R, we consider
the task of estimating the expectation Eqθ[y|x][χ(y)]. The
main challenge here is the complexity of the underlying
integral on the distribution qθ[y|x], which is in general not
analytically solvable.

During training, one can either use scheduled sam-
pling (Bengio et al., 2015), where a single sample from the
distribution `ψ(hi)(·) is used, or avoid this issue completely
by using teacher forcing (Williams & Zipser, 1989), where
the deterministic ground truth value for yi is fed back into
the network in the next time-step. This setting is solvable
but only because the prediction is only for a single next step.
However, when performing iterated prediction at test time,
the value used in the feedback loop is sampled from the
predicted distribution of yi ∼ `ψ(hi)(·). Therefore, the next
hidden state hi+1 depends on the randomness introduced in
sampling yi. This yields an arbitrarily complex form for the
joint distribution qθ[y|x]. To address this issue, prior works
perform Monte-Carlo inference (Schittenkopf et al., 2000;
Salinas et al., 2019) to approximate the expectation as:

Eqθ[y|x][χ(y)] '
1

L

L∑
l=1

χ(yl) (5)

That is, the Monte-Carlo estimations of the expected value
of χ(y) is computed using L generated samples y1, . . . ,yL

for the output sequence.

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

2.2. Extension to Bayesian Setting

We extend the probabilistic autoregressive models presented
in this section to the Bayesian setting, where the output
sequence can be conditioned on arbitrary values (i.e., both
past and from the future). Formally, we define an obser-
vation function γ : Rm → {true, false}, which takes as
input a sequence of values and outputs a boolean denot-
ing whether the observation holds. As an example, using
γ(y) = (y10 ≥ 3) denotes that we would like the model to
predict values y1:9 conditioned both on the inputs x as well
as on the observation y10 ≥ 3.

There are several cases for which the Bayesian setting is
useful: (i) some of the data is missing (e.g., due to sensor
failures), (ii) to allow encoding prior beliefs about the fu-
ture evolution of the process, or (iii) to evaluate complex
domain-specific statistics. The financial domain offer good
examples for (iii), in pricing exotic derivatives such as bar-
rier options (Rich, 1994) whose existence depends upon the
underlying asset’s price breaching a preset barrier level.

To remove clutter, in the remainder of the paper we will use
z = γ(y) to denote the output of the observation function
when evaluated on y. In this Bayesian setting, the expec-
tation Eqθ[y|x,z][χ(y)] can be estimated via Monte-Carlo
importance sampling as:

Eqθ[y|x,z][χ(y)] '
∑L
l=1 χ(y

l)qθ[z|x,yl]∑L
l=1 qθ[z|x,yl]

(6)

This corresponds to generating samples from the prior dis-
tribution qθ[y|x], and reweighing with Bayes rules. Note,
that this formula includes the former by using z = true.

3. Adversarial Attacks on Probabilistic
Forecasting Models

In this section, we present our approach for generating adver-
sarial attacks on deep probabilistic forecasting models. We
start by formally defining the problem statement suitable for
this setting and then we describe two practical adversarial
attacks that address it.

Adversarial Examples Recall that in the canonical clas-
sification setting, adversarial examples are typically found
by solving the following optimization problem (Szegedy
et al., 2013; Papernot et al., 2016; Carlini & Wagner, 2017):

argmin
δ

||δ|| s.t f(x+ δ) = t (7)

where f is a classifier, x is an input (i.e., an image), t is the
desired adversarial output (the target), and δ is the minimal
perturbation (according to a given norm) applied to the input
image such that the classifier f predicts the desired output t.

To make the above formulation applicable to probabilistic
forecasting models we perform two standard modifications –
(i) we replace the hard equality constraint with an easier to
optimize soft constraint that captures the distance between
real values, and (ii) we replace the single value output with
the expected value of a given statistic of the output joint
probability distribution. Applying the first modification
leads to the following formulation:

argmin
δ

φ(f(x+ δ), t) s.t ||δ|| ≤ ε (8)

That is, we use a soft constraint that minimizes the distance
between the target and the predicted value, subject to a given
tolerance ε on the perturbation norm. Applying the second
modification corresponds to replacing f(x + δ) with the
expected value Eq[y|x+δ,z][χ(y)], where z is an observation
over outputs as defined in Section 2.2, and χ : Rm → R is
a statistic of the output sequence. Overall, this leads to the
following problem statement.

Problem Statement Let f : Rn → D(Rm) be a func-
tion (i.e., a probabilistic neural network) that takes as input
a sequence of values x ∈ Rn and outputs a probability
distribution f(x) with density q[y|x] that can be sampled
from to obtain a concrete output sequence y ∈ Rm. Given
an observation variable z, a statistic χ : Rm → R of the
network output distribution and a target t, the goal of the
adversarial attack is to find a perturbation δ that solves the
following optimization problem:

argmin
δ

φ(Eq[y|x+δ,z][χ(y)], t) s.t ||δ|| ≤ ε (9)

3.1. Practical Attack on Probabilistic Networks

The constrained minimization problem defined in Equa-
tions 8 and 9 has repeatedly been identified as very difficult
to solve in the adversarial attacks literature (Szegedy et al.,
2013; Carlini & Wagner, 2017). As a result, we instead
follow the approach of Szegedy et. al. 2013 and solve an ad-
justed optimization problem. Given a real hyper-parameter
c ∈ R+, we aim at minimizing:

obj(δ) := ||δ||+ c · φ(Eq[y|x+δ,z][χ(y)], t) (10)

via gradient-descent. The attack is run with different values
of c, and the final value is chosen to ensure that the hard
constraint ||δ|| ≤ ε is satisfied.

While optimizing the objective function in Equation 9 is
standard (Szegedy et al., 2013; Goodfellow et al., 2014;
Kurakin et al., 2017b;a), the crucial aspect in ensuring ef-
ficient gradient descent is to obtain a good estimation of
the objective function’s gradient. In particular, this involves
computing:

∇δEq[y|x+δ,z][χ(y)]

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

The difficulty of computing this gradient comes from the fact
that the expectation can not be analytically computed, but
only approximated via Monte-Carlo methods. Informally, it
raises the question of how to efficiently differentiate through
the Monte-Carlo estimation. We compare two different
ways of performing this differentiation, described next.

3.1.1. SCORE-FUNCTION ESTIMATOR

The first approach is to express the gradient of the expecta-
tion as an expectation over the distribution q[y|x+ δ, z] by
inverting the gradient and integral, and estimate the result-
ing expectation via Monte-Carlo methods. This technique
is known under different names in the literature: score-
function method (Glynn, 1990), REINFORCE (Williams,
1992), or log-derivative trick. Below we show how this
applies to our setting.

Score-function Estimator 3.1. In the general Bayesian
setting where y ∼ q[·|x+ δ, z], the score-function gradient
estimator of the expected value of χ(y) is:

∇δEq[y|x+δ,z][χ(y)]

'
∑L
l=1 χ(y

l)q[z|x+ δ,yl]∇δ log(q[yl|x+ δ, z])∑L
l=1 q[z|x+ δ,yl]

where yl is sampled from the prior distribution q[y|x+ δ],
and q[z|x + δ,y] denotes the probability that z is true
knowing that yl is generated.

The proof of 3.1 is given in the supplementary material.
Note that in the non-Bayesian setting where the observation
z is always true, we have q[z|x+ δ,yl] = 1 and we obtain
a simpler form:

∇δEq[y|x+δ][χ(y)] '
1

L

L∑
l=1

χ(yl)∇δ log(q[yl|x+ δ])

While this estimator allows for generating adversarial per-
turbations, we observe that it has two drawbacks – high-
variance and high sampling complexity.

High Variance Score-function estimators typically lead
to slow convergence because they suffer from high vari-
ance (Ranganath et al., 2014). It is due to the fact that they
operate in a black-box way with respect to the gradients of
the network f and the statistic χ.

Complexity of the Bayesian Setting The score-function
requires computing the gradient of q[yl|x + δ, z] with re-
spect to δ. This is always possible in the special case when
the observation z is constantly true, however in the general
setting this might require another step of sampling, which
makes the estimator overly complex.

3.1.2. REPARAMETRIZATION ESTIMATOR

The second estimator is based on the reparametrization trick.
It reparametrizes the output distribution y in terms of auxil-
iary random variables whose distribution does not depend
on x, in order to make individual samples yl differentiable
with respect to δ. The differential ∂yl/∂δ has a priori no
specific meaning when the distribution from which yl is
sampled depends on δ. However, if yl ∼ q[·|x + δ] can
be reparametrized as yl = gx(δ,η), where η is a random
variable whose distribution is independent from δ, then it
makes sense to define the differential of yl with respect to
δ as ∂yl/∂δ = ∂gx/∂δ.

Reparametrization estimators were first proposed as a way
of mitigating the variance problems of score-function es-
timators (Salimans et al., 2013; Kingma & Welling, 2013;
Rezende et al., 2014). However, to the best of our knowl-
edge, they have not been used in a Bayesian setting where
the estimator to differentiate uses importance sampling.
Reparametrization Estimator 3.2. Assume there exists a
differentiable transformation gx(δ,η) such that the random
variable y ∼ q[·|x + δ] can be reparametrized as y =
gx(δ,η), where η is an independent random variable whose
marginal distribution p(η) is independent from δ. Then the
importance sampling reparametrization estimator of the
expectation’s gradient is:

∇δEq[y|x+δ,z][χ(y)]

'∇δ

(∑L
l=1 χ(gx(δ,η

l))q[z|x+ δ, gx(δ,η
l)]∑L

l=1 q[z|x+ δ, gx(δ,ηl)]

)

where for 1 ≤ l ≤ L, ηl is sampled from the distribution
p(η), and yl = gx(δ,η

l).

A proof of 3.2 is given in the supplementary material.

3.2. Reparametrization of Probabilistic Networks

Here, we discuss the question of reparametrizing probabilis-
tic autoregressive models. The stochasticity of such architec-
tures comes from the iterated sampling of yi∼`ψ(hi)(·). As-
suming a Gaussian likelihood, the value yi follows a normal
distribution N (µ(hi)|σ(hi)2). Let η = (η1, . . . , ηT−t0)
be a standard normal random vector, i.e., all of its compo-
nents are independent and each is a zero-mean unit-variance
normally distributed random variable. Iteratively writing:

yi ∼ µ(hi) + ηi · σ(hi)

for all i such that 1≤ i≤T − t0 yields a valid reparametriza-
tion. This simple reasoning applies to the particular im-
plementation described in (Salinas et al., 2019) and adapts
readily to any kind of likelihood parameterized by location
and scale, such as the Laplace or logistic distribution.

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

The case of mixture density likelihoods is more complex as
they do not enter this category of ”location-scale” distribu-
tions, and their inverse cumulative density function does not
admit a simple closed form. The problem of how to adapt
reparametrization to mixture densities is outside the scope
of this paper, and we refer to the relevant literature (Graves,
2016; Figurnov et al., 2018; Jankowiak & Obermeyer, 2018)
for more information about this question.

4. Case Study: Stock Market Trading
In this section, we apply the probabilistic autoregressive
models and discuss the types of adversarial attacks in the
domain of financial decision making.

Output Sequence Statistics While a given machine
learning model is typically trained to predict the future stock
prices given its past, various statistics of the output sequence
are used in downstream algorithmic trading and option pric-
ing tasks. This is the reason why the approach presented
so far already assumed presence of such statistics. The dif-
ferent statistics used in our evaluation include predicting
cumulated stock return, pricing derivatives such as Euro-
pean call and put options (Black & Scholes, 1973), as well
as an example of a binary statistic that predicts the success
probability of limit orders (Handa & Schwartz, 1996). All
statistics are defined with respect to the last known price,
denoted as x−1.

4.1. Probabilistic Autoregressive Models Performance

Before we show the effectiveness of generative adversarial
attacks, we first demonstrate that using probabilistic autore-
gressive models leads to state-of-the-art results. We use
two baselines as the current state-of-the-art for financial
predictions: LSTM networks (Fischer & Krauss, 2018), and
Temporal Convolutional Networks (TCN) (Borovykh et al.,
2017). We provide detailed description of all the training
hyperparameters, the dataset used (S&P 500) and extended
versions of all the experiments in the supplementary mate-
rial.

Long-Short Trading Strategies Given a prediction hori-
zon h ∈ J1, 10K, we analyze the characteristics of the fol-
lowing portfolio: at time-step t, buy (long) the k stocks for
which the model predicts the highest gain, and sell (short)
the k stocks with the highest predicted loss. This task is
a generalization of the one presented in (Fischer & Krauss,
2018), where only direct prediction (h = 1) is considered.

Formally, we consider the cumulative return statistic
χx(y) = yh/x−1 − 1 of the output sequence, which cor-
responds to the gain of investing one dollar in the stock at
time t, and then selling at time t+ h. In a non-Bayesian set-
ting, we estimate the expectation Eq(y|x)[χx(y)] via Monte-

Table 1. Financial gain on algorithmic trading tasks for different
horizons h and portfolio sizes k (expressed per mille o/oo). An
extended version is included in the supplementary material.

Params Non-probabilistic Probabilistic

h k TCN LSTM LSTM
(Borovykh et al., 2017) (Fischer & Krauss, 2018) This Work

1 10 3.53 (± 0.49) 4.89 (± 0.39) 4.37 (± 0.51)

1 30 1.74 (± 0.30) 2.41 (± 0.24) 2.35 (± 0.23)

1 100 0.70 (± 0.19) 0.93 (± 0.1) 0.99 (± 0.12)

5 10 5.57 (± 1.93) 8.86 (± 1.03) 9.02 (± 1.52)
5 30 3.40 (± 1.36) 5.34 (± 0.61) 5.66 (± 0.87)
5 100 1.64 (± 0.78) 2.47 (± 0.28) 2.70 (± 0.48)

10 10 6.21 (± 3.52) 9.68 (± 1.58) 9.55 (± 2.30)

10 30 4.28 (± 2.69) 6.39 (± 0.76) 6.63 (± 1.70)
10 100 2.09 (± 1.58) 3.12 (± 0.52) 3.48 (± 1.03)

Carlo sampling for each stock, and buy (or sell) the stocks
for which the estimate is the highest (or the lowest). Note
that this setting also applies to the deterministic baselines,
it suffices to consider that q(y|x) is a Dirac distribution
centered on the deterministic prediction.

The performance of all models are summarized in Table 1.
We can see that the TCN is consistently outperformed by
both probabilistic and non-probabilistic LSTM models. For
the probabilistic model, we observe that it is generally out-
performed by the LSTM for direct prediction (h = 1), but
it has better performance on iterated prediction (h > 1),
provided that enough samples are used for Monte-Carlo
estimation. We observe that a large number of samples (at
least 1000) is required to match the LSTM performance. We
provide extended evaluation results in the supplementary
material, including the effect of the number of samples.

Quality of the Probabilistic Forecast Table 2 shows an
evaluation of the forecast quality for each of the statistics de-
scribed earlier. To compare deterministic and probabilistic
forecasts, we use the Ranked Probability Skill (RPS) met-
ric (Weigel et al., 2007). However, because it applies only
to predictions with finite output space, we first discretize the
output before we apply RPS2. Here, a lower score means
better prediction. We provide extended evaluation results
in the supplementary material, including multiple different
values for the horizon h, price π and the number of samples

2There exists a continuous version (Gneiting & Raftery, 2007),
but it is impractical for our setting because of the memory con-
sumption of computing the score: we favor metrics computable in
an on-line fashion with respect to the sampling process.

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

Table 2. Definition of various output sequence statistics used in our work (left) and performance of various models used to predict them
(right). h is the prediction horizon and π the price of the option. The comparison metric is Ranked Probability Skill (Weigel et al., 2007)
of the prediction (lower scores correspond to better predictions). An extended version is provided in the supplementary material.

Statistics Params Non-probabilistic Probabilistic

Name χ(y) h π TCN LSTM LSTM
(Borovykh et al., 2017) (Fischer & Krauss, 2018) This Work

Cum. Return yh/x−1 − 1 10 - 1.548 (± 0.029) 1.541 (± 0.019) 1.002 (± 0.008)
European Call max(0, yh/x−1 − π) 10 1 1.122 (± 0.002) 1.121 (± 0.002) 0.982 (± 0.005)
European Put max(0, p− yh/x−1) 10 1 1.302 (± 0.003) 1.300 (± 0.002) 0.974 (± 0.005)
Limit Sell 1

[
max(y1:h)/x−1 ≥ π

]
10 1.05 1.516 (± 0.001) 1.514 (± 0.002) 0.940 (± 0.006)

Limit Buy 1
[
min(y1:h)/x−1 ≤ π

]
10 0.95 1.412 (± 0.000) 1.410 (± 0.001) 0.958 (± 0.008)

for Monte-Carlo estimation.

4.2. Market Manipulations

The possibility of artificially influencing stock prices to
make profit has always been a major problem of financial
markets (Allen & Gale, 1992; Diaz et al., 2011; Öğüt et al.,
2009). In our work, we focus on trade-based manipulation,
in which a trader attempts to manipulate the price of a stock
only by buying and then selling, without taking any other
publicly observable action. The core of such an attack is to
anticipate the reactions of other agents to a provoked market
event, in order to drive the price up or down. In order to
decrease the cost and visibility of the attack, an additional
constraint for the manipulating trader is to minimize the am-
plitude of the perturbation. This creates a natural connection
with finding adversarial perturbations over the inputs x.

Adversarial Attacks Scenario To measure the perturba-
tion size, we choose a variant of the Euclidean norm specif-
ically tailored to stock price data, defined in Equation 11,
where each component is normalized by the corresponding
price xi. This normalization aims at capturing the fact that
stock prices are fixed for an arbitrary unit quantity of the
underlying asset, and thus should be invariant with respect
to multiplication by a scalar. Additionally, we use a box
constraint for the perturbed prices such that they remain pos-
itive. This constraint is enforced using projected gradient
descent.

||δ||x =

(∑|x|
i=1

(
δi
xi

)2)1/2

(11)

5. Experimental Results
In this section, we evaluate the effectiveness of our approach
for generating adversarial attack on probabilistic autoregres-
sive models. The two key results of our evaluation are:

• The reparametrization estimator leads to significantly
better adversarial examples (i.e., with smaller perturba-
tion norm ε) than the score-function estimator.

• The reparametrization estimator successfully generates
adversarial attacks for a number of different tasks. For
example, using a small perturbation norm ε = 0.0163

the attack is powerful enough to cause financial loss
when applied to stock market trading.

Datasets We evaluate on the following two datasets:

S&P 500 dataset, which contains historical prices of S&P
500 constituents from 1990/01 to 2000/12. We consider
study periods of four consecutive years. The first three years
serve as training data, while the last year is used for out-of-
sample testing. The different periods have non-overlapping
test years, resulting in eight different periods (for each we
train four different models) with test year going from 1993
to 2000. We generate input-output samples by considering
sequences of 251 consecutive daily prices for a fixed con-
stituent. The first 241 prices serve as input x, while the
last 10 are the ground truth output y. We ensure that output
sequences from the training and test sets do not overlap
and reserve ≈ 15% of training samples as a validation set.
We use the same preprocessing as in prior work (described
in supplementary material) and train our own probabilistic
autoregressive model (described in Section 2). The order of
magnitude of the cumulated test set size is 106.

UCI electricity dataset4, which contains the electricity con-
sumption of 370 households from 2011 to 2014, down-
sampled to hourly frequency for the measurements. For this
dataset we reuse an existing implementation and already

3Here, ε = 0.016 corresponds to perturbing one price in the
sequence by 1.6%, or 10 prices by 0.51%, or 100 prices by 0.16%.

4https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

10−3 10−2 10−1 100

Tolerance on perturbation norm ε

−20

−15

−10

−5

0

Re
tu

rn
ed

 o
f p

er
tu

rb
ed

 p
or

tfo
lio

 (%
)

b) Attack on trading strategies

Reparam.
Score-function

10−3 10−2 10−1 100

Tolerance on perturbation norm ε

0

20

40

60

80

100

At
ta

ck
 su

cc
es

s r
at

e
(%

)

a) Buy/Sell attack
Reparam.
Score-function

90 80 70 60 50 40 30 20 10
Percentiles (%)

50

40

30

20

10

0

Un
de

r-e
st

im
at

io
n

(%
)

c) Electricity - under-estimation

ε=0.2
ε=0.4
ε=0.6
ε=0.8
ε=1.0

0 50 100 150

d) Electricity - adversarial samples

0 50 100 150

0 50 100 150
Hour

Figure 1. a) Success rate of the classification attack for different perturbation norms. b) Impact of the adversarial attack against trading
strategies on financial gain, with portfolio size of k = 10. For both a) and b), standard deviation (shaded) is computed across test years
c) Under-estimation of electricity consumption for reparametrization (continuous) and score-function (dashed) estimators. For example,
the graph shows that with ε = 1.0, the attack using reparametrization estimator leads to under-estimation of at least 20% (y-axis) for 70%
of samples (x-axis). d) Under-estimation adversarial samples for the electricity dataset, with ε = 0.9. Red curve is the original sample,
blue curve is the generated adversarial sample. The vertical dashed line separates the input sequence from the network’s prediction.

trained models provided by Zhang and Jiang5. The model
is trained on data from 2011/01 to 2014/08 (included) and
we perform the attack on test samples from 2014/09. The
input sequence consists of 168 consecutive measurements,
and the network predicts the next 24 values (corresponding
to the next day). The total number of test samples is 2590.

Experimental Setup We performed all experiments on a
machine running Ubuntu 18.04, with 2.00GHz Intel Xeon
E5-2650 CPU and using a single GeForce RTX 2080 Ti
GPU. For the S&P500 dataset, each model’s training time is
under one hour, and running the attack on one model for all
test-set elements of a period takes approximately 24 hours.
For the electricity dataset, running the attack on a batch of
256 test sequences takes approximately three hours.

5.1. Attacks on Buy/Sell Classification

We start by considering a classification task on the S&P
dataset where each sample is classified as buy, sell or uncer-
tain. For each stock, we predict the cumulated return using
the statistic χ(y) = yh/x−1 − 1. Then, let τ be a thresh-
old used to decide whether to buy or sell the stock. Con-
cretely, if the 95% confidence interval (assuming Student’s
t-distribution) of the estimation χ(y) is entirely above τ ,
the stock is classified as buy. If it is entirely below τ , it
is classified as sell. Finally, if τ is inside the confidence
interval, the classification is uncertain. We set τ to be the
average over all stocks of the ground truth cumulated return,
which leads to roughly balanced decisions to buy and sell.

We attack the statistic χ twice. First, we perturb all samples
initially classified as buy or uncertain, in order to make it
classify as sell. Similarly, we perturb all samples initially

5https://github.com/zhykoties/TimeSeries

classified as sell or uncertain, in order to make it classify
as buy. The target of the attack is set as τ + λ for the buy
attack and τ − λ for the sell attack. We fix λ = 0.03 in our
experiments. This is aimed at making the 95% confidence
interval fit entirely in the buy (resp. sell) zone. Indeed, with
104 samples, the interval width order of magnitude is 0.01.

The results without a Bayesian observation z are summa-
rized in Figure 1 a) and show that the reparametrization
estimator is significantly better at generating adversarial
examples that the score-function estimator. For example,
using ε = 0.1 the reparametrization estimator attack suc-
ceeds in 16% more cases. The reparametrization estimator
can also successfully attack the model when considering
a Bayesian setting with similar results. We include such
experiment that uses a smaller horizon h = 5 and an obser-
vation y10/x−1 = γ in the supplementary material.

5.2. Attacks on Long-Short Trading Strategies

Next, we evaluate the impact of attacking the cumulated
return statistic χ(y) = yh/x−1 − 1 on the financial gain
of the long-short trading strategy described in Section 4.1.
We suppose that the attacker is allowed to perturb all inputs
at test time without changing the corresponding ground
truth outputs, with a maximum tolerance on the perturbation
norm. We consider a horizon of h = 10 and different
portfolio sizes k. Given a ground truth output ỹ, the target
is set to be t = τ − α · (χ(ỹ)− τ), where τ is the buy/sell
threshold defined previously, and α > 0 is a scaling factor
that rescales the ground truth output to the prediction range
of the network. Intuitively, this attack target corresponds to
reversing the prediction of the network around its average,
in order to swap the top and flop k stocks.

We report the return of the perturbed portfolios in Figure 1 b).

https://github.com/zhykoties/TimeSeries

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

We observe that the reparametrization estimation is again
significantly better compared to the score-function estimator.
Additionally, in both experiments the thresholds for appear-
ance of adversarial perturbation to some of the samples is
approximately ε u 10−2.

5.3. Attacks on Electricity Consumption Prediction

We perturb each input sequence twice in order to make the
consumption forecast abnormally high (resp. low). We
designate this as an over-estimation (resp. under-estimation)
attack. The attacked statistic is χ(y) = yh, with h = 18.
Given an input x, we first approximate the expected value
y∗ = Eq[y|x][χ(y)], and set the target to t = (1± 0.5) · y∗
to cause over or under-estimation.

We show attack success for different perturbation tolerances
in Figure 1 c). We observe that the reparametrization estima-
tor (continuous line) yields stronger under-estimation of the
prediction than the score-function estimator (dashed-line)
In Figure 1 d), we give examples of generated adversarial
samples for the under-estimation attack. We observe a re-
current pattern in the under-estimation attack, where the
perturbed prediction matches closely the original prediction
for the first time-steps, but eventually becomes significantly
inferior. In the supplementary material, we provide similar
figures for the over-estimation attack.

6. Related Work
Probabilistic Autoregressive Forecasting Models Prob-
abilistic autoregressive forecasting models have been used
in diverse applications. Schittenkopf et al. (2000) developed
the Recurrent Mixture Density Network (RMDN) to pre-
dict stock prices volatility iteratively, and were the first to
propose using Monte-Carlo methods for iterative prediction.
RMDN is based on a vanilla recurrent neural network cou-
pled with Gaussian mixture likelihood. The recent DeepAR
architecture (Salinas et al., 2019) uses several LSTM layers
with Gaussian likelihood, and has been applied to forecast-
ing electricity consumption, car traffic and business sales.
Follow-up work (Chen et al., 2019) considers an alternative
TCN-based architecture. Our characterization of probabilis-
tic forecasting models encompasses these different architec-
tures, and presents the following novelties (i) it generalizes
inference to any statistic of the output sequence, and (ii) it
extends the prior work to a Bayesian inference setting.

Stock-Market Prediction Various methods have been ap-
plied for predicting future stock prices including random
forests, gradient-boosted trees, or logistic regression. Two
notable deterministic neural models applied to this task are
TCN (Borovykh et al., 2017) and LSTM (Fischer & Krauss,
2018), which achieved state-of-the-art results. In our work,
we trained a probabilistic autoregressive model for the same

task and achieved comparable or even better results. Fur-
ther, there exists a parallel line of work that performs den-
sity estimation, but apart from the RMDN (Schittenkopf
et al., 2000), most papers restrict to prediction one-step
ahead (Ormoneit & Neuneier, 1996), or to less-expressive
and solvable dynamics such as the GARCH (Duan, 1995).

Adversarial Attacks A growing body of recent work on
adversarial attacks deals with generating small input pertur-
bations causing mis-predictions (see (Wiyatno et al., 2019)
for a survey). The objective function defined in Equation 9 is
standard in generating adversarial examples (Szegedy et al.,
2013; Carlini & Wagner, 2017). However, to the best of our
knowledge this is the first time that adversarial attacks are
applied to probabilistic autoregressive models. The most
related work is the adversarial training of smoothed classi-
fiers (Salman et al., 2019), where the noise applied to the
input leads to a stochastic behavior.

Robust Algorithms for Financial Decision Making The
adoption of machine learning in financial decision making
makes it crucial to develop algorithms robust against small
environment variations. Recent work here include robust as-
sessment of loan applications (Ballet et al., 2019), deepfakes
on accouting journal entries (Schreyer et al., 2019), robust
inverse reinforcement learning on market data (Roa-Vicens
et al., 2019). Adversarial attacks against stock-market pre-
diction algorithms was studied by (Feng et al., 2018). Com-
pared to the latter, our work is the first to operate on a
probabilistic network for iterative prediction.

Reparametrization The reparametrization trick has been
applied in several fields under different names: pertur-
bation analysis/pathwise derivatives (Glasserman & Ho,
1991) in stochastic optimization, stochastic backpropaga-
tion (Rezende et al., 2014), affine independent variational
inference (Challis & Barber, 2012) or correlated sampling
in evaluating differential privacy (Bichsel et al., 2018). The
actual reparametrization of our model resembles that of the
deep generative model of Rezende et al. (2014), but there it
is used to perform variational inference.

7. Conclusion
In this work, we explore applying adversarial attacks to
recently proposed probabilistic autoregressive forecasting
models. Our work is motivated by the fact that: (i) this
model has been included in the Amazon SageMaker toolkit
and achieved state-of-the-art results on a number of different
tasks, and (ii) adversarial attacks and robustness are pressing
and important issues that affect it.

Concretely, we implement and evaluate two techniques,
reparametrization and score-function estimators, that are
used to differentiate trough Monte-Carlo estimation inherent

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

to this model and instantiate existing gradient based adver-
sarial attacks. While we show that both of these techniques
can be used to generate adversarial attacks, we evidence
that using the reparametrization estimator is crucial for pro-
ducing adversarial attacks with a small perturbation norm.
Further, we extend the prior work to the Bayesian setting
which enables using these models with new types of queries.

References
Allen, F. and Gale, D. Stock-price manipulation. The Review

of Financial Studies, 5(3):503–529, 1992.

Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua-
tion of generic convolutional and recurrent networks for
sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P.,
and Detyniecki, M. Imperceptible adversarial attacks on
tabular data. arXiv preprint arXiv:1911.03274, 2019.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent neu-
ral networks. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 28, pp. 1171–1179.
Curran Associates, Inc., 2015.

Bichsel, B., Gehr, T., Drachsler-Cohen, D., Tsankov, P.,
and Vechev, M. Dp-finder: Finding differential privacy
violations by sampling and optimization. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 508–524. ACM, 2018.

Black, F. and Scholes, M. The pricing of options and cor-
porate liabilities. Journal of political economy, 81(3):
637–654, 1973.

Borovykh, A., Bohte, S., and Oosterlee, C. W. Condi-
tional time series forecasting with convolutional neural
networks. arXiv preprint arXiv:1703.04691, 2017.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Challis, E. and Barber, D. Affine independent variational
inference. In Advances in Neural Information Processing
Systems, pp. 2186–2194, 2012.

Chen, Y., Kang, Y., Chen, Y., and Wang, Z. Probabilistic
forecasting with temporal convolutional neural network.
arXiv preprint arXiv:1906.04397, 2019.

Diaz, D., Theodoulidis, B., and Sampaio, P. Analysis of
stock market manipulations using knowledge discovery
techniques applied to intraday trade prices. Expert Sys-
tems with Applications, 38(10):12757–12771, 2011.

Duan, J.-C. The GARCH option pricing model. Mathemati-
cal finance, 5(1):13–32, 1995.

Feng, F., Chen, H., He, X., Ding, J., Sun, M., and Chua, T.-S.
Enhancing stock movement prediction with adversarial
training. arXiv preprint arXiv:1810.09936, 2018.

Figurnov, M., Mohamed, S., and Mnih, A. Implicit reparam-
eterization gradients. In Advances in Neural Information
Processing Systems, pp. 441–452, 2018.

Fischer, T. and Krauss, C. Deep learning with long short-
term memory networks for financial market predictions.
European Journal of Operational Research, 270(2):654–
669, 2018.

Glasserman, P. and Ho, Y.-C. Gradient estimation via per-
turbation analysis, volume 116. Springer Science &
Business Media, 1991.

Glynn, P. W. Likelihood ratio gradient estimation for
stochastic systems. Communications of the ACM, 33
(10):75–84, 1990.

Gneiting, T. and Raftery, A. E. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
statistical Association, 102(477):359–378, 2007.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Graves, A. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, A. Stochastic backpropagation through mixture
density distributions. arXiv preprint arXiv:1607.05690,
2016.

Handa, P. and Schwartz, R. A. Limit order trading. The
Journal of Finance, 51(5):1835–1861, 1996.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jankowiak, M. and Obermeyer, F. Pathwise derivatives
beyond the reparameterization trick. arXiv preprint
arXiv:1806.01851, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kleijnen, J. P. and Rubinstein, R. Y. Optimization and
sensitivity analysis of computer simulation models by the
score function method. European Journal of Operational
Research, 88(3):413–427, 1996.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial ex-
amples in the physical world. ICLR’17 Workshop, 2017a.

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
machine learning at scale. ICLR17, 2017b.

Öğüt, H., Doğanay, M. M., and Aktaş, R. Detecting stock-
price manipulation in an emerging market: The case of
turkey. Expert Systems with Applications, 36(9):11944–
11949, 2009.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016a.

Oord, A. v. d., Kalchbrenner, N., Espeholt, L., kavukcuoglu,
k., Vinyals, O., and Graves, A. Conditional image gen-
eration with PixelCNN decoders. In Advances in Neu-
ral Information Processing Systems 29, pp. 4790–4798.
2016b.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. Pixel
recurrent neural networks. In Proceedings of the 33rd
International Conference on International Conference on
Machine Learning - Volume 48, ICML16, pp. 17471756,
2016c.

Ormoneit, D. and Neuneier, R. Experiments in predicting
the German stock index DAX with density estimating
neural networks. In IEEE/IAFE 1996 Conference on
Computational Intelligence for Financial Engineering
(CIFEr), pp. 66–71. IEEE, 1996.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning in
adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 372–387. IEEE,
2016.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In Artificial Intelligence and Statistics,
pp. 814–822, 2014.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. arXiv preprint arXiv:1401.4082, 2014.

Rich, D. R. The mathematical foundations of barrier option-
pricing theory. Advances in futures and options research,
7, 1994.

Roa-Vicens, J., Wang, Y., Mison, V., Gal, Y., and Silva, R.
Adversarial recovery of agent rewards from latent spaces
of the limit order book. arXiv preprint arXiv:1912.04242,
2019.

Salimans, T., Knowles, D. A., et al. Fixed-form variational
posterior approximation through stochastic linear regres-
sion. Bayesian Analysis, 8(4):837–882, 2013.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. Deepar: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecasting,
2019.

Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H.,
Bubeck, S., and Yang, G. Provably robust deep learn-
ing via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, pp.
11289–11300, 2019.

Schittenkopf, C., Dorffner, G., and Dockner, E. J. Fore-
casting time-dependent conditional densities: a semi non-
parametric neural network approach. Journal of Forecast-
ing, 19(4):355–374, 2000.

Schreyer, M., Sattarov, T., Reimer, B., and Borth, D. Adver-
sarial learning of deepfakes in accounting. arXiv preprint
arXiv:1910.03810, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Weigel, A. P., Liniger, M. A., and Appenzeller, C. The
discrete Brier and ranked probability skill scores. Monthly
Weather Review, 135(1):118–124, 2007.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
computation, 1(2):270–280, 1989.

Wiyatno, R. R., Xu, A., Dia, O., and de Berker, A. Adver-
sarial examples in modern machine learning: A review,
2019.

