
Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive
Forecasting Models

Raphaël Dang-Nhu 1 Gagandeep Singh 1 Pavol Bielik 1 Martin Vechev 1

We provide the following three appendices:

• Appendix 1 provides proofs of Score-function Estima-
tor and Reparametrization Estimator.

• Appendix 2 provides details of our datasets, pre-
processings steps, architectures and hyper-parameters.

• Appendix 3 provides extended version of the experi-
ments.

1. Proofs
Score-function Estimator. In the general Bayesian setting
where y ∼ q[·|x+ δ, z], the score-function gradient estima-
tor of the expected value of χ(y) is:

∇δEq[y|x+δ,z][χ(y)]

'
∑L
l=1 χ(y

l)q[z|x+ δ,yl]∇δ log(q[yl|x+ δ, z])∑L
l=1 q[z|x+ δ,yl]

where yl is sampled from the prior distribution q[y|x+ δ],
and q[z|x + δ,y] denotes the probability that z is true
knowing that yl is generated.

Proof. The expectation is defined as the following integral
over the output space:

Eq[y|x+δ,z][χ(y)] =
∫
y

χ(y)q[y|x+ δ, z]dy

Under necessary regularity conditions (see following proof),
we use Leibniz rule to obtain

∇δEq[y|x+δ,z][χ(y)] =
∫
y

χ(y)∇δq[y|x+ δ, z]dy

at every point δ around which the gradient∇δq[y|x+ δ, z]
is locally continuous (in the model described in this paper,

1Department of Computer Science, ETH Zürich, Switzer-
land. Correspondence to: Raphaël Dang-Nhu <dangn-
hur@student.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

this regularity condition holds everywhere). The resulting
integral can be transformed as follows into an expectation
over the distribution q[y|x+ δ, z].

∇δEq[y|x+δ,z][χ(y)]

=

∫
y

χ(y) · ∇δq[y|x+ δ, z]dy

=

∫
y

χ(y)q[y|x+ δ, z]
∇δq[y|x+ δ, z]

q[y|x+ δ, z]
dy

=

∫
y

χ(y)q[y|x+ δ, z]∇δ log (q[y|x+ δ, z]) dy

= Eq[y|x+δ,z][χ(y)∇δ log (q[y|x+ δ, z])]

This expectation can be approximated via Monte-Carlo
methods. While it is in general not possible to directly
sample from q[y|x + δ, z], what can be done instead is
generating samples yl for l ∈ 1 ≤ l ≤ L from the prior
q[y|x + δ], and attribute an importance weight to each of
the resulting samples, yielding:

∇δEq[y|x+δ,z][χ(y)]

'
∑L
l=1 χ(y

l)q[z|x+ δ,yl]∇δ log(q[yl|x+ δ, z])∑L
l=1 q[z|x+ δ,yl]

The choice of q[z|x+ δ,yl] as the importance weight for
yl results from the application of Bayes rule:

q[yl|x+ δ, z] =
q[z|x+ δ,yl]

q[z|x+ δ]
q[yl|x+ δ]

Interversion of gradient and integral. Suppose one of the
following conditions is satisfied:

1. The model has a Gaussian likelihood and

χ(y) = O(exp(‖y‖1))

2. The model has a Laplace likelihood and

χ(y) = O(exp(

T∑
i=t0

√
|yi|))

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

3. The model has a logistic likelihood and

χ(y) = O(exp(

T∑
i=t0

√
|yi|))

Then the interchange of integration and differentiation for
the score-function estimator is valid. In particular, all poly-
nomially bounded statistics satisfy these conditions.

Following Theorem 2.4.3 in (Casella & Berger, 2002), let
us denote

f(y,θ) = χ(y)q[y|x+ θ, z].

Note that we call the perturbation θ to have consistent no-
tations, and that we consider x to be fixed as it does not
change during the attack. f is differentiable and we have

∂f

∂θ
= χ(y)

∂q[y|x+ θ, z]

∂θ
. (1)

In order to interchange integration and differentiation, The-
orem 2.4.3 requires to dominate the rate of change∣∣∣∣f(y,θ0 + δ)− f(y,θ0)δ

∣∣∣∣ ,
for ‖δ‖1 ≤ δ0, by an integrable function. In practice, the
mean-value theorem yields∣∣∣∣f(y,θ0 + δ)− f(y,θ0)δ

∣∣∣∣ ≤ sup
ε∈[0,δ]

∥∥∥∥∥ ∂f∂θ
∣∣∣∣
(y,θ0+ε)

∥∥∥∥∥
1

,

and allows to instead bound the quantity

sup
δ,‖δ‖1≤δ0

∥∥∥∥∥ ∂f∂θ
∣∣∣∣
(y,θ0+δ)

∥∥∥∥∥
1

.

Equation (1) allows to express the partial derivative of f as
a function of χ and q. Hence, we need to bound

sup
δ,‖δ‖1≤δ0

∥∥∥∥∥χ(y) ∂q[y|x+ θ, z]

∂θ

∣∣∣∣
(y,θ0+δ)

∥∥∥∥∥
1

.

We define µi to be the mean predicted by the neural network
for timestep i. Similarly, we define σi as the standard devia-
tion predicted by the network. As i goes from t0 to T , the
chain rule yields

∂q[y|x+ θ, z]

∂θ
=

T∑
i=t0

∂q[y|x+ θ, z]

∂µi
· ∂µi
∂θ

+
∂q[y|x+ θ, z]

∂σi
· ∂σi
∂θ

. (2)

Since µi and σi are learned by a neural network, their partial
derivatives ∂µi

∂θ and ∂σi

∂θ can be bounded by the global Lips-
chitz constant L of the network (it is not necessary to find
the exact constant, an upper bound such as the one obtained
in (Szegedy et al., 2013) is sufficient). Besides, let us denote
ψi(yi, µi, σi) the likelihood at timestep i. By definition, we
have

q[y|x+ θ, z] =

T∏
j=t0

ψj .

Since only ψi depends on µi and σi, we get

∂q[y|x+ θ, z]

∂µi
=
∂ψi
∂µi

∏
j 6=i

ψj ,

and similarly

∂q[y|x+ θ, z]

∂σi
=
∂ψi
∂σi

∏
j 6=i

ψj .

Applied to equation (2), this yields∥∥∥∥∂q[y|x+ θ, z]

∂θ

∥∥∥∥
1

≤

L

T∑
i=t0

∥∥∥∥∥∥∂ψi∂µi

∏
j 6=i

ψj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∂ψi∂σi

∏
j 6=i

ψj

∥∥∥∥∥∥
1

 . (3)

Combined with equation (1), we obtain∥∥∥∥∂f∂θ
∥∥∥∥
1

≤

|χ(y)|L
T∑
i=t0

∥∥∥∥∥∥∂ψi∂µi

∏
j 6=i

ψj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∂ψi∂σi

∏
j 6=i

ψj

∥∥∥∥∥∥
1

 . (4)

Here, we consider three cases for ψ: Gaussian, Laplace or
logistic distribution.

Case 1 (Gaussian distribution).

In the case of a Gaussian likelihood, we have

ψi(yi, µi, σi) =
1

σi
√
2π

exp

[
−1

2

(
yi − µi
σi

)2
]
,

After computations, we obtain

∂ψi
∂µi

=
yi − µi
σi

· ψi = O
(
exp

(
−|yi|1.5

))
and

∂ψi
∂σi

=

(
(yi − µi)2

σ3
i

− 1

σi

)
· ψ

= O
(
exp

(
−|yi|1.5

))

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

Besides, we have that

∏
j 6=i

ψj = O

exp

−∑
j 6=i

|yj |1.5
 .

Hence,∥∥∥∥∥∥ ∂ψ∂µi
∏
j 6=i

ψj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥ ∂ψ∂σi
∏
j 6=i

ψj

∥∥∥∥∥∥
1

=

O

(
exp

(
−

T∑
i=t0

|yi|1.5
))

. (5)

Together with equation (4), this gives the following inequal-
ity∥∥∥∥∂f∂θ

∥∥∥∥
1

≤ |χ(y)| · L ·
T∑
i=t0

∥∥∥∥∥∥ ∂ψ∂µi
∏
j 6=i

ψj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥ ∂ψ∂σi
∏
j 6=i

ψj

∥∥∥∥∥∥
1


= |χ(y)| · L ·O

(
exp

(
−

T∑
i=t0

|yi|1.5
))

.

Using the assumption that χ(y) = O(exp(||y||1)),∥∥∥∥∂f∂θ
∥∥∥∥
1

= O(exp(||y||1)) ·O

(
exp

(
−

T∑
i=t0

|yi|1.5
))

= O

(
exp

(
−

T∑
i=t0

|yi|(
√
|yi| − 1)

))
= O(exp(−||y||1))

All the asymptotic majorations are valid in the vicinity of
θ0, therefore we can take the sup on δ

sup
δ,‖δ‖1≤δ0

∥∥∥∥∥ ∂f∂θ
∣∣∣∣
(y,θ0+δ)

∥∥∥∥∥
1

= O(exp(−||y||1))

The right hand term is positive and integrable with respect
to y. This satisfies the domination condition of the theorem,
and thus concludes the proof.

Case 2 (Laplace distribution).

In the case of a Laplace distribution, we have

ψi(yi, µi, σi) =
1

2σi
exp

(
−
∣∣∣∣yi − µiσi

∣∣∣∣) ,
After computations, we obtain asymptotic majorations for
the partial derivatives of ψi

∂ψi
∂µi

= − sign(yi − µi)
σi

· ψi = O
(
exp

(
−|yi|0.75

))

and

∂ψi
∂σi

=
|yi − µi| − 1

σi
· ψi = O

(
exp

(
−|yi|0.75

))
Besides,

∏
j 6=i

ψj = O

exp

−∑
j 6=i

|yj |0.75
 .

Using equation (4) (with a similar reasoning as for the Gaus-
sian distribution), it follows that∥∥∥∥∂f∂θ

∥∥∥∥
1

≤ |χ(y)| · L ·O

(
exp

(
−

T∑
i=t0

|yi|0.75
))

.

Again, using the assumption that

χ(y) = O

(
exp

(
T∑
i=t0

√
|yi|

))
,

we get∥∥∥∥∂f∂θ
∥∥∥∥
1

= O

(
exp

(
T∑
i=t0

√
|yi|

))
·O

(
exp

(
−

T∑
i=t0

|yi|0.75
))

= O

(
exp

(
−

T∑
i=t0

√
|yi|(|yi|0.25 − 1)

))

= O

(
exp

(
−

T∑
i=t0

√
|yi|

))
.

The majoration being valid around θ0, we also take the sup
on δ

sup
δ,‖δ‖1≤δ0

∥∥∥∥∥ ∂f∂θ
∣∣∣∣
(y,θ0+δ)

∥∥∥∥∥
1

= O

(
exp

(
−

T∑
i=t0

√
|yi|

))
.

The right-hand term is integrable and satisfies the domina-
tion condition of the theorem.

Case 3 (Logistic distribution).

Finally, in the case of a logistic likelihood, we have

ψi(yi, µi, σi) =
exp

(
−yi−µi

σi

)
σi

(
1 + exp

(
−yi−µi

σi

))2 .
Computations realized with a formal calculator yield

∂ψi
∂µi

= O
(
exp

(
−|yi|0.75

))

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

and
∂ψi
∂σi

= O
(
exp

(
−|yi|0.75

))
We also have

∏
j 6=i

ψj = O

exp

−∑
j 6=i

|yj |0.75
 .

The rest of the proof is exactly similar to the case of a
Laplace distribution.

Reparametrization Estimator. Assume there exists a dif-
ferentiable transformation gx(δ,η) such that the random
variable y ∼ q[·|x + δ] can be reparametrized as y =
gx(δ,η), where η is an independent random variable whose
marginal distribution p(η) is independent from δ. Then the
importance sampling reparametrization estimator of the
expectation’s gradient is:

∇δEq[y|x+δ,z][χ(y)]

'∇δ

(∑L
l=1 χ(gx(δ,η

l))q[z|x+ δ, gx(δ,η
l)]∑L

l=1 q[z|x+ δ, gx(δ,ηl)]

)

where for 1 ≤ l ≤ L, ηl is sampled from the distribution
p(η), and yl = gx(δ,η

l).

Proof. Approximating the expectation Eq[y|x+δ,z][χ(y)]
via Monte-Carlo estimation with importance sampling
yields:

∇δEq[y|x+δ,z][χ(y)]

'∇δ

(∑L
l=1 χ(y

l)q[z|x+ δ,yl]∑L
l=1 q[z|x+ δ,yl]

)

where yl is sampled from the prior distribution q[y|x+ δ].
With the assumptions of the theorem, we can rewrite:(∑L

l=1 χ(y
l)q[z|x+ δ,yl]∑L

l=1 q[z|x+ δ,yl]

)

=

(∑L
l=1 χ(gx(δ,η

l))q[z|x+ δ, gx(δ,η
l)]∑L

l=1 q[z|x+ δ, gx(δ,ηl)]

)

Since the respective effects of the perturbation and of ran-
domness are decoupled in this final expression, it is differ-
entiable with respect to δ, which concludes the proof.

2. Experimental Details
Here we provide details of all our experiments to support
reproducibility. Additionally, we will make all our datasets
and source code available online.

2.1. Datasets and Preprocessing

S&P500 The S&P500 dataset is obtained via the yfi-
nance API1. We focus on data-points between 1990/01
and 2000/12, identified by Fischer and Krauss (2018) as
a period of exceptionally high trading returns compared
to the following decades. We also follow Fischer and
Krauss for preprocessing the data. A sequence of prices
p = (p1, . . . , pT) is first preprocessed to obtain a sequence
of returns (r2, . . . , rT), defined as ri = pi

pi−1
−1. Intuitively

ri is the gain (when positive) or loss obtained by investing
one dollar in the stock at time i−1, and then selling at time i.
Inversely, given a sequence of returns r and an initial price
p1, the corresponding sequence of prices can be obtained as:

pk = p1
∏k
i=2(1 + ri)

Both transformations are differentiable, which allows to
perform the attack in the application space of prices rather
than on returns. Besides, returns are normalized to have
zero mean and unit variance. Denoting µ and σ for the
mean and standard deviation of returns in the training set,
the normalized sequence is (r̃2, . . . , r̃T), where r̃i = (ri −
µ)/σ. We refer to Fischer and Krauss (2018) for a thorough
analysis of the properties of the S&P500 dataset.

Electricity Dataset We use the same preprocessing steps
as described in (Salinas et al., 2019). Input sequences are
divided by their average value v, and the corresponding
prediction sequence is multiplied by v. This guarantees that
all inputs are approximately in the same range.

2.2. Neural Architectures: S&P500 Dataset

LSTM The LSTM baseline used on the S&P500 dataset,
we follow (Fischer & Krauss, 2018), and use a single LSTM
layer with 25 hidden units, followed by a linear output layer.
However, we use only one input neuron without activation
instead of two neurons with softmax activation.

TCN In (Borovykh et al., 2017), several sets of hyper-
parameters for Temporal Convolutional Networks are used
depending on the experiment. We decided to use 8 layers
and a dilation of 2, in order to match as closely as possible
the size of the LSTM receptive field. We selected the other
parameters via grid-search, resulting in a kernel size of 2
and 3 channels. We use the TCN implementation provided
by the authors of (Bai et al., 2018).

Ours For our probabilistic autoregressive model, we
chose to use a single LSTM layer with 25 hidden units
similar to the LSTM baseline, in order to guarantee the
most fair comparison. We only changed the output layers
to parametrize a Gaussian distribution. Following (Bishop,

1https://github.com/ranaroussi/yfinance

https://github.com/ranaroussi/yfinance

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

10−2 10−1 100 101 102 103 104 105 106

c

0.00e+00

5.00e-03

1.00e-02

1.50e-02

2.00e-02

2.50e-02

3.00e-02

M
ea

n
di

st
an

ce
 to

 ta
rg

et

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
pe

rtu
rb

at
io

n
no

rm
 (d

as
he

d)

Figure 1. Perturbation norm and distance to target for different
values of c when evaluated on the S&P500 Dataset.

1994), we use a linear layer without activation for the mean,
and a linear layer with exponential activation for the scale
of the distribution. We also performed experiments with
a Gaussian mixture likelihood, but it did not improve the
performance on our two benchmarks.

Training For both deterministic networks, we minimize
mean-squared error on the training set. For our model, we
use negative log-likelihood as a loss function. In both cases,
we use the RMSPROP optimizer (Tieleman & Hinton, 2012)
advised by Fischer and Krauss, with default parameters and
learning rate of 0.01. We use an early-stopping patience of
20, and a large batch size of 2048 for training. Experiments
with different values did not reveal a significant influence of
these parameters.

2.3. Neural Architectures: Electricty Dataset

DeepAR The DeepAR architecture used for the Electric-
ity experiments is based on a three-layer LSTM with 40
hidden units each. The number of samples used for Monte-
Carlo estimation of the output is set to 200. The network is
trained for 20 epochs with the Adam optimizer (Kingma &
Ba, 2014), with batch size of 64 and learning rate of 0.001.

2.4. Attack Hyper-Parameters: S&P500 Dataset

For the S&P500 dataset, we optimize the attack objec-
tive function with the RMSPROP optimizer using a
learning rate of 0.001 and 1000 iterations. These pa-
rameters were selected with a simple grid search be-
cause of the computational cost of running the attack
repeatedly. The values used for the coefficient c are
10−2, 10−1, 1, 10, 102, 103, 104, 105, 106. We select the
value that yields the best adversarial sample under the con-
straint that the perturbation norm is below the tolerance ε.

0 1000 2000 3000 4000 5000
Cumulative number of samples

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

1
2
5
10
20
50
100

Figure 2. Attack loss for different values of L when evaluated on
the S&P500 Dataset. The x-axis is the total number of generated
samples rather than the number of perturbation updates, in order
to provide a fair comparison in terms of attack computational cost.

The number of samples used to estimate the gradient is
chosen to be L = 50.

Buy/Sell Attack We use λ = 0.03 for the target. For
the Bayesian setting, we use γ = y10/x−1 = 1.0008, in
order to approximately balance the different classes. The
95% confidence interval is computed assuming Student’s
t-distribution. In the Bayesian case, the formula for the 95%
confidence interval with importance sampling is derived
in (Hesterberg, 1996).

Attack on Trading Strategies We use α = 0.1 for the
target scaling factor.

Influence of c In Figure 1, we examine the influence of
tuning the attack objective function on average perturba-
tion norm and distance to the attack target. We observe a
trade-off between these two quantities that depends on the
coefficient c: higher value for c yields better adversarial
samples, at the cost of more input perturbation.

Influence of L We evaluate the effect of the number of
samples L used in the reparametrization estimator on the
attack loss in Figure 2. In this experiment, the value of c is
fixed to 1000. We notice a trade-off in terms of convergence
speed vs. final loss, that depends on the number of samples
used for estimating the gradient. As a result, we choose to
use L = 50 in our attacks.

2.5. Attack Hyper-Parameters: Electricity Dataset

We optimize the attack objective function with the ADAM
optimizer. We use different optimizers for the two datasets
so that the same optimizer is used for training the network

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

10−3 10−2 10−1 100

Tolerance on perturbation norm ε

0

20

40

60

80

100

At
ta

ck
 su

cc
es

s r
at

e
(%

)

Reparametrization

Figure 3. Success rate of the classification attack for different
perturbation norms, in a Bayesian setting with observation
y10/x−1 = γ = 1.0008, and prediction horizon h = 5.

and to attack it. We use a learning rate of 0.01 and 1000
iterations. These parameters were also selected via informal
search. The values used for the coefficient c are 0.1, 0.2,
0.3, 0.5, 0.7, 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 200 and
300. The number of samples used to estimate the gradient
is chosen to be L = 50.

3. Experimental Results
3.1. Trading Strategies

In Figure 4, we provide extended results for the long-short
trading benchmark, with different horizons h and number of
samples used for Monte-Carlo estimation of the prediction.
We observe that the quality of the probabilistic prediction
improves with the number of samples until 104 samples.
Further increasing the number of samples does not yield
significant performance improvements.

3.2. Evaluation of the Probabilistic Forecast

In Table 1, we give detailed results for the comparison of
probabilistic forecasts quality with Ranked Probability Skill
(a summary of these results is provided in Table 2). We
observe that the forecasting quality of our model improves
with the number of samples, and that an order of magni-
tude of the number of samples needed to obtain the best
possible estimation is 104. As a comparison, the DeepAR

implementation on the electricity dataset uses 200 samples.
We surmise that this discrepancy is due to the low signal-
to-noise ratio of financial data, that makes inference more
difficult.

3.3. Bayesian Attack

In Figure 3, we plot the results of the classification attack in
the Bayesian setting with observation y10/x−1 = γ, where
γ = 1.0008. We only implemented the reparametrization
estimator, as the score-function estimator requires the overly
complex estimation of∇δ log(q[yl|x+ δ, z]) for each sam-
ple yl. We observe that the attack success rate is very
similar to the non-Bayesian setting, demonstrating that the
reparametrization estimator adapts readily to the Bayesian
setting. The attack success rate is approximately 80% for
ε = 0.1.

3.4. Electricity Dataset

In Figure 5, we show results of both over-estimation and
under-estimation attacks on the electricity dataset, with ex-
amples of generated adversarial samples. We observe that
for equal perturbation tolerance, the over-estimation attack
yields mis-predictions of smaller amplitude. For instance,
the reparametrization attack with ε = 0.8 causes median
over-estimation of around 15%, whereas it causes median
under-estimation of 20%. We believe that this is due to the
particular nature of the dataset rather than asymmetry in
the attack. We do not observe such a discrepancy in the
financial experiments.

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

k = 10

1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

Re
tu

rn
 (%

)

k = 30

1 2 3 4 5 6 7 8 9 10
Forecasting horizon h

0.0

0.1

0.2

0.3

0.4

k = 100
TCN
LSTM
OURS

Figure 4. Financial gain on algorithmic trading tasks for different horizons h and portfolio sizes k (in % of the invested capi-
tal). The blue bars correspond to different number of samples for Monte-Carlo estimation of the prediction: from left to right
1, 10, 102, 103, 104, 105, 106.

90 80 70 60 50 40 30 20 10
Percentiles (%)

50

40

30

20

10

0

Un
de

r-e
st

im
at

io
n

(%
)

a) Under-estimation

ε=0.2
ε=0.4
ε=0.6
ε=0.8
ε=1.0

0 50 100 150

b) Under-estimation

0 50 100 150

0 50 100 150 90 80 70 60 50 40 30 20 10
Percentiles (%)

0

10

20

30

40

Ov
er

-e
st

im
at

io
n

(%
)

c) Over-estimation
ε=1.0
ε=0.8
ε=0.6
ε=0.4
ε=0.2

0 50 100 150

d) Over-estimation

0 50 100 150

0 50 100 150

Figure 5. Results for the electricity dataset. a) Under-estimation of electricity consumption. For example, with ε = 1.0, the attack
using reparametrization estimator leads to under-estimation of at least 20% (y-axis) for 70% of samples (x-axis). b) Under-estimation
adversarial samples. c) Over-estimation of electricity consumption. d) Over-estimation adversarial samples. In a) and b), results are given
for reparametrization (continuous) and score-function (dashed) estimators. In c) and d), the reparametrization estimator is used, and ε is
fixed to 0.9. Red curve is the original sample, blue curve is the generated adversarial sample. The vertical dashed line separates the input
sequence from the network’s prediction.

Supplementary Material - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

Table 1. Performance of different models on probabilistic forecast of various statistics. The comparison metric is Ranked Probability
Skill (Weigel et al., 2007) of the prediction (lower scores correspond to better predictions). The performance of our architecture is given
for different number of samples used in the Monte-Carlo estimation (1, 100, and 10000).

Statistics Non-probabilistic Probabilistic

Name h π TCN LSTM Ours
(Borovykh et al., 2017) (Fischer & Krauss, 2018) 1 sample 100 samples 10000 samples

Cumulated
Return

1 - 1.423 (± 0.022) 1.424 (± 0.016) 2.016 (± 0.023) 0.992 (± 0.002) 0.982 (± 0.002)
5 - 1.468 (± 0.01) 1.466 (± 0.008) 1.992 (± 0.013) 1.0 (± 0.005) 0.99 (± 0.004)
10 - 1.548 (± 0.029) 1.541 (± 0.019) 1.995 (± 0.011) 1.012 (± 0.008) 1.002 (± 0.008)

European
Call Option

10 0.9 1.019 (± 0.004) 1.017 (± 0.003) 1.961 (± 0.22) 0.999 (± 0.009) 0.989 (± 0.009)
10 1 1.122 (± 0.002) 1.121 (± 0.002) 1.966 (± 0.103) 0.992 (± 0.006) 0.982 (± 0.005)
10 1.1 1.342 (± 0.002) 1.341 (± 0.002) 1.987 (± 0.03) 1.003 (± 0.007) 0.993 (± 0.007)

European
Put Option

10 0.9 1.445 (± 0.021) 1.445 (± 0.017) 1.984 (± 0.015) 1.002 (± 0.007) 0.992 (± 0.007)
10 1 1.302 (± 0.003) 1.3 (± 0.002) 1.957 (± 0.036) 0.984 (± 0.005) 0.974 (± 0.005)
10 1.1 1.046 (± 0.005) 1.044 (± 0.002) 1.856 (± 0.094) 0.968 (± 0.004) 0.959 (± 0.003)

Limit Sell
10 1.01 2.822 (± 0.501) 3.137 (± 0.307) 1.917 (± 0.021) 1.013 (± 0.008) 1.004 (± 0.008)
10 1.05 1.516 (± 0.001) 1.514 (± 0.002) 1.899 (± 0.027) 0.953 (± 0.006) 0.944 (± 0.006)
10 1.20 1.035 (± 0.003) 1.034 (± 0.002) 1.792 (± 0.12) 0.951 (± 0.006) 0.942 (± 0.005)

Limit Buy
10 0.8 1.02 (± 0.002) 1.019 (± 0.002) 1.948 (± 0.223) 0.982 (± 0.015) 0.972 (± 0.013)
10 0.95 1.412 (± 0.0) 1.41 (± 0.001) 1.926 (± 0.039) 0.967 (± 0.009) 0.958 (± 0.008)
10 0.99 3.047 (± 0.012) 3.025 (± 0.028) 1.963 (± 0.024) 1.013 (± 0.006) 1.003 (± 0.006)

References
Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua-

tion of generic convolutional and recurrent networks for
sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

Bishop, C. M. Mixture density networks. 1994.

Borovykh, A., Bohte, S., and Oosterlee, C. W. Condi-
tional time series forecasting with convolutional neural
networks. arXiv preprint arXiv:1703.04691, 2017.

Casella, G. and Berger, R. L. Statistical inference, volume 2.
Duxbury Pacific Grove, CA, 2002.

Fischer, T. and Krauss, C. Deep learning with long short-
term memory networks for financial market predictions.
European Journal of Operational Research, 270(2):654–
669, 2018.

Hesterberg, T. C. Estimates and confidence intervals for
importance sampling sensitivity analysis. Mathematical
and computer modelling, 23(8-9):79–85, 1996.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. Deepar: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecasting,
2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Weigel, A. P., Liniger, M. A., and Appenzeller, C. The
discrete Brier and ranked probability skill scores. Monthly
Weather Review, 135(1):118–124, 2007.

