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Abstract
Hypothesis testing of random networks is an
emerging area of modern research, especially in
the high-dimensional regime, where the number
of samples is smaller or comparable to the size of
the graph. In this paper we consider the goodness-
of-fit testing problem for large inhomogeneous
random (IER) graphs, where given a (known) ref-
erence symmetric matrix Q ∈ [0, 1]n×n and m
independent samples from an IER graph given
by an unknown symmetric matrix P ∈ [0, 1]n×n,
the goal is to test the hypothesis P = Q versus
||P −Q|| ≥ ε, where || · || is some specified norm
on symmetric matrices. Building on recent related
work on two-sample testing for IER graphs, we
derive the optimal minimax sample complexities
for the goodness-of-fit problem in various natu-
ral norms, such as the Frobenius norm and the
operator norm. We also propose practical imple-
mentations of natural test statistics, using their
asymptotic distributions and through the paramet-
ric bootstrap. We compare the performances of
the different tests in simulations, and show that
the proposed tests outperform the baseline tests
across various natural random graphs models.

1. Introduction
With the ubiquitous presence networks in bioinformat-
ics and social sciences, developing statistical methods for
graph-valued data has become increasingly important. Al-
though network analysis has been an area of active inter-
est in statistics and machine learning, most classical ap-
proaches for graph testing are applicable in the relatively
low-dimensional setting, where the population size (number
of graphs) is larger than the size of the graphs (number of
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vertices). However, in the modern high-dimensional regime
[19] the number of samples m could be potentially much
smaller or comparable to the size of the graph n, for ex-
ample, graphs may correspond to different sets of relations
constructed for a set of actors [16]. As a result, theoreti-
cal understanding for testing random graphs is an area of
emerging interesting. Most of the recent work has focussed
primarily on detecting planted communities or sparse struc-
tures in the network [3, 4, 22, 26], and testing for network
dependence [2, 8].

Here, we consider the problem of goodness-of-fit testing for
network data, which involves developing statistical tests for
assessing whether a given sample of networks fits a specified
model. This problem has found many applications recently,
for example, in assessing fit of protein-protein interaction
(PPI) networks [9, 27] and in functional neuroimaging data
[15]. In particular, Ospina-Forero et al. [27] developed a
non-parametric procedure for testing whether network mod-
els used as backgrounds in community detection of social
networks, such as the Erdős-Rényi model or the Chung-Lu
model [6], can also be used to describe the appearance of
subgraph counts in the Facebook networks in US universi-
ties. They also applied their method for assessing fit in PPI
networks, which arise in many biological studies, such as
the discovery of disease risk pathways and the investigation
of genes undergoing age expression changes. Another appli-
cation is in functional neuro-imaging data [15], where the
vertices correspond to regions of interest in the brain, and an
edge between two regions indicates functional connectivity,
in the sense that the two regions interact together to achieve
some higher-order function. Here, Ginestet et al. [15] con-
sidered the problem of testing whether the Laplacian matrix
of the model generating a given sample of networks is equal
to a reference Laplacian matrix, based on the asymptotics of
the sample (Fréchet) mean, when the graph sizes are fixed
and the sample sizes grow to infinity. Other goodness-of-fit
tests for the β-model and the exponential random graph
model (ERGM) are discussed in [7] and [23], respectively.

In this paper, we propose theoretically optimal and com-
putationally efficient methods for network goodness-of-fit
for inhomogeneous Erdős-Rényi (IER) random graph mod-
els. This is a general class of random graph model, which
includes several popular network models, such as the Chung-
Lu model [6], the β-model [5], random dot product graphs
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[29], and stochastic block models [22]. Our proposed tests
attain optimal sample complexities, under different matrix
norms, and can be efficiently implemented, either by their
asymptotic distributions or the parametric bootstrap. The
tests also perform well in a range of simulation experiments,
illustrating the broad applicability of the methods.

1.1. Problem Statement and Summary of Results

Given a symmetric matrix P (n) ∈ [0, 1]n×n with zeroes
on the diagonal, a graph G is said to be an inhomogeneous
Erdős-Rényi (IER) random graph [1] with edge probability
P (n) = ((pij)), denoted as G ∼ IER(P (n)), if its sym-
metric adjacency matrix A(G) = ((aij(G))) ∈ {0, 1}n×n
have independent entries satisfying:

aij(G) ∼ Ber(pij) for all i < j.

Recently, Tang et al. [29, 30] and Ghoshdastidar et al.
[12, 13, 14] studied the problem of two-sample testing
for this model which asks: Given two populations of ran-
dom graphs, decide whether both populations are generated
from the same distribution or not? This paper addresses the
related problem of goodness-of-fit, where given indepen-
dent graph samples G1, G2, . . . , Gm ∼ IER(P (n)), and
a known matrix Q(n), the goal is to test the hypothesis
H0 : P (n) = Q(n) versus

H1 : ||P (n) −Q(n)|| ≥ ε, (1.1)

where || · || is some ‘norm’ on symmetric matrices. Here,
we will consider the following three natural norms on a
symmetric matrix A = ((aij)) ∈ [0, 1]n×n:

• Frobenius Norm: ||A||F =
√∑

1≤i,j≤n a
2
ij , which is

the root of the sum of squares of all the entries in A.

• Operator Norm: ||A||op = max{|λn(A)|, |λ1(A)|},
where λn(A) ≥ λn−1(A) ≥ · · · ≥ λ1(A) are the
eigenvalues of A.

• Zero Norm: ||A||0 =
∑

1≤i,j≤n 1{aij 6= 0}, which is
the number of non-zero entries in A. This is not really
a norm, but is a popular way to quantity the sparsity of
matrix.

Given i.i.d. samples G1, G2, . . . , Gm from IER(P ), a test
is a binary function φ : Gm := (G1, G2, . . . , Gm) →
{0, 1}, which is 0 when the test accepts H0 and 1 other-
wise. The worst-case risk of a test function φ for the testing
problem (1.1) is defined as:

Rm(Q(n), φ, || · ||) =

PQ(n)(φ = 1) + sup
P (n):

||P (n)−Q(n)||≥ε

PP (n)(φ = 0), (1.2)

which is the sum of the Type I error and the maximum
possible Type II error rate of the test φ. (Hereafter, we
will omit the dependence on the distance function || · || in
(1.2) above, whenever it is clear from the context.) We
are interested in the asymptotic regime where the risk (1.2)
transitions from 0 to 1. This is formalized in the following
definition:

Definition 1.1. Given G1, G2, . . . , Gm i.i.d. samples from
IER(P (n)), where m = mn can depend on n, a sequence
of test functions φn,m is said to be asymptotically powerless
for (1.1), if there exists a sequence of symmetric matrices
Q(n) ∈ [0, 1]n×n such that limn→∞Rm(Q(n), φm,n) = 1.
On the other hand, a sequence of test functions φn,m is said
to be asymptotically powerful for (1.1), if for all symmetric
matrices Q(n) ∈ [0, 1]n×n, limn→∞Rm(Q(n), φn,m) = 0.

The main focus of this paper is to derive optimality results
for goodness-of-fit testing in IER graphs for the various
norms described above, and complement these results with
implementable tests based on asymptotic properties and the
bootstrap. The following is summary of the results obtained
in this paper:

• We show that the optimal sample complexity for testing
separation as in (1.1), for both the Frobenius (Theorem
2.2) and the operator norm (Theorem 2.3), is n/ε2.
This means that there is a (computationally efficient)
test which is asymptotical powerful for (1.1) when the
sample size m � n/ε2, and all tests asymptotically
powerless when the sample size m� n/ε2. We also
show that testing for any separation is impossible in
the zero norm (Theorem 2.1).

• Next, we derive the asymptotic null distribution and
statistical consistency (against a large class of alter-
natives) of a natural goodness-of-fit test, based on a
sample estimate of the Frobenius norm, which can be
used to efficiently calibrate the test statistic for mod-
erate to large sized networks (Section 3). This test
statistic, however, fails to work when there is only one
sample (m = 1), in which case, we propose a test
based on the operator norm of the sample adjacency
matrix. We also discuss how the method of parametric
bootstrap [11] can be used to approximately calibrate
any test statistic, and compare the performance of the
different tests in finite sample simulations (Section 4).
Our experiments show that the proposed asymptotic
Frobenius norm based test accurately approximates the
null distribution and has good power for a wide class
of alternatives for moderate sized networks, even when
the sample size m is very small.
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1.2. Organization

The rest of the paper is organized as follows: The opti-
mal sample complexities for testing in the norms described
above are derived in Section 2. The asymptotic null distribu-
tion, consistency, and details of the bootstrap are discussed
in Section 3. The performance of the different tests in finite
sample simulations are described in Section 4. Proofs of
the theorems and additional simulations are given in the
appendix.

2. Minimax Sample Complexities
In this section, we obtain the optimal sample complexities
for goodness-of-fit testing under the three norms described
above. We begin by recalling some standard asymptotic
notation. For two nonnegative sequences {an}n≥1 and
{bn}n≥1, an . bn means an = O(bn); an ∼ bn means
an = (1 + o(1))bn; an � bn means an . bn . an;
an � bn means an = o(bn); and an � bn means
bn = o(an).

We start with an impossibility theorem about the zero-norm.
The following theorem, which is proved in Appendix 1,
shows that testing in zero norm is impossible, for any sym-
metric matrix Q(n) ∈ [0, 1]n×n and any ε > 0. This is
because, we can increase the zero norm between two matri-
ces to their maximum possible value (which is n(n − 1)),
by making arbitrarily small perturbations to the elements of
the matrices.

Theorem 2.1. For the testing problem (1.1) under the zero
norm || · ||0, all tests are asymptotically powerless for any
sequence of symmetric matrices Q(n) ∈ [0, 1]n×n and any
ε > 0.

Next, we consider testing in the Frobenius norm. In this
case our test is based on the following statistic:

Tm,n :=
∑

1≤i<j≤n

L(i,j)
m,n ·R(i,j)

m,n , (2.1)

where

• L(i,j)
m,n =

∑
s≤m

2
(aij(Gs) − qij) and R

(i,j)
m,n =∑

s>m
2

(aij(Gs)− qij),

• A(Gs) = ((aij(Gs)) is the adjacency matrix of the
graph Gs, and

• Q(n) = ((qij)) is the reference edge-probability ma-
trix.

This statistic is a natural modification of the two-sample
statistic introduced in [12, 14]. Note that EP (n)(Tm,n) =
m2

8 ||P
(n) − Q(n)||2F , that is, 1

m2Tm,n is an unbiased esti-
mate of 1

8 ||P
(n) −Q(n)||2F . The following theorem shows

that this statistic attains the optimal sample complexity for
testing in the Frobenius norm for IER graphs. The proof is
given in Appendix 2.

Theorem 2.2. For the testing problem (1.1) under the
Frobenius norm || · ||F , the following hold:

(a) The test φn,m = 1{Tm,n ≥ 1
16m

2ε2}, where Tm,n is
as in (2.1) above, is asymptotically powerful for (1.1),
whenever m� n/ε2.

(b) On the other hand, all tests are asymptotically power-
less for (1.1), whenever m� n/ε2.

Remark 2.1. In fact, from our analysis of the Tm,n statistic
(in Appendix 2) we can obtain an upper bound on the sample
complexity that depends onQ. In particular, the proof shows
that the sample complexity for testing in Frobenius norm is
greater than max{1/ε2,min{||Q||F /ε2, ||J − Q||F /ε2}},
where J is the matrix with 1 in every off diagonal entry
and 0 in every diagonal entry. (Note the symmetry in Q
and J −Q in the sample complexity bound above, which
is due to the symmetry in the problem arising from ob-
serving the graph or its complement.) Depending on the
structure of Q, this bound can be better than the worst-
case n/ε2 sample complexity reported above. For instance,
when Q is the adjacency matrix of an Erdős-Rényi random
graph with edge probabilities q ∈ (0, 1/2), this simplifies to
max{1/ε2, nq/ε2}, which improves upon n/ε2, for q � 1.
We expect this upper bound to be tight for a wide range of
parameters, as is evident from the lower bound calculations.

Finally, we consider testing separation in the operator norm.
Here, the inequality ||P (n) −Q(n)||F ≥ ||P (n) −Q(n)||op
immediately implies the test φn,m in Theorem 2.2 above,
will be asymptotically powerful for testing separation in the
operator norm as well, wheneverm� n/ε2. The following
theorem (proved in Appendix 3) shows that n/ε2 samples
are also necessary in this case.

Theorem 2.3. For the testing problem (1.1) under the oper-
ator norm || · ||op, the following hold:

(a) The test φn,m = 1{Tm,n ≥ 1
16m

2ε2} is asymptotically
powerful for (1.1), whenever m� n/ε2.

(b) On the other hand, all tests are asymptotically power-
less for (1.1), whenever m� n/ε2.

3. Asymptotic Distribution and the
Parametric Bootstrap

In this section we discuss various practical goodness-of-fit
tests for IER graphs, based either on asymptotic distribu-
tions or the parametric bootstrap [11]. To begin with note
the classical low-dimensional large sample size regime in
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the context of network testing, corresponds to a sample
G1, G2, . . . , Gm of graphs on n vertices, where the size n
of the graphs is fixed, but the sample size m→∞. In this
case, natural goodness-of-fit tests can be obtained by using
χ2-type statistics discussed in [12, 15]. The asymptotic
properties of these tests follow from classical theory, how-
ever, as in common for tests tailored for low-dimensional
problems, these test perform poorly, in the high-dimensional
regime, where the size of the graph n is much large than the
sample size m.

In the following we will discuss different implementations
of goodness-of-fit tests which are powerful when the sample
size is much smaller or comparable to the size of the graph.
In Section 3.1 we derive asymptotic null distribution of
the statistic Tm,n (recall (2.1)), using which an efficient
test can be constructed when the number of samples m >
1. We also discuss a spectral test based on the (properly
normalized) adjacency matrix of the observed graph, for
the case m = 1. In Section 3.2 we describe the method of
parametric bootstrap, a well-known resampling technique
[11] for calibrating the null distribution of any test statistic.

3.1. Asymptotic Properties

We begin with the asymptotic distribution of Tm,n. The
following theorem shows that Tm,n (appropriately scaled)
converges in distribution to standard normal under H0. Us-
ing this we can construct a test with probability of Type I
error converging to α (asymptotically level α), which is also
consistent (probability of Type II error converging to zero),
under a separation condition in terms of ||P (n) −Q(n)||2F .
The asymptotics is in n→∞, where m > 1 is also allowed
to depend on n. We denote by zα the (1− α)-th quantile of
the standard normal N(0, 1).

Theorem 3.1. Suppose {Q(n)}n≥1 be a sequence of edge-
probability matrices with entries bounded away from 1, such
that limn→∞ ||Q(n)||F =∞. Then under the null hypothe-
sis H0,

Zm,n :=
Tm,n√

m2

8

∑
1≤i<j≤n qij(1− qij)

D→ N(0, 1),

where Tm,n is as defined in (2.1). As a consequence, the
test which rejects H0 when |Zm,n| > zα/2 is asymptotically
level α, that is,

lim
n→∞

PH0(|Zm,n| > zα/2) = α. (3.1)

On the other hand, if {P (n)}n≥1 is such that ||P (n) −
Q(n)||2F � 1

m ||Q
(n)||F , then

lim
n→∞

PP (n)(|Zm,n| > zα/2) = 1, (3.2)

that is, the power of the test converges to 1.

Figure 1. (a) Figure 2. (b)

Figure 3. The quantile-quantile (QQ) plots of Zm,n, for sequence
of m = 4 graphs on n = 100 vertices each generated from (a) the
Erdős-Rényi model ER(100, 0.5), and (b) the planted bisection
model PB(100, 0.9, 0.1).

The proof of the theorem is given in Appendix 4. This result
parallels the CLT for the related two-sample statistic de-
rived in [12]. However, unlike in the two-sample case where
the corresponding test is conservative (that is, the limiting
Type I error is less than equals to α), for the goodness-of-fit
problem the test which rejects H0 when |Zm,n| > zα/2
has asymptotic Type I error exactly α (see (3.1)). This
is because in the goodness-of-fit problem, we know the
variance of Tm,n under the null, and, hence, the standard-
ized statistic Zm,n can be directly computed from the data.
Moreover, since the test based on Tm,n unbiasedly estimates
||P (n) −Q(n)||2F , it is natural to expect consistency when
this separation becomes large (as in (3.2)).

Figure 3 shows the quantile-quantile (QQ) plots of the statis-
tic Zm,n, under the null, for the Erdős-Rényi model and the
planted bisection model:

• Erdős-Rényi Model: This is a special case of the IER
model, where all the edge interconnection probabilities
are the equal. More formally, given q ∈ [0, 1], we
denote this model by ER(n, q), that is, a random graph
on n vertices where each edge is present or absent
independently with probability q. This is one of the
most fundamental models for random networks, and
has been extensively studied over the last few decades
[20].

• Planted Bisection Model: This is a special case of the
well-known stochastic block model [25], in which the
nodes are divided into two equal-sized communities
and then edges are added randomly in a way that de-
pends on the community membership. More formally,
the planted bisection model is an IER graph on n ver-
tices where the edge-probability edge Q = ((qij)) has
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the following form 2-block structure:

qij :=


a if 1 ≤ i 6= j ≤ n

2 or n2 < i 6= j ≤ n,
b if 1 ≤ i ≤ n

2 and n
2 < j ≤ n or

n
2 < i ≤ n and 1 ≤ j ≤ n

2
0 if i = j,

where a, b ∈ [0, 1]. Given a, b ∈ [0, 1], we denote
a random graph on n vertices from this model as
PB(n, a, b).

To validate the asymptotic results in Theorem 3.1, we sim-
ulate the null distribution of Zm,n for the two models de-
scribed above, for a collection of m = 4 graphs on n = 100
vertices, and compare the empirical quantiles of Zm,n (over
1000 iterations) with the predicted theoretical quantiles of
N(0, 1). The plots show that the asymptotics in Theorem
3.1 give accurate approximations for moderate-size graphs
(n = 100) sample size as small as 4. We investigate the
power of this test for various alternatives in Section 4 and
in Appendix 5.
Remark 3.1. (The case m = 1.) When the data consists of
only a single graph, the statistic (2.1) becomes degenerate,
and it no longer unbiasedly estimates ||P (n) −Q(n)||2F . In
this case, we propose a test based on the spectral norm
of the (scaled) observed adjacency of the graph. To this
end, suppose G1 ∼ IER(P (n)) and consider the scaled
adjacency matrix Wn := ((wij)), where

wij :=
aij(G1)− qij√

(n− 1)qij(1− qij)
, (3.3)

for 1 ≤ i, j ≤ n, where Q(n) = ((qij)) is the reference
edge-probability matrix under the null H0. Note that, under
the null H0, Wn is a symmetric random matrix, whose
entries above the diagonal are independent with mean zero
and variance 1

n−1 . Hence, by directly applying well-known
results from random matrix theory [10, 21] we can get the
limiting null distribution of the largest and the smallest
eigenvalues of Wn. In particular, λ1(Wn) and λn(Wn)
has the same limiting distribution as λ1(Dn) and λn(Dn),
where Dn is a symmetric random matrix with zero diagonal,
whose entries above the diagonal are i.i.d. normal with mean
zero and variance 1

n−1 [10]. This combined with results of
Lee and Yin [21] about λ1(Dn) and λn(Dn) implies

n
2
3 (λ1(Wn)− 2)

D→ TW1

and
n

2
3 (−λn(Wn)− 2)

D→ TW1,

where TW1 is Tracy-Widom law for orthogonal en-
sembles [31]. Then, recalling that ||Wn||op =
max{|λ1(Wn)|, |λn(Wn)|}, and a union bound, implies
that under the null,

lim sup
n→∞

PH0

(
n

2
3 (||Wn||op − 2) ≥ τα/2

)
≤ α, (3.4)

where τα/2 is the (1− α
2 )-th quantile of the TW1 distribu-

tion.

3.2. The Parametric Bootstrap

The parametric bootstrap is a well-known resampling tech-
nique [11], which can be used to approximate the null distri-
bution of any test statistic for the goodness-of-fit problem,
by repeatedly sampling from the null model. The details of
the algorithm are given below in Algorithm 1.

Algorithm 1 Bootstrapping a Test Statistic
Input : Samples G1, . . . , Gm from a IER model, the null
edge-probability matrix Q, a test statistic Sm,n, a signifi-
cance Level α ∈ (0, 1), andB ≥ 1 (the number of bootstrap
repetitions).

1: for b = 1 to B do
2: Draw m samples G(b)

1 , . . . , G
(b)
m from the IER(Q)

model.
3: Compute the test statistic S

(b)
m,n =

Sm,n(G
(b)
1 , . . . , G

(b)
m ).

4: Denote by Lm,n and Um,n the α
2 and 1− α

2 empirical
quantiles of {S(1)

m,n, S
(2)
m,n, . . . , S

(B)
m,n}, respectively.

5: end for
Output: Reject H0 if Sm,n(G1, . . . , Gm) /∈ [Lm,n, Um,n].
Otherwise accept H0.

Note that sampling a IER(Q) random graph on n vertices
takes O(n2) time, therefore, the algorithm above can be eas-
ily implemented for moderate sized networks. In Section 4,
we compare the asymptotic tests described above with their
bootstrap counterparts. We will refer to the bootstrapped
analogue of Tm,n as the Bootstrapped Frobenius
Test. We will also consider a bootstrap test based on the
statistic ∣∣∣∣∣

∣∣∣∣∣
m∑
s=1

A(Gs)−mQ(n)

∣∣∣∣∣
∣∣∣∣∣
op

, (3.5)

where G1, G2, . . . , Gm are i.i.d. IER(Q(n)), which we
will refer to as the Bootstrapped Operator-Norm
Test.1 In addition, we will consider the bootstrap versions
of the following two baseline tests:

• The Edge Test: Given G1, G2, . . . , Gm i.i.d. sam-
ples from IER(Q(n)), the edge test rejects the

1Incidentally, it can be shown by an application of matrix con-
centration inequalities that the test based on (3.5) is asymptotic
powerful for detecting ε separation in the operator norm, when-
ever m � n logn/ε2. One might also expect to remove the
factor of logn to match the lower bound in Theorem 2.3, using a
moment-method based argument, similar to that in [14], where the
analogous two-sample problem was studied.
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null for large/small values of the sum of the total
number of edges in the observed sample, that is,∑m
s=1

∑
1≤i<j≤n aij(Gs). This test is especially pow-

erful, when the total number edges in the alternative
model is significantly different from the null model, for
example, perturbations in the Erdős-Rényi model (see
Section 4), but is powerless for alternatives with similar
number of edges as the null. We will refer to the boot-
strapped version of this test as the Bootstrapped
Edge Test.

• The Cycle Test: This is another natural test for
goodness-of-fit when m = 1, based on the trace
of the scaled adjacency matrix Wn (as defined in
(3.3)). Note that tr(W g

n) =
∑n
i=1 λ

g
i (Wn), where

λ1(Wn) ≥ λ2(Wn) ≥ · · ·λn(Wn) are the eigenval-
ues of Wn. Note that tr(W g

n)
1
g is the g-th norm of

the eigenvalues of Wn, which in the g → ∞ limit
gives max1≤i≤n |λi(Wn)| = ||Wn||op, and, hence,
can be thought of as a (moment-based) approximation
to the operator norm. We will refer to the bootstrapped
version of this test as the Bootstrapped Cycle
Test.

4. Numerical Results
In section we compare the power of the tests described
above for 3 random graph models: the Erdős-Rényi model,
the planted bisection model, and the β-model. The Erdős-
Rényi model and the planted bisection model are described
above in Section 3.1. The β-model is another popular IER
model [5, 17, 26, 28], where the edge-probability matrix
Q = ((qij)) is given by

qij =
eβi+βj

1 + eβi+βj
,

where β = (β1, β2, . . . , βn) is n-dimensional parameter
vector. Given β ∈ Rn, we denote a random graph on
n vertices from this model as B(n,β). The β-model is a
simple version of a collection of exponential models actively
in use for analyzing network data (for example, it includes
as a special case the stochastic block model), and is a close
analogue to the Bradley-Terry model for rankings [18].

Here, we study the power of the different tests as a function
of increasing separation, keeping the sample size and the
size of the graph fixed (Section 4.1). (Additional simulations
illustrating the dependence on the size of the graph and the
sample size are given in Appendix 5.) We also compare the
performance of the different tests, in graphon-based IER
(Section 4.2) and sparser networks (Section 4.3).

4.1. Dependence on Separation

For our simulations, we fix the size of the graph n = 100,
the sample size m = 4, and a reference edge-probability

matrix Q(n) (which corresponds to the null), and consider
samples G1, G2, G3, G4 i.i.d from IER(P (n)), where P (n)

is a certain perturbation of the Q(n). The figures below
show the empirical power of the tests over 1000 iterations
(calibrated either using the asymptotic distribution or the
parametric bootstrap at level α = 0.05) as the perturba-
tion parameter increases. We consider the following three
scenarios:

• In Figure 4(a) the reference matrix Q(n) corresponds
to ER(100, 12 ) and the matrix P (n) corresponds to
ER(100, 12 + ∆). Figure 4(a) shows the empirical
power of the tests as a function of increasing ∆. As ex-
pected, the Bootstrapped Edge Test has the
highest power here, since uniformly increasing the
edge-probabilities, increases the expected number of
edges, making this the most powerful test in this
case. The Asymptotic Frobenius Test based
on Zm,n (recall Theorem 3.1) and Bootstrapped
Frobenius Test also perform very well, with
power converging to 1 around ∆ = 0.025. On the other
hand, Bootstrapped Operator-Norm Test
has power converging to 1 much slowly, in this case.

• In Figure 4(b) the reference matrix Q(n) corresponds
to the planted bisection model PB(100, 0.6, 0.4), and
the alternative edge-probability matrix P (n) corre-
sponds to PB(100, 0.6 + ∆, 0.4 − ∆). Figure 4(b)
shows the empirical power of the tests as a func-
tion of increasing ∆. Here, the Bootstrapped
Operator-Norm Test has the highest power.
Also, as before, the Asymptotic Frobenius
Test and Bootstrapped Frobenius Test
perform similarly and very well, with power con-
verging to 1 around ∆ = 0.01. However, unlike in
the Erdős-Rényi case, the Bootstrapped Edge
Test is powerless because the perturbations consid-
ered in the planted bisection model do not change the
expected number of edges the graph.

• In Figure 4(c) the reference matrix Q(n) corresponds
to the β-model B(100,β), where β is chosen uni-
formly from the surface of ball in R100 with radius
20, and P (n) corresponds to the β-model B(100,β +
∆). Figure 4(c) shows the empirical power of
the tests as a function of increasing ∆. Here,
the Bootstrapped Edge Test has the high-
est power. Again the Asymptotic Frobenius
Test and Bootstrapped Frobenius Test
have similar performance with power converging to
1 around ∆ = 0.09.

Overall we see that our Asymptotic Frobenius
Test and Bootstrapped Frobenius Test have
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(a) (b) (c)

Figure 4. Empirical power of the different tests as a function of increasing separation for m = 4 graphs of size n = 100 in (a) the
Erdős-Rényi model, (b) the planted bisection model and (c) the β-model.

(a) (b)

Figure 5. Empirical power of the different tests as a function of increasing separation for graphs of size n = 100, based on a single
(m = 1) graph from the (a) the Erdős-Rényi model, and (b) the β-model.

very good power across the 3 different IER models, il-
lustrating their robustness and consistency against a large
class of alternatives (as proved in Theorem 3.1). In prac-
tice, when the graph size is small we recommend using the
Bootstrapped Frobenius Test, because it can ac-
curately approximate the null distribution. For moderate
to large size graphs, where the asymptotic approximation
becomes accurate, it is computationally much more efficient
to use the Asymptotic Frobenius Test.

We now study the power of the different tests when the
number of samples m = 1. Here, we have a single sample
G1 of size n = 100 from the IER(P (n)) model, where
P (n) is certain perturbation of the reference matrix Q(n).
Note that, in this case, the Asymptotic Frobenius
Test is no longer applicable, because the sum over the
indices in (2.1) is vacuous. However, the Asymptotic
Operator-Norm Test and the bootstrap tests are still
applicable. We consider the following two cases:

• In Figure 5(a) shows the empirical power (out of 100
iterations) as a function of ∆ in the Erdős-Rényi model,
when the reference matrix corresponds to ER(100, 12 )

and the matrix P (n) is chosen as ER(100, 12 +
∆). Here, the Bootstrapped Operator-Norm
Test and the Asymptotic Operator-Norm
Test (as in (3.4)) have the highest power. The
Bootstrapped Cycle Test, on the other hand
has power converging to 1 much slowly.

• In Figure 5(b) shows the empirical power (out of
100 iterations) as a function of ∆, in the β-model,
where the reference matrix Q(n) corresponds to the
β-model B(100,β), where β is chosen uniformly
from the surface of ball in R100 with radius 20,
and P (n) corresponds to the β-model B(100,β +
∆). Here, the Bootstrapped Operator-Norm
Test and the Bootstrapped Cycle Test are
more powerful, compared to the Asymptotic
Operator-Norm Test.

In Appendix 5, we have additional simulations which com-
pares the power of the different tests by varying the size of
the graph n and the sample size m.

4.2. Graphon-Based IERs

Another natural way to generate a more general class of
IERs is through graphons. A graphon is a measurable func-
tion W : [0, 1]2 → [0, 1] that satisfy W (x, y) = W (y, x),
for all x, y ∈ [0, 1]. These appear as limits of large dense
graphs [24], and has found many applications in statistics,
computer science, and and related areas. Given a graphon
W : [0, 1]2 → [0, 1], one can generate a IER with the edge
probability matrix P (n)(a, b) = W ( an ,

b
n ). This is a very

general framework which includes all dense IERs (including
the examples considered above).

In Table 1 we consider the power of the Bootstrapped
Frobenius Test, Boostrapped Operator
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(a) (b) (c)

Figure 6. Empirical power of the different tests in a sparse 10-block SBM: (a) n = 100, m = 4, varying separation d, (b) n = 100,
d = 0.3, varying m, and (c) m = 4, d = 0.3, varying n.

m Frob. Op. Edge
1 0.10 1 0.07
2 0.12 1 0.1
3 0.27 1 0.19
4 1 1 0.28
5 1 1 0.35

(a)

n Frob. Op. Edge
100 1 1 0.23
200 1 1 0.26
300 1 1 0.26
400 1 1 0.23
500 1 1 0.21

(b)

Table 1. Power of graphon-based IER models for the Bootstrapped
Frobenius, Operator, and Edge tests, for (a) n = 100 and varying
m, and (b) m = 4 and varying n.

Test, and the Boostrapped Edge Test where the
reference matrix Q(n) corresponds to ER(n, 14 ) and

P (n)(a, b) =
ab

n2
, for 1 ≤ a 6= b ≤ n,

that is, the graphon W (x, y) = xy. In Table 1(a) the graph
size is fixed at n = 100 and the sample size m varies, and
in Table 1(b) the sample size is fixed at m = 4, while
the graph size varies. Note that in both the models the
expected number of edges is asymptotically n2

8 , hence the
edge-test has very low power here. On the other hand, the
proposed Frobenius and Operator norm tests perform very
well, illustrating yet again the robustness of these methods.

4.3. Sparser Networks

In this section we illustrate the performance of the pro-
posed tests in the sparse regime, where the edge connection
probabilities can depend on the size n of the graph. To

Figure 7. The structure of the adjacency matrix of a 10 block SBM.

this end, we chose the reference matrix Q(n) correspond-

ing to a 10-block stochastic block model (SBM), where
the inter-community edge probabilities are set to 0 and the
intra-community edge probabilities is set to 1√

n
, while for

P (n) we keep the inter-community edge probability as 0,
but change the intra-community edge probability to 1+d√

n
for

half of the communities, and 1−d√
n

for the other half of the
communities (see Figure 7 ). In Figure 6(a) the empirical
power of the different tests for graphs of size n = 100, sam-
ple size m = 4, and varying d is shown. Figure 6(b) fixes
d = 0.3, graph size n = 100, and varies the sample size m,
while Figure 6(c) fixes d = 0.3, sample size m = 4, and
varies the graph size n from 100 to 1000. Here, as expected,
the edge test is powerless, because the expected number of
edges in Q(n) and P (n) are the same. On the other hand,
the proposed tests have power converging to 1, illustrating
the usefulness of these methods for sparser IER graphs.

5. Conclusion and Future Work
In this paper, motivated by the problem of determining
whether a sample of real-world networks, fits a reference
model, we developed goodness-of-fit tests for inhomoge-
neous random graphs (IERs). We proposed tests attaining
minimax optimal sample complexities, for testing under
different matrix norms, such as the Frobenius norm and the
Operator norm. We also proposed practical implementa-
tions of the tests, using the asymptotic distribution and the
parametric bootstrap. The proposed tests outperform the
baseline tests, in a wide range of simulation experiments,
illustrating the broad applicability and robustness of these
methods.
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