
Goodness-of-Fit Tests for Inhomogeneous Random
Graphs: Supplementary Materials

This supplementary material is organized as follows. In Section 1 we give the proof of Theorem 2.1.
The proofs of Theorem 2.2 and Theorem 2.3 are given in Section 2 and Section 3, respectively. In
Section 4 we prove Theorem 3.1. Additional simulations are given in Section 5.

1 Proof of Theorem 2.1

Denote by Gn the set of all graphs on n vertices, and by IER(P (n))⊗m the product measure G⊗mn ,
which is the measure induced by the collection G1, G2, . . . , Gm i.i.d. samples from IER(P (n)). By
the sub-additivity of the Hellinger’s distance

H2(IER(P (n))⊗m, IER(Q(n))⊗m) ≤ mH2(IER(P (n)), IER(Q(n)))

≤ m
∑

1≤i<j≤n

H2(Ber(pij),Ber(qij))

= m
∑

1≤i<j≤n

F (pij , qij), (1.1)

where F (pij , qij) = 1−√pijqij −
√

(1− pij)(1− qij).

Denote by N0(Q(n)) and N1(Q(n)) the number of elements in Q(n) which is 0 or 1, respectively.
Hereafter, we will fix 0 < δ < 1

2 , and consider the following cases:

• If qij = 0, then set pij = δ. Then∑
1≤i<j≤n
qij=0

F (0, pij) = N0(Q(n))(1−
√

1− δ) . n2δ, (1.2)

using N0(Q(n)) ≤ n2 and 1−
√

1− δ . δ, for δ ∈ (0, 1).
• If qij = 1, then set pij = 1− δ. Then∑

1≤i<j≤n
qij=1

F (1, pij) = N1(Q(n))(1−
√

1− δ) . n2δ, (1.3)

using N1(Q(n)) ≤ n2.
• If 0 < qij < 1/2, then set pij = qij + δqij .∑

1≤i<j≤n
0<qij<

1
2

F (qij , pij) =
∑

1≤i<j≤n
0<qij<

1
2

(
1− qij

√
1 + δ − (1− qij)

√
1− qijδ

1− qij

)

. δ2
∑

1≤i<j≤n
0<qij<

1
2

qij
1− qij

. δ2n2, (1.4)

where the second last step uses
√

1± x − 1 ∓ x
2 ≥ −

x2

4 , for x ∈ (0, 1), and the last step
uses 1− qij ≥ 1

2 .



• If 1
2 ≤ qij < 1, then set 1 − pij = 1 − qij + δ(1 − qij). Then, as in the previous case, it

can be shown that ∑
1≤i<j≤n
1
2≤qij≤1

F (qij , pij) . δ2n2. (1.5)

Note that for Q(n) and any δ > 0, the construction of P (n) ensures ||P (n) − Q(n)||0 = n(n − 1).
Therefore, combining (1.2), (1.3), (1.4), and (1.5) with (1.1), gives

TV2(IER(P (n))⊗m, IER(Q(n))⊗m) ≤ H2(IER(P (n))⊗m, IER(Q(n))⊗m) . mn2δ � 1,

by choosing any 0 < δ � 1
mn2 . Since the construction of P (n) above, attains the maximum possible

value of the zero-norm, this shows that all tests are asymptotically powerless, for any Q(n) and ε > 0.

2 Proof of Theorem 2.2

In the section we prove Theorem 2.2, which derives the optimal sample complexity for goodness-of-fit
testing in the Frobenius norm. The proof of the upper bound is given below in Section 2.1, and the
lower bound is proved in Section 2.2.

2.1 Upper Bound: Proof of Theorem 2.2 (a)

Recall, from (2.1), the definition of the test statistic Tm,n:

Tm,n =
∑

1≤i<j≤n

∑
s≤m2

(aij(Gs)− qij)

∑
s>m

2

(aij(Gs)− qij)

 .

To begin with, note that EP (n)(Tm,n) = m2

8 ||P
(n) − Q(n)||2F . We now compute the variance of

Tm,n.

Lemma 2.1. Given G1, G2, . . . , Gm i.i.d. samples from IER(P (n)),

VarP (n)(Tm,n) � m2
∑

1≤i 6=j≤n

(
p2
ij(1− pij)2 + 2pij(1− pij)∆2

ij

)
+m3

∑
1≤i6=j≤n

pij(1− pij)∆2
ij ,

where ∆ij = pij − qij .

Proof. By the independence of G1, G2, . . . , Gm,

VarP (n)(Tm,n) =
∑

1≤i<j≤n

VarP (n)

∑
s≤m2

(aij(Gs)− qij)

∑
s>m

2

(aij(Gs)− qij)


=

∑
1≤i<j≤n

VarP (n)

∑
s≤m2

∑
s′>m

2

(aij(Gs)− qij)(aij(Gs′)− qij)


=

∑
1≤i<j≤n

{
T

(1)
ij + T

(2)
ij

}
, (2.1)

where
T

(1)
ij :=

∑
s≤m2

∑
s′>m

2

VarP (n)((aij(Gs)− qij)(aij(Gs′)− qij)),

and

T
(2)
ij := 2

∑
s≤m2

∑
m
2 <s

′ 6=s′′≤m

CovP (n)((aij(Gs)−qij)(aij(Gs′)−qij), (aij(Gs)−qij)(aij(Gs′′)−qij)).

Note that EP (n)(aij(Gs) − qij) = ∆ij and EP (n)(aij(Gs) − qij)2 = pij(1 − pij) + ∆2
ij . This

implies, for s 6= s′,

VarP (n)((aij(Gs)− qij)(aij(Gs′)− qij)) = EP (n)

(
(aij(Gs)− qij)2(aij(Gs′)− qij)2

)
−∆4

ij

2



= EP (n)(aij(Gs)− qij)2EP (n)(aij(Gs′)− qij)2 −∆4
ij

=
(
pij(1− pij) + ∆2

ij

)2 − (pij − qij)4

= p2
ij(1− pij)2 + 2pij(1− pij)∆2

ij .

This implies, ∑
1≤i<j≤n

T
(1)
ij � m

2
∑

1≤i 6=j≤n

(
p2
ij(1− pij)2 + 2pij(1− pij)∆2

ij

)
. (2.2)

Next, observe that

CovP (n)((aij(Gs)− qij)(aij(Gs′)− qij), (aij(Gs)− qij)(aij(Gs′′)− qij))
= EP (n)((aij(Gs)− qij))2EP (n)(aij(Gs′)− qij)EP (n)(aij(Gs′′)− qij)−∆4

ij

= (pij(1− pij) + ∆2
ij)∆

2
ij −∆4

ij

= pij(1− pij)∆2
ij .

This implies, ∑
1≤i<j≤n

T
(2)
ij � m

3
∑

1≤i 6=j≤n

pij(1− pij)∆2
ij . (2.3)

Combining (2.2) and (2.3) with (2.1), the lemma follows.

This lemma can now be used to bound the worst-case risk (1.2) of φm,n as follows: Under the null
H0, ∆ij = 0, for all 1 ≤ i, j ≤ n. Then the probability of Type I error is

PH0

(
Tm,n >

m2ε2

16

)
.

VarQ(n)(Tm,n)

m4ε4
.

∑
1≤i 6=j≤n q

2
ij(1− qij)2

m2ε4
≤ n2

m2ε4
� 1, (2.4)

whenever m� n/ε2.

To compute the worst case Type II error, consider P (n) such that ||P (n) −Q(n)||F > ε. Then

PP (n)

(
Tm,n ≤ m2ε2

16

)
≤ PP (n)

(
Tm,n − EP (n)(Tm,n) ≤ m2ε2

16 −
m2||P (n)−Q(n)||2F

8

)
≤ PP (n)

(
Tm,n − EP (n)(Tm,n) ≤ −m

2||P (n)−Q(n)||2F
16

)
.

VarP (n)(Tm,n)

m4||P (n) −Q(n)||4F

.
m2||P (n)||2F +m3

∑
1≤i 6=j≤n pij(1− pij)∆2

ij

m4||P (n) −Q(n)||4F
(by Lemma 2.1)

.
m2||P (n) −Q(n)||2F +m2||Q(n)||2F +m3

∑
1≤i 6=j≤n pij∆

2
ij

m4||P (n) −Q(n)||4F
, (2.5)

Now, by the Cauchy-Schwarz inequality, ∑
1≤i6=j≤n

pij∆
2
ij

2

≤
∑

1≤i6=j≤n

p2
ij

∑
1≤i 6=j≤n

∆4
ij

. (||P (n) −Q(n)||2F + ||Q(n)||2F )||P (n) −Q(n)||4F . (2.6)

Then using the bound above,(
m3
∑

1≤i6=j≤n pij∆
2
ij

)2

m8||P (n) −Q(n)||8F
≤ 1

m2||P (n) −Q(n)||2F
+

||Q(n)||2F
m2||P (n) −Q(n)||4F

≤ 1

m2ε2
+
||Q(n)||2F
m2ε4

� 1,

3



whenever m� max{ 1
ε ,
||Q(n)||F

ε2 }. Moreover, the first and second terms in (2.6) becomes

m2||Q(n)||2F
m4||P (n) −Q(n)||4F

≤ ||Q
(n)||2F
m2ε4

� 1 and
m2||P (n) −Q(n)||2F
m4||P (n) −Q(n)||4F

≤ 1

m2ε2
� 1, (2.7)

whenever m� max{ 1
ε ,
||Q(n)||F

ε2 }.

This implies, using (2.5), PP (n)(Tm,n >
m2ε2

16 ) � 1, whenever m � n/ε2 ≥ max{ 1
ε ,
||Q(n)||F

ε2 }
(since ε ≤ n).

2.2 Lower Bound: Proof of Theorem 2.2 (b)

Given a sequence of prior probability distribution π(n) on the alternative H1 (which corresponds
to the set of all symmetric matrices P (n) such that ||P (n) −Q(n)||F > ε), the Bayes risk of a test
function φm,n is defined as

Rm(Q(n), φm,n, || · ||F , π(n)) = PQ(n)(φm,n = 1) + EP (n)∼π(n) [PP (n)(φm,n = 0)] . (2.8)

Note that for any prior π(n) and any test function φm,n, the worst case risk ((1.2))

Rm(Q(n), φm,n, || · ||F ) ≥ Rm(Q(n), φm,n, || · ||F , π(n)). (2.9)

Moreover, denoting Gm,n the set of possible collections of m graphs on n vertices,

Rm(Q(n), φm,n, || · ||F , π(n)) ≥ inf
φm,n

{
PQ(n)(φm,n = 1) + EP (n)∼π(n) [PP (n)(φm,n = 0)]

}
≥ 1− sup

φm,n

∣∣PQ(n)(φm,n = 1)− EP (n)∼π(n) [PP (n)(φm,n = 1)]
∣∣

≥ 1− sup
A∈Gm,n

∣∣PQ(n)(A)− EP (n)∼π(n) [PP (n)(A)]
∣∣

≥ 1− 1

2

∑
ω∈Gm,n

∣∣∣∣EP (n)∼π(n) [PP (n)(ω)]

PQ(n)(ω)
− 1

∣∣∣∣PQ(n)(ω)

= 1− 1
2EH0

|Lπ(n) − 1|

≥ 1− 1
2

√
EH0

(L2
π(n))− 1, (2.10)

where Lπ(n) =
E
P (n)∼π(n) [PP (n) (ω)]

P
Q(n) (ω) is the π(n)-integrated likelihood ratio, and the last step uses the

Cauchy-Schwarz inequality.

Therefore, by (2.9) and (2.10), to show a test function φn,m is asymptotically powerless for (1.1), it
suffices to prove EH0(L2

π(n)) ≤ 1 + o(1). To show this we follow arguments similar those in [2],
where the analogous problem for two-sample testing was studied.

We will choose Q(n) to be the matrix corresponding to ER(n, 1
2 ), that is, qij = 1

2 , for all 1 ≤ i <

j ≤ n, and define δij =
εqij
‖Q‖F , and consider the prior π(n) as follows: Let

q′ij = qij + δijγij ,

where {γij} are i.i.d. ±1 with probability 1
2 . (Note that q′ij ∈ [0, 1], for all 1 ≤ i < j ≤ n.) Let

S =
∑m
s=1A(Gs), which is the sum of the adjacency matrices of the graphs G1, G2, . . . , Gm. Then

Lπ(n) = Eγ

 ∏
1≤i<j≤n

(qij + γijδij)
Sij (1− qij − γijδij)m−Sij

q
Sij
ij (1− qij)m−Sij

 ,
where the expectation above is over the randomness of γ = ((γij)). This implies,

L2
π(n)

4



= Eγ,γ′

 ∏
1≤i<j≤n

(
(qij + γijδij)(qij + γ′ijδij)

)Sij (
(1− qij − γijδij)(1− qij − γ′ijδij)

)m−Sij
q

2Sij
ij (1− qij)2m−2Sij


= Eγ,γ′

 ∏
1≤i<j≤n

(
(1− qij)2(qij + γijδij)(qij + γ′ijδij)

q2
ij(1− qij − γijδij)(1− qij − γ′ijδij)

)Sij
κmij

 . (2.11)

where κij =
(1−qij−γijδij)(1−qij−γ′ijδij)

(1−qij)2 . Note that, under the null H0, Sij ∼ Bin(m, qij), and
EH0

λSij = (1− qij + λqij)
m, for any λ ∈ R. Using this and taking expectation over H0, the RHS

of (2.11) simplifies to

EH0(L2
π(n)) = Eγ,γ′

 ∏
1≤i<j≤n

(
1 +

γijγ
′
ijδ

2
ij

qij(1− qij)

)m (2.12)

=
∏

1≤i<j≤n

[
1

2

(
1 +

δ2
ij

qij(1− qij)

)m
+

1

2

(
1−

δ2
ij

qij(1− qij)

)m]

≤
∏

1≤i<j≤n

[
1

2
exp

{
mδ2

ij

qij(1− qij)

}
+

1

2
exp

{
−

mδ2
ij

qij(1− qij)

}]

=
∏

1≤i<j≤n

cosh

(
mδ2

ij

qij(1− qij)

)
≤ exp

 ∑
1≤i<j≤n

m2δ4
ij

2q2
ij(1− qij)2

 .

Now, recalling qij = 1
2 , for all 1 ≤ i < j ≤ n, the RHS above simplifies to

EH0
(L2

π(n)) ≤ e
Θ
(
m2ε4

n2

)
≤ 1 + o(1),

whenever m� n/ε2.

3 Proof of Theorem 2.3

The upper bound follows by using the same test as in the Frobenius case, that is, reject H0 when
Tm,n >

1
16m

2ε2, where Tm,n is as defined in (2.1). To see this, note that the probability of Type
I error is controlled as in (2.4). For the probability of Type II error, consider a P (n) such that
||P (n) −Q(n)||op ≥ ε. This implies, ||P (n) −Q(n)||F ≥ ||P (n) −Q(n)||op ≥ ε, and by combining

(2.5), (2.6), and (2.7) it follows that PP (n)

(
Tm,n >

m2ε2

16

)
� 1, whenever m� n/ε2.

For the lower bound, as in the case of the Frobenius norm, we choose Q(n) = ((qij)) to be the
edge-probability matrix of ER(n, 1

2 ), that is, qij = 1
2 , for all 1 ≤ i < j ≤ n. Now, consider the prior

π(n) as follows: Let P (n) = ((pij)) where

pij = qij + δγiγj ,

where γ1, γ2, . . . , γn are i.i.d. ±1 with probability 1
2 and δ = ε

n−1 . Note that‖P (n) − Q(n)‖op =

δ‖γγT − I‖op = ε.

Now, by arguments identical to the proof to (2.12),

EH0
(L2

π(n)) = Eγ,γ′

 ∏
1≤i<j≤n

(
1 + 4γiγjγ

′
iγ
′
jδ

2
)m

≤ Eγ,γ′

exp

4mδ2
∑

1≤i<j≤n

γiγjγ
′
iγ
′
j



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≤ Eγ̄

exp

4mδ2
∑

1≤i<j≤n

γ̄iγ̄j


 , (3.1)

where γ̄i = γiγ
′
i and γ̄ = (γ̄1, γ̄2, . . . , γ̄n) are i.i.d. ±1 with probability 1

2 . Denoting by Sn =∑n
i=1 γ̄i, the RHS of (3.1), for n large enough, simplifies to,

EH0(L2
π(n)) = Eγ̄

[
e2mδ2(S2

n−n)
]
≤ e2mδ2n ≤ 1 + o(1),

whenever m� n/ε2, where the second inequality uses [2, Claim 3].

4 Proof of Theorem 3.1

In this section we derive the asymptotic distribution of

Zm,n =
Tm,n√

VarQ(n)(Tm,n)
=

∑
1≤i<j≤n T

(i,j)
m,n√

VarQ(n)(Tm,n)
,

where
T (i,j)
m,n =

∑
s≤m2

(aij(Gs)− qij)
∑
s>m

2

(aij(Gs)− qij).

Recall that EQ(n)(Tm,n) = 0 and, from the proof of Lemma 2.1, VarQ(n)(Tm,n) =
m2

8

∑
1≤i 6=j≤n q

2
ij(1 − qij)

2. To prove the asymptotic normality of Zm,n we invoke the Berry-
Essen theorem [1], which states that

sup
x∈R

∣∣PQ(n)(Zm,n ≤ x)− Φ(x)
∣∣ . 1

VarQ(n)(Tm,n)
3
2

∑
1≤i<j≤n

EQ(n)(|T (i,j)
m,n |3), (4.1)

where Φ(·) denotes the distribution function of the standard normal N(0, 1).

Note that

EQ(n)(|T (i,j)
m,n |4) = EQ(n)

∑
s≤m2

(aij(Gs)− qij)

4

EQ(n)

∑
s>m

2

(aij(Gs)− qij)

4

.
(
m(qij(1− qij)4 + q4

ij(1− qij)) +m2q2
ij(1− qij)2

)2
.

Then, using the Cauchy-Schwarz inequality and EQ(n)(|T (i,j)
m,n |2) = m2

4 q
2
ij(1− qij)2, gives

EQ(n)(|T (i,j)
m,n |3) ≤

√
EQ(n)(|T (i,j)

m,n |2)EQ(n)(|T (i,j)
m,n |4)

. mqij(1− qij)
{
m(qij(1− qij)4 + q4

ij(1− qij)) +m2q2
ij(1− qij)2

}
. m3q2

ij(1− qij)2

This implies,

1

VarQ(n)(Tm,n)
3
2

∑
1≤i<j≤n

EQ(n)(|T (i,j)
m,n |3) .

1√∑
1≤i<j≤n q

2
ij(1− qij)2

.
1

||Q(n)||F
� 1,

since, the assumption max1≤i<j≤n qij & 1, implies
∑

1≤i<j≤n q
2
ij(1 − qij)2 & ||Q(n)||2F . This

shows, under the conditions of Theorem 3.1, the RHS of (4.1) goes to zero, that is, Zm,n converges in
distribution to N(0, 1) under H0. Hence, the probability of Type-I error is PQ(n)(|Zm,n| > zα/2) =
2(1− Φ(zα/2)) + o(1) = α+ o(1), as required in (3.1).

To show consistency, note that

m2||P (n) −Q(n)||2F√
VarQ(n)(Tm,n)

� m||P (n) −Q(n)||2F√∑
1≤i 6=j≤n q

2
ij(1− qij)2

≥ m||P (n) −Q(n)||2F
||Q(n)||F

� 1,
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by the assumption in Theorem 3.1. Therefore, zα/2 ≤
m2

16 ||P
(n)−Q(n)||2F√

Var
Q(n) (Tm,n)

, and the probability of

Type-II error becomes,

PQ(n)(|Zm,n| ≤ zα/2) ≤ PQ(n)

Tm,n − EP (n)(Tm,n)√
VarQ(n)(Tm,n)

≤ zα/2 −
m2

8 ||P
(n) −Q(n)||2F√

VarQ(n)(Tm,n)


≤ PQ(n)

Tm,n − EP (n)(Tm,n)√
VarQ(n)(Tm,n)

≤ −
m2

16 ||P
(n) −Q(n)||2F√

VarQ(n)(Tm,n)


.

VarQ(n)(Tm,n)

m4||P (n) −Q(n)||2F

.
m2||P (n)||2F +m3

∑
1≤i 6=j≤n pij∆

2
ij

m4||P (n) −Q(n)||4F

≤ m2||P (n)||2F +m3||P (n) −Q(n)||2F
m4||P (n) −Q(n)||4F

=
||P (n)||2F

m2||P (n) −Q(n)||4F
+

1

m||P (n) −Q(n)||2F
, (4.2)

by (2.5) and (2.6). For the first term above,

||P (n)||2F
m2||P (n) −Q(n)||4F

.
||Q(n)||2F

m2||P (n) −Q(n)||4F
+

1

m2||P (n) −Q(n)||2F

� ||Q(n)||2F
m2||P (n) −Q(n)||4F

+
1

m||Q(n)||F
(since m||P (n) −Q(n)||2F � ||Q(n)||F )

� 1,

since m||P (n)−Q(n)||F � ||Q(n)||F and m||Q(n)||F ≥ ||Q(n)||F � 1 by assumption. The second
term in (2.6) goes to zero similarly. Therefore, the RHS of (4.2) goes to zero, completing the proof
of (3.2).

5 Additional Simulations

We conclude with some additional simulations, comparing the performance of the different tests by
varying the number of vertices n of the graph (keeping the separation and sample size m fixed) in
Section 5.1, and by varying the sample size (keeping the separation and the size n of the graph fixed)
in Section 5.2.

(a) (b)

Figure 1: Empirical power of the different tests as a function of increasing graph size in (a) the Erdős-Rényi
model with m = 2, (b) the planted bisection model with m = 4.
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5.1 Dependence on the Size of the Graph

Here, we fix the sample size m, and a reference edge-probability matrix Q(n) (which corresponds
to the null) and another edge-probability matrix P (n) (which is at a fixed perturbation from Q(n)),
and consider samples G1, G2, . . . , Gm i.i.d from IER(P (n)), for increasing values of n. The figures
below show the empirical power of the tests over 1000 iterations (calibrated either using the asymptotic
distribution or the parametric bootstrap at α = 0.05) as the size of the graph increases. We consider
the following three scenarios:

• In Figure 1(a) the reference matrix Q(n) corresponds to ER(n, 0.5) and the matrix P (n)

corresponds to ER(n, 0.59), and the power curve is shown as a function of increasing n.
As in the case of increasing separation in Figure 4(a), the Bootstrapped Edge Test
has the highest power, while the Asymptotic Frobenius Test and the Bootstrapped
Frobenius Test have slightly less but comparable power, while the Bootstrapped
Operator-Norm Test has the least power.

• In Figure 1(b) the reference matrix Q(n) corresponds to PB(n, 0.6, 0.4) and the matrix
P (n) corresponds to PB(n, 0.59, 0.41), and the power curve is shown as a function of in-
creasing n. Here, as expected, the Bootstrapped Edge Test is powerless. However, the
Asymptotic Frobenius Test, Bootstrapped Frobenius Test, and Bootstrapped
Operator-Norm Test all have power converging to 1 with increasing n. However, the
convergence to 1 is slower than in the Erdős-Rényi case.

Figure 2: Empirical power of the different tests as a function of increasing graph size for a sample of m = 8
graphs in the β-model.

• In Figure 2 the reference matrix Q(n) corresponds to the β-model B(n,β), where β is
chosen uniformly from the surface of ball in Rn with radius 20, and P (n) corresponds
to the β-model B(n,β + 0.02), and the power curve is shown as a function of increas-
ing n. Here, the Bootstrapped Edge Test has the highest power. The Asymptotic
Frobenius Test, Bootstrapped Frobenius Test, Bootstrapped Operator-Norm
Test all have similar performances with power converging to 1 around n = 300.

5.2 Dependence on Sample Size

To understand the dependence on sample size, we will fix the number of vertices n, a reference
edge-probability matrix Q(n) (which corresponds to the null) and another edge-probability matrix
P (n) (which is at a fixed perturbation from Q(n)), and consider the power of the different tests as a
function of the sample size m.

We expect the power of the tests to increase with sample size and the size of the graph. We illustrate
this for the planted bisection model in Figure 3, where the reference matrix Q(n) corresponds to
PB(n, 0.6, 0.4) and the matrix P (n) corresponds to PB(n, 0.58, 0.42). The plot in Figure 3 (a) shows
the power of the Bootstrapped Frobenius Test and the plot in Figure 3 (b) shows the power of
the Bootstrapped Operator-Norm Test, when the sample size m increases, for various values
of n. In both cases, as the size of graph n increases the power converges to power 1 faster. However,
the rate of increase is quicker for the Bootstrapped Operator-Norm Test.
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(a) Bootstrapped Frobenius norm test (b) Bootstrapped Operator norm test

Figure 3: Empirical power of the two tests as a function of increasing separation sample size m for
various sizes n of the graph.
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