Goodness-of-Fit Tests for Inhomogeneous Random
Graphs: Supplementary Materials

This supplementary material is organized as follows. In Section [I]we give the proof of Theorem 2.1}
The proofs of Theorem [2.2]and Theorem [2.3]are given in Section[2]and Section[3] respectively. In
Section 4] we prove Theorem 3.1} Additional simulations are given in Section 5]

1 Proof of Theorem 2.1]

Denote by %, the set of all graphs on n vertices, and by IER(P(™))®™ the product measure 4™,
which is the measure induced by the collection Gy, Ga, ..., G, i.i.d. samples from I[ER(P(™)). By
the sub-additivity of the Hellinger’s distance

H2(IER(P(™)®™ IER(Q™)®™) < mH?(IER(P™), IER(Q™))
<m Y H(Ber(pi),Ber(g;;))

1<i<j<n

=m Y F(pij ), (1.1)
1<i<j<n
where F(pija%'j) =1-/Dijqij — \/(1 *Pij)(l - Qij)~

Denote by No(Q™) and N;(Q(™)) the number of elements in Q™) which is 0 or 1, respectively.
Hereafter, we will fix 0 < § < %, and consider the following cases:

o If g;; = 0, then set p;; = 6. Then

> F(0,pi) = No(QM™)(1 = V1 =15) < n?, (1.2)
1§7’,<j(§n
qij=

using No(Q™) <n?and 1 — /1 -6 < 6, ford € (0,1).
e If g;; = 1, thenset p;; = 1 — ¢§. Then

> F(Lpy) =N(QM™)1 - vV1=13) < n’, (1.3)
1<i<j<n
qij=1

using N; (Q™) < n?.
o If 0 < ¢;; < 1/2, then set p;; = qi; + 9qq;.

50
> Flag.pi) = Y (1—% 1+0—(1—qi)y/1 q])

T
1<i<j<n 1<i<j<n ij
0<q,ij<% O<qij<%
2 dij 2.2
S0P Y, s (1.4)
1<i<j<n ij
0<qij<3

where the second last stepuses v1+xz —1F £ > —%, for x € (0,1), and the last step

uses 1 — q;; > %



e If L < gy <1, thensetl—p;; =1—q;; +6(1 — g;;). Then, as in the previous case, it
can be shown that
> Flgijpiy) S 0°n*. (1.5)
1<i<j<n
1<qi<t

Note that for Q) and any § > 0, the construction of P("™) ensures ||P(™) — Q™)||, = n(n — 1).
Therefore, combining (I.2), (T:3), (T:4), and (T.3) with (1)), gives
TVZ2(IER(P™)®™ IER(Q™)®™) < HY(IER(P™)®™ IER(Q™)®™) < mn?§ < 1,

by choosing any 0 < § < m1n2 . Since the construction of P(™) above, attains the maximum possible

value of the zero-norm, this shows that all tests are asymptotically powerless, for any Q™ and & > 0.

2  Proof of Theorem

In the section we prove Theorem[2.2] which derives the optimal sample complexity for goodness-of-fit
testing in the Frobenius norm. The proof of the upper bound is given below in Section 2.1} and the
lower bound is proved in Section[2.2]

2.1 Upper Bound: Proof of Theorem [2.2|(a)
Recall, from (2:1), the definition of the test statistic T, ,,:
T =Y | D (ai;(Ge) —aij) | | D (aij(Gs) — aij)
1<i<j<n \s<% s>

To begin with, note that E pn) (Th,, ) = ’%ZHP(") — Q™]|2.. We now compute the variance of
T

Lemma 2.1. Given G1,Gy, ..., Gy, i.i.d. samples from IER(P(™),

Varpn) (Trn,n) < m? Z (p?j(l —pij)? +2pi; (1 _pij)A?j) +m? Z pij(1—pij) A,
1<iAj<n 1<iZj<n

where Aij = Pij — 4ij-

Proof. By the independence of G1,Go,...,G,,,

Varpon) (Tnm) = Varpm ( (ai(Gs) —ai5) | | D (ai;(Gs) — ai5)
s<

1<i<j<n s>
= Y Varpw (ai(Gs) = 4i)(ai; (Gsr) — ai5)
1<i<j<n _sgg />0
_ (1) (2)
= > {Tij + T3 } @2.1)
1<i<j<n
where o
Ty =Y Y Varpe ((aiy(Gs) — ¢ij)(ai; (Gs) — aij)),
9<%s/ %
and
T =2 S Covpom (i (Ga)=ai) (@i (G )= i), (aij(Ga) ~ai;) (i (Gor) i)

s< B <s'#s"<m

Note that EP(n) (a,;j(Gs) — q’J) = AU and EP(n) (a,;j(Gs) — qij)2 = p7J(1 — pij) =+ AZQJ This
implies, for s # &',

Var pn ((aij (Gs) = i) (ai;(Gs) = ¢i5)) = Ep ((ai5(Gs) — 4i5)* (aij(Go) — qi5)%) — AL



=Epm (aij(Gs) — 4i)°Epm (a5 (G ) — qi5)* — A}
2
= (pij(1 = pij) + A?j) — (pij — aij)*
:pzz_](l _pij)Q +2pij( ng)AQ
This implies,
1
Z TZ(J ' =m? Z (pizj(l —pij)® + 2pi; (1 — pij)A?j)- 2.2)

1<i<j<n 1<i#j<n

Next, observe that
Cov pn) ((aij(Gs) - Qij)(aij (Gy) — Qij)a (aij(Gs) - qij)(aij (Ggr) — Qij))
=Epm ((ai(Gs) = 4i5))°Epm (ai(Gs) — qi)Epon (ai; (Gsr) — qi) — A
= (pij(1 = piy) + AF) AT — A
=pi;(1— pij)A?j'

This implies,
1<i<j<n 1<i#j<n
Combining (2.2)) and 23) with 2:I)), the lemma follows. O

This lemma can now be used to bound the worst-case risk (T.2) of ¢,,_,, as follows: Under the null
Hyp, A;; =0, forall 1 < 4,5 < n. Then the probability of Type I error is

VarQ(n)(Tm,n) < 2197&]'3” qu(l—qij)z < n2

~

Prty (T > 55°) S <1, @4

mied m2ed ~ m2et

whenever m > n/e2.
To compute the worst case Type II error, consider P("™) such that ||[P(™) — Q|| > ¢. Then

m?e® _ m?||[P" QM]3
16 8

2 2
IP)P(n) (Tm,n S m165 ) S IP)P(n) (Tm,n - E’P(”) (Tm,n)
(n) _(n)
< ]P)P(n) (Tm,n - EP(H) (Tm,n) < _M>

16
VarP(n) (Tm,,n)
S AP — QUL
m2||PM[3 +m® 30 e ig (1= pig) A
<itj<n Pij i) i
< AP — QUL (by Lemma[2.1)

m2||P(n) - Q(n)HZF + m2||Q(n)||2F +m? Zlgiy&jgnpijA?j

IN

< 2.5
. [P — QU e
Now, by the Cauchy-Schwarz inequality,
2
D ophh| S D vy D Al
1<i#j<n 1<i#j<n  1<i#j<n
S ([P™ = QUMIE + 1™ |[H)IP™ — Q|| (2.6)
Then using the bound above,
2
3 A2
(7 Srcinsenpil) 1 o le™IE
m8[[P) — QW[ m2[[Pt) — QUWI[E,  m?[| Pt — QM|
1 (n)||2
S 5t e 2 L| <1,
m2e mAe



(n) .
whenever m >> max{1, HQE#} Moreover, the first and second terms in (2:6) becomes

m QMR R L, mAIPM QW 1
m4||p(n),Q(n)H% = T n2el m4||P(n)7Q(n)H% = m222

<1, 2.7)

n
whenever m > max{Z, M}

o)
This implies, using @3), Pp) (Tn.n > %) < 1, whenever m > n/e? > max{%, WQE#}
(since e < m).

2.2 Lower Bound: Proof of Theorem 2.2](b)

Given a sequence of prior probability distribution 77(™) on the alternative H; (which corresponds
to the set of all symmetric matrices P("™ such that ||P(™) — Q()||r > &), the Bayes risk of a test
function ¢,, ,, is defined as

Ron( Q™ b |- 11, 7)) = Py (bmn = 1) + Epen) o) [Ppiny (b = 0)]. (2.8)
Note that for any prior 7("™) and any test function ®m . the worst case risk ((I.2))
Rin(@Q™, S, || - |7) = Rin (@™, S, || - |, 7). 2.9)
Moreover, denoting %,,, ,, the set of possible collections of m graphs on n vertices,
Rin( @™, dmns | 1y 7™) = inf {Pon (Smn = 1) + Epownin [P ($mn = 0)]}
> 1= sup |Poon (dmn = 1) = Epe wntn [Ppon (dmn = 1)]|

m,n

Z 1-— sup |PQ(W,)(A) — ]:EP(n)Nﬂ.(n) []Pp(n) (A)”

Aegm,,n
1 Epm) ont [Ppem) (w)] ‘

>1— = — 1Py (w
2 weg ‘ PQ(M (w) Q ( )

=1— 1B | Ly — 1|

>1- %\/ EHU (L:—(n)) - 17 (2.10)

EP(”) ~ar (1) [Pp(n) (W)]
PQ(H) (w)
Cauchy-Schwarz inequality.

where L (n) = is the 7(")-integrated likelihood ratio, and the last step uses the

Therefore, by (2.9) and (2.10), to show a test function ¢,, ,, is asymptotically powerless for (L)), it
suffices to prove Eg, (L2 ) < 1+ o(1). To show this we follow arguments similar those in [2],
where the analogous problem for two-sample testing was studied.

‘We will choose Q(”) to be the matrix corresponding to ER(n, %), thatis, ¢;; = %, forall1 <i <
j < n, and define 6;; = ”igﬁjF , and consider the prior (") as follows: Let

T%ij = Gij + 0ijVij,
where {v;;} are i.i.d. £1 with probability % (Note that qgj € [0,1],forall 1 <i < j <mn.) Let
S =" A(Gs), which is the sum of the adjacency matrices of the graphs G1,Ga, . .., Gy, Then

L. =E H (Qij + ’Yij(sij)Sij(l —qij — ’yijéij)m_Sij
oy = Ey

Sij —S.
1<i<j<n ;" (1 —qi5)m 50

where the expectation above is over the randomness of 4 = ((+;;)). This implies,

2
Ln(")



~ Sii m—Si,
=k II (g5 +7i50:5) (915 + 7i;95)) " (L= i3 = 7is0i) (1 — i — 7i5055)) ™ ™"
= Ly ey’ 5 — -
| 1<i<j<n 4 J (1 — qz.j)2 1 —28;
- .
— (1 — qi)%(qi5 + %ij0i5) (@ij + Vi;0i5) .
= E'ya'y’ H 2 5 IS K:ij (211)
1<i<j<n qij(l —qij — 7ij0ij) (L — qij — Yij ij)
 (1=qii—=i50i5) (1=qij =i ;045) .
where k;; = =g )? . Note that, under the null Hy, S;; ~ Bin(m,g;;), and
ij

Ep, A% = (1 — q;j + Agij)™, for any A € R. Using this and taking expectation over Hy, the RHS
of (2.11)) simplifies to

YijVii0Z; "
Eny(Lrw) =By | |1 <1 T ioa (2.12)
1<i<j<n dij ij

H : 1+L m+1 1 i "
1<icizn |2 i (1 = aij) 2 05 (1 — qiz)

1 m(szz 1 méf
= Sexpd b sexp{ -
1<E<n [2 {%(1 ~ 4ij) } 2 { ¢i5(1 — gij)
= H cosh (”) < exp Z 27132
1si<jsn 4 (1 = dig) V< 24 (1 = aig)

Now, recalling ¢;; = % forall 1 <1 < j < n, the RHS above simplifies to

m2et

EHO(L72T(")) S 66( n? ) S 1 +0(1)7

whenever m < n/e?.

3 Proof of Theorem

The upper bound follows by using the same test as in the Frobenius case, that is, reject Hy when
T m > %6m252, where T, ,, is as defined in (2.T). To see this, note that the probability of Type
I error is controlled as in (2.4). For the probability of Type II error, consider a P(") such that
||[P™) — Q™)||,, > e. This implies, ||[P(™) — QM) ||z > ||[P™ — Q™)||,, > ¢, and by combining

2

2:3), 2:6), and (2.7) it follows that P pn) (Tmm > mng) < 1, whenever m > n/e2.

For the lower bound, as in the case of the Frobenius norm, we choose Q™ = ((g;;)) to be the
edge-probability matrix of ER(n, %), that is, g;; = %, forall 1 <14 < j < n. Now, consider the prior
7(") as follows: Let P(") = ((p;;)) where

Dij = Gij + Vi,

where 71,72, . - ., Vn are i.i.d. +1 with probability % and 0 = —=5. Note that|| P(") — Q(™) llop =
Slyy" = Tlop = e
Now, by arguments identical to the proof to (2.12)),

Euy(Lao) =By | I (U+4vi7i7)0%)™
_1§i<j§n

<E - |exp 4mé? Z ’Yi’Yj’Yz{’Y;'
1<i<j<n




<Es [exp{4md® > iy o] (3.1)

1<i<j<n

where ¥; = v;v; and ¥ = (91,72, ..., 7») are i.i.d. £1 with probability % Denoting by S,, =
>, ¥, the RHS of (3:1), for n large enough, simplifies to,

]EH()(Li(n)) _ Eﬁ, |:e2m52(si—n):| < 62m52n <14+ 0(1)7

whenever m < n/e2, where the second inequality uses [2, Claim 3].

4 Proof of Theorem 3.1]

In this section we derive the asymptotic distribution of

Tm,n Zl§i<j§n Té;:gl)
Zm,n = = ;
\/VarQ(n) (Tmm) \/VarQ(n) (Tmm)
where .
T = (ai(Ge) — i) Y (ai;(Gs) = ai5)-
s< 2 s>
Recall that Ege) (Tn,n) = 0 and, from the proof of Lemma Var g (Tin,n)

mTZ > i<izj<n (1 = gij)?. To prove the asymptotic normality of Z,, , we invoke the Berry-
Essen theorem [[I]], which states that

1 .
sup |Pom) (Zimpn <2) —@(2)| S —————— = E (n>(|T15;’:$l)|3), 4.1
z€R ’ @ ’ VarQ<n) (Tm,n) 1S;§“ @

wlw

where ®(-) denotes the distribution function of the standard normal N (0, 1).

Note that
4 4
Equ (ITED) = Egen | D (ai(Gs) = ai) | Boen | D (ai;(Gs) — ai)
s< s>
2
< (mlgis (1 = gig)* + a5 (1 — aij)) + m°q; (1 — i;)?) "

Then, using the Cauchy-Schwarz inequality and Eg ) (|T,Sfj%) 1) = %qizj (1 —qi;)?, gives

Eqen (ITSDP) < \/Equ (15 2 Equn (1153 19)
S maii (1 — aig) {mai; (1= aij)* + @5 (1 — ai5)) + m*q (1 — ai;)*}
< m3q?j(1 —qi;)°

This implies,
B ——— (27.7) 3 < <
3 Z ]EQ(H) (‘Tm,n | ) ~ ~ (n) < 1,
Varge (Tmn)® 1<iGen \/E1§i<j§n g3 (1— g2~ 1™l

since, the assumption maxy<i<j<n ¢ij 2 1, implies Y-, ;i< a%(1 — ¢ij)? Z [[Q™|[3.. This
shows, under the conditions of Theorem@ the RHS of @) goEs to zero, that is, Z,,, ,, converges in
distribution to N'(0, 1) under Hy. Hence, the probability of Type-I error is Pgyn) (| Zmn| > 2a/2) =
2(1 — ®(zq/2)) + o(1) = a + o(1), as required in G.T).

To show consistency, note that

m?[|[P™ —QM[E _  m[[P™ —QW|FE _ m|lP™ - QM]}

A = )
Var g (Tin,n) \/Zlgi;ﬁjgn % (1 — gij)? Q™| r

> 1,



'V'L2
2| P QM3

v T and the probability of
Al n(n) (Lm,n

by the assumption in Theorem Therefore, 2z, /2 <

Type-II error becomes,

2
T —Epey(Trn m” || p(n) _ Q(n) 2
PQ(")(‘Z’NMTL' < ZQ/Z) < PQ(n) : Bl )( ’ ) < Za/2 -8 H ||F

Varg ) (Tm,n) Var g (Ton,n)

Tm,n - IE:P(n) (Tm,n) < _ %HP(H) - Q(n)”%‘

VarQ<n) (Tm,n) B A/ VarQ(n) (Tm,n)

VarQ(") (Tmm)
~ mA| [P — QM|[%
< m2||P(n)||% +m? Z1§i¢j§npijAsz
~ mA||P(m) — QM)||4
< m?(| P % 4+ m?[| P™) — QM |[3
- mA|| P — QM)||%
1P 1

= 2P — QW T ml[ Pt — QU5 4.2)

<Pom

by (2:3) and (2:6). For the first term above,

|P™][3 . Q™13 1
m?2[|[P() — QM| ~ m2||[PM) — QML m2||[P(M) — QM|[3,
(n) ]2 1
ol

m?|[P) — QM1 " m||QM)||p
(since m||P™ — QM2 > [|Q™)||r)
<1,

since m||P(™ — Q|| > [|Q™||r and m||Q™ || > ||Q™||F > 1 by assumption. The second
term in (2.6) goes to zero similarly. Therefore, the RHS of (#.2)) goes to zero, completing the proof

of (3:2).
5 Additional Simulations

We conclude with some additional simulations, comparing the performance of the different tests by
varying the number of vertices n of the graph (keeping the separation and sample size m fixed) in
Section %Td by varying the sample size (keeping the separation and the size n of the graph fixed)
in Section
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Figure 1: Empirical power of the different tests as a function of increasing graph size in (a) the Erdés-Rényi
model with m = 2, (b) the planted bisection model with m = 4.



5.1 Dependence on the Size of the Graph

Here, we fix the sample size m, and a reference edge-probability matrix Q™) (which corresponds
to the null) and another edge-probability matrix P(™ (which is at a fixed perturbation from Q(™)),
and consider samples G'1, G, . .., G, 1.i.d from IER(P(”)), for increasing values of n. The figures
below show the empirical power of the tests over 1000 iterations (calibrated either using the asymptotic
distribution or the parametric bootstrap at o = 0.05) as the size of the graph increases. We consider
the following three scenarios:

e In Figure a) the reference matrix Q™) corresponds to ER(n, 0.5) and the matrix P(")
corresponds to ER(n,0.59), and the power curve is shown as a function of increasing 7.
As in the case of increasing separation in Figure f[a), the Bootstrapped Edge Test
has the highest power, while the Asymptotic Frobenius Test and the Bootstrapped
Frobenius Test have slightly less but comparable power, while the Bootstrapped
Operator-Norm Test has the least power.

e In Figure b) the reference matrix Q™) corresponds to PB(n,0.6,0.4) and the matrix
P corresponds to PB(n, 0.59,0.41), and the power curve is shown as a function of in-
creasing n. Here, as expected, the Bootstrapped Edge Test is powerless. However, the
Asymptotic Frobenius Test,Bootstrapped Frobenius Test, and Bootstrapped
Operator-Norm Test all have power converging to 1 with increasing n. However, the
convergence to 1 is slower than in the Erdés-Rényi case.

Beta Model

.
(3

2 06 /
& )

0.4
0.2

50 75 100 200 300 400 500 600 700 800
Graph Size
——Bootstrap Frob. Bootstrap Edge Bootstrap Op. Asymp. Frob.

Figure 2: Empirical power of the different tests as a function of increasing graph size for a sample of m = 8
graphs in the 5-model.

e In Figure [2| the reference matrix Q™ corresponds to the 3-model P (n, 3), where 3 is
chosen uniformly from the surface of ball in R™ with radius 20, and P(") corresponds
to the S-model #(n, 3 + 0.02), and the power curve is shown as a function of increas-
ing n. Here, the Bootstrapped Edge Test has the highest power. The Asymptotic
Frobenius Test, Bootstrapped Frobenius Test, Bootstrapped Operator-Norm
Test all have similar performances with power converging to 1 around n = 300.

5.2 Dependence on Sample Size

To understand the dependence on sample size, we will fix the number of vertices n, a reference
edge-probability matrix Q™ (which corresponds to the null) and another edge-probability matrix
P (which is at a fixed perturbation from Q(™)), and consider the power of the different tests as a
function of the sample size m.

We expect the power of the tests to increase with sample size and the size of the graph. We illustrate
this for the planted bisection model in Figure [3, where the reference matrix Q™ corresponds to
PB(n, 0.6, 0.4) and the matrix P("™) corresponds to PB(n, 0.58,0.42). The plot in Figure(a) shows
the power of the Bootstrapped Frobenius Test and the plot in Figure[3](b) shows the power of
the Bootstrapped Operator-Norm Test, when the sample size m increases, for various values
of n. In both cases, as the size of graph n increases the power converges to power 1 faster. However,
the rate of increase is quicker for the Bootstrapped Operator-Norm Test.



Planted Bisection Model Planted Bisection Model

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 2 4 6 8 10 12
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Sample Complexity (m) Sample Complexity (m)
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(a) Bootstrapped Frobenius norm test (b) Bootstrapped Operator norm test

Figure 3: Empirical power of the two tests as a function of increasing separation sample size m for
various sizes n of the graph.
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