
Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

Supplementary Material: Confidence
Sets and Hypothesis Testing in a

Likelihood-Free Inference Setting

A. Algorithm for Simulating Labeled Sample
for Estimating Odds Ratios

Algorithm 3 provides details on how to create the train-
ing sample TB for estimating odds ratios. Out of the total
training sample size B, a proportion p is generated by the
stochastic forward simulator Fθ at different parameter val-
ues θ, while the remainder is sampled from a reference
distribution G.

Algorithm 3 Generate a labeled sample of size B for esti-
mating odds ratios
Require: stochastic forward simulator Fθ; reference distribution
G, proposal distribution rΘ over parameter space; training sample
size B; parameter p of Bernoulli distribution
Ensure: labeled training sample

1: Draw parameter values θ1, . . . , θB
iid∼ rΘ

2: Assign labels Y1, . . . , YB
iid∼ ∼ Ber(p)

3: for i = 1, . . . , B do
4: if Yi == 1 then
5: Draw sample from forward simulator, Xi ∼ Fθ
6: end if
7: if Yi == 0 then
8: Draw sample from reference distribution, Xi ∼ G
9: end if

10: end for
11: return TB = {θi,Xi, Yi}Bi=1

B. Algorithm for Constructing Confidence Set
for θ

Algorithm 4 summarizes the ACORE procedure for con-
structing confidence sets. First, we estimate parametrized
odds to compute the ACORE test statistic τ (Eq. 4). Then,
we compute a parametrized estimate of the critical values as
a conditional distribution function of τ . Finally, we compute
a confidence set for θ by the Neyman inversion technique
(Neyman, 1937).

C. Proofs
Proof of Proposition 3.1. If P̂(Y = 1|θ,x) = P(Y =

1|θ,x), then ÔR(x; θ0, θ1) = OR(x; θ0, θ1). By Bayes
rule and construction (Algorithm 3),

O(x; θ) :=
P(Y = 1|θ,x)

P(Y = 0|θ,x)
=

f(x|θ)p
g(x)(1− p)

.

Algorithm 4 Construct confidence set for θ with coefficient
γ = 1− α
Require: stochastic forward simulator Fθ; reference distribution
G; proposal distribution r over Θ; parameter p of Bernoulli distri-
bution; sample size B (for estimating odds ratios); sample size B′

(for estimating critical values); probabilistic classifier; observed
data D =

{
xobs

1 , . . . ,xobs
n

}
; α ∈ (0, 1)

Ensure: θ-values in confidence set

1: // Estimate odds ratios:
2: Generate labeled sample TB according to Algorithm 3
3: Apply probabilistic classifier to TB to learn class pos-

terior probabilities, P̂(Y = 1|θ,X), for all θ ∈ Θ and
X ∈ X

4: Let the estimated odds Ô(θ,X) = P̂(Y=1|θ,X)

P̂(Y=0|θ,X)

5: Let the estimated odds ratios ÔR(X; θ0, θ1) =
Ô(θ0,X)

Ô(θ1,X)
, for all θ1, θ2 ∈ Θ and X ∈ X

6: // Estimate the critical value for a test δθ0 that re-
jects θ = θ0 at significance level α:

7: Construct parametrized function Ĉθ0 := F̂−1
τ |θ0(α|θ0)

for θ0 ∈ Θ according to Algorithm 2
8: // Find parameter set for which the test δθ0 does not

reject θ = θ0:
9: ThetaGrid← grid of parameter values in Θ

10: ngrid ← length(ThetaGrid)
11: Set S ← ∅
12: for Theta0 ∈ ThetaGrid do
13: Cutoff← F̂−1

τ |θ0 (α | Theta0)
14: sumLogOR← array with length ngrid
15: for j = 1, . . . , ngrid do
16: Theta1← ThetaGrid[j]
17: sumLogOR[j] ←∑n

k=1 log
(
ÔR(xobs

k ;Theta0,Theta1)
)

18: end for
19: TauObs← min(sumLogOR))
20: if TauObs > Cutoff then
21: S ← S ∪ Theta0
22: end if
23: end for
24: return S

Thus, the odds ratio at θ0, θ1 ∈ Θ is given by

OR(x; θ0, θ1) =
f(x|θ0)

f(x|θ1)
,

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

and therefore

τ(D; Θ0) = sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

(
log ÔR(xobs

i ; θ0, θ1)
)

= sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
f(xobs

i |θ0)

f(xobs
i |θ1)

= sup
θ0∈Θ0

inf
θ1∈Θ

log

(
L(D; θ0)

L(D; θ1)

)
= Λ(D; Θ0).

Proof of Theorem 3.3. The union bound and Assump-
tion 3.2 imply that

sup
θ∈Θ0

sup
t∈R
|F̂B′(t|θ)− F (t|θ)| P−−−−−→

B′−→∞
0.

It follows that

sup
θ∈Θ0

|F̂−1
B′ (α|θ)− F−1(α|θ)| P−−−−−→

B′−→∞
0.

The result follows from the fact that

0 ≤ |CB,B′ − C∗B | = | sup
θ∈Θ0

F̂−1
B′ (α|θ)− sup

θ∈Θ0

F−1(α|θ)|

≤ sup
θ∈Θ0

|F̂−1
B′ (α|θ)− F−1(α|θ)|,

and thus
|CB,B′ − C∗B |

P−−−−−→
B′−→∞

0.

Lemma C.1. If (P̂(Y = 1|θ,X))θ∈Θ
P−−−−−→

B−→∞
(P(Y =

1|θ,X))θ∈Θ and |Θ| <∞, then

τ(D; Θ0)
P−−−−−→

B−→∞
sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)

Proof. For every θ0, θ1 ∈ Θ, it follows directly from the
properties of convergence in probability that

n∑
i=1

log
(
ÔR(Xobs

i ; θ0, θ1)
)

P−−−−−→
B−→∞

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)

The conclusion of the lemma follows from the continuous
mapping theorem.

Proof of Theorem 3.4. Lemma C.1 implies
that τB(D; Θ0) converges in distribution to
supθ0∈Θ0

infθ1∈Θ

∑n
i=1 log

(
OR(Xobs

i ; θ0, θ1)
)
. Now,

from Slutsky’s theorem,

τB(D; Θ0)− ĈB
Dist−−−−−→
B−→∞

sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)
− C∗.

It follows that

P
(
φ̂B,ĈB

(D) = 1|θ
)

= P
(
τB(D; Θ0)− ĈB ≤ 0|θ

)
−−−−−→
B−→∞

P
(

sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
OR(Xobs

i ; θ0, θ1)
)

− C∗ ≤ 0|θ
)

= P (φC∗(D) = 1|θ) ,

where the last equality follows from Proposition 3.1.

D. Toy Examples
This section provides details on the toy examples of Sec-
tion 4. We use the sklearn ecosystem (Pedregosa et al.,
2011) implementation of the following probabilistic classi-
fiers:

• multi-layer perceptron (MLP) with default parameters,
but no L2 regularization (α = 0);

• quadratic discriminant analysis (QDA) with default
parameters;

• nearest neighbors (NN) classifier, with number of
neighbors equal to the rounded square root of the num-
ber of data points available (as per Duda et al. (2001)).

Table 3 reports the observed coverage for the settings of
Tables 1 and 2. Critical values or C are estimated with quan-
tile gradient boosted trees (100 trees with maximum depth
equal to 3), a training sample sizeB

′
= 5000, observed data

D of sample size n = 10, nominal coverage of 90%, and
averaging over 100 repetitions. The table shows that we for
all cases achieve results in line with the nominal confidence
level.5

Our goodness-of-fit procedure shown in Figure 3 uses a
set T ′′

B′′
with size B

′′
= 250 (as defined in Section 3.3);

Figure 5 shows the goodness-of-fit plot for the Gaussian
mixture model example, where the coverage is estimated
via logistic regression and the critical values are estimated
via quantile gradient boosted trees. For the Poisson example

5The 95% CI of a binomial distribution with probability
p = 0.9 over 100 repetitions is in fact [0.84, 0.95]. This inter-
val includes the observed coverages listed in Table 3.

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

B Classifier Poisson Example GMM Example
Coverage Coverage

100
MLP 0.91 0.87
NN 0.91 0.91

QDA 0.90 0.88

500
MLP 0.91 0.91
NN 0.93 0.95

QDA 0.94 0.92

1000
MLP 0.91 0.92
NN 0.89 0.88

QDA 0.91 0.93

Table 3. Observed coverage of the toy examples in Tables 1 and
2. These values are consistent with what we would expect for 100
trials with a nominal confidence level of 90%; see text.

a training sample size of B′ = 500 seems to be enough
to achieve correct coverage, whereas the Gaussian mixture
model example requires B′ = 1000.

Next we compare our goodness-of-fit diagnostic with diag-
nostics obtained via standard Monte Carlo sampling. Fig-
ure 6 shows the MC coverage as a function of θ for the
Poisson example (left) and the Gaussian mixture model ex-
ample (right). In both cases 100 MC samples are drawn
at 100 parameter values chosen uniformly. The empirical
ACORE coverage is computed over the MC samples at each
chosen θ. This MC procedure is expensive: it uses a to-
tal of 10, 000 simulations, which is 40 times the number
used in our goodness-of-fit procedure. The observed cov-
erage of the Poisson example (Figure 6, left) indicates that
B′ = 500 is sufficient to achieve the nominal coverage of
90%. For the Gaussian mixture model example (Figure 6,
right), we detect undercoverage for very small values of θ.
This discrepancy is due to the fact that, at θ = 0, the mixture
collapses into a single Gaussian, structurally different from
the GMM at any other θ > 0 and closer to the N (0, 52)
reference distribution.

Our goodness-of-fit procedure is able to identify that the
actual coverage is far from the nominal coverage at small
values of θ, when the training sample size B′ for estimat-
ing C is too small. More specifically, Figure 5 shows a
noticeable tilt in the prediction bands for B′ = 100 and
500. However, as B′ increases, the estimation of critical
values becomes more precise and the estimated confidence
intervals pass our goodness-of-fit diagnostic at, for example,
B′ = 1000. Future studies will provide a more detailed ac-
count on how such boundary effects depend on the method
for estimating the coverage.

0.6

0.8

1.0 Coverage as Function of θ (GMM Example)

B'=100, Average Coverage=0.87

0.6

0.8

1.0

Es
tim

at
ed

 C
ov

er
ag

e

B'=500, Average Coverage=0.86

0 2 4 6 8
θ

0.6

0.8

1.0

B'=1000, Average Coverage=0.90

Figure 5. Estimated coverage as a function of θ in the Gaussian
mixture model example for ACORE with different values of B′.
Logistic regression is used to estimate mean coverage and one
standard deviation prediction bands. (We here use n = 10, a MLP
classifier with B = 1000 and quantile gradient boosted trees).

E. Signal Detection in High Energy Physics
Here we consider the signal detection example in Section 5
We describe the details of the construction of ACORE con-
fidence sets which used the strategy in Section 5 to choose
ACORE components and parameters. For learning the odds
ratio, we compared the following classifiers:

• logistic regression,

• quadratic discimininant analysis (QDA) classifier,

• nearest neighbor classifier,

• gradient boosted trees using {100, 500, 1000} trees
with maximum depth {3, 5, 10},
• Gaussian process classifiers6 with radial basis func-

tions kernels with variance {1, .5, .1},
• feed-forward deep neural networks, with 2, ..., 6 deep

layers, number of neurons between 2{4,...,10} and either
ReLu or hyperbolic tangent activations.

For estimating the critical values, we considered the follow-
ing quantile regression algorithms:

• gradient boosted trees using {100, 250, 500} trees with
maximum depth {3, 5, 10},

• random forest quantile regression with {100, 250, 500}
trees,

• deep quantile regression with {2, 3} deep layers,
2{4,..,6} neurons and ReLu activations (using the
PyTorch implementation (Paszke et al., 2019)).

All computations were performed on 8-Core Intel Xeon
CPUs X5680 at 3.33GHz.

6GP classifiers were used only with sample sizes B below
10, 000, as the matrix inversion quickly becomes computationally
infeasible for larger values of B.

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
θ

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 C
ov

er
ag

e
Observed MC Coverage as Function of θ (Poisson Example)

B=100, Average Coverage=0.85
B=500, Average Coverage=0.88
B=1000, Average Coverage=0.89

0 2 4 6 8 10
θ

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 C
ov

er
ag

e

Observed MC Coverage as Function of θ (GMM Example)

B=100, Average Coverage=0.86
B=500, Average Coverage=0.88
B=1000, Average Coverage=0.90

Figure 6. Observed ACORE coverage across the parameter space for the Poisson example (left) and the Gaussian mixture model example
(right). The coverage is computed with Monte Carlo samples of size 100, each sampled at a θ chosen uniformly over the parameter space.
Odds ratios are computed with a QDA classifier for the Poisson example, and an MLP classifier for the GMM example (as in Figures 3
and 5). We observe undercoverage at small θ for the GMM (right) due to the mixture collapsing into a single Gaussian as θ → 0.

Figure 7 illustrates the two steps in identifying the four
components of ACORE. We first use a validation set of 5, 000
simulations to determine which probabilistic classifier and
training sample size B minimize the cross entropy loss.
Figure 7 (left) shows the cross entropy loss of the best four
classifiers as function of B. The minimum is achieved by a
5-layer deep neural network (DNN) at B = 100, 000 with
a cross entropy loss of 58.509 × 10−2, closely followed
by QDA with 58.512 × 10−2 at B = 50, 000. Given how
similar the loss values are, we select both classifiers to
follow-up on. In Figure 7 (right), the “estimated correct
coverage” represents the proportion of the parameter space
that passes our diagnostic procedure. The lowest B′ with
correct coverage is achieved by the five-layer DNN classifier
(for estimating odds ratios) at B′ = 25, 000 with critical
values estimated via a two-layer deep quantile regression
algorithm. None of the quantile regression algorithms pass
a diagnostic test with a nominal coverage of 90% at the one
standard deviation level when using the QDA classifier. We
therefore do not use QDA in Section 5.

Based on the analysis above, we choose the following
ACORE components: (i) a five-layer DNN for learning
odds ratios, (ii) B = 100, 000, (iii) a two-layer deep
quantile regression for estimating critical values, and (iv)
B′ = 25, 000. Figure 4 shows the confidence sets computed
with this choice.

F. Cross Entropy Loss Analysis
In this work, we use the cross entropy loss to measure
the accuracy of the probabilistic predictions of the clas-
sifier. That is, we calibrate the estimated odds function
g(θ,x) := P̂(Y = 1|θ,x)/P̂(Y = 0|θ,x) as follows:
Consider a sample point {θ,x, y} generated according to
Algorithm 3. Let p be a Ber(y) distribution, and q be a
Ber

(
P̂(Y = 1|θ,x)

)
= Ber

(
g(θ,x)

1+g(θ,x)

)
distribution. The

cross entropy between p and q is given by

LCE(g; {θ,x, y}) = −y log

(
g(θ,x)

1 + g(θ,x)

)
− (1− y) log

(
1

1 + g(θ,x)

)
= −y log (g(θ,x)) + log (1 + g(θ,x)) .

For every x and θ, the expected cross entropy
E[LCE(g; {θ,x, Y })] is minimized by g(θ,x) = O(θ,x).
Thus we can measure the performance of an estimator g of
the odds by the risk

RCE(g) = E[LCE(g; {θ,X, Y })].

The cross entropy loss is not the only loss function that is
minimized by the true odds function, but it is usually easy to
compute in practice. It is also well known that minimizing
the cross entropy loss between the estimated distribution q
and the true distribution p during training is equivalent to
minimizing the Kullback-Leibler (KL) divergence between
the two distributions, as

KL(p||q) = H(p, q)−H(p),

where H(p, q) is the cross entropy and H(p) is the entropy
of the true distribution. By Gibbs’ inequality (MacKay,
2002), we have that KL(p||q) ≥ 0; hence the entropy H(p)
of the true distribution lower bounds the cross entropy with
the minimum achieved when p = q. Hence, we can connect
the cross entropy loss to the ACORE statistic.

Proposition F.1. If the probabilistic classifier in ACORE
achieves the minimum of the cross entropy loss, then the
constructed ACORE statistic (4) is equal to the likelihood
ratio statistic (3).

Proof of Prop F.1. The proof follows from Proposition 3.1
and the expected cross entropy loss is minimized if and only
if Ô(θ,x) = O(θ,x).

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

102 103 104 105

Training Sample Size B

100

5 × 10−1

6 × 10−1

7 × 10−1

8 × 10−1

9 × 10−1

Cr
os

s E
nt

ro
py

 L
os

s
Cross Entropy Loss as Function of B

QDA
Gradient boosted trees
3-layers deep NN
5-layers deep NN

103 104 105

Training Sample Size B' for Estimating Critical Values

0

20

40

60

80

100

Es
tim

at
ed

 C
or

re
ct

 C
ov

er
ag

e
[%

]

Estimated Correct Coverage Across (ν, b) as Function of B'

QDA
5-layers deep NN

Figure 7. Using the strategy in Section 5 to choose ACORE components for the signal detection example. Left: The cross entropy loss
of the best four classifiers, shown as a function of B. In order of increasing loss: 5-layer DNN ([512, 256, 64, 32, 32] neurons, ReLu
activations), QDA classifier, 3-layer DNN ([64, 32, 32] neurons, ReLu activations) and gradient boosted trees (1000 trees with maximum
depth 5). Because the first two classifiers (the 5-layer DNN and QDA) achieve a very similar minimum loss, we consider both classifiers
in the follow-up step. Right: Proportion of the (ν, b) parameter space where the best two classifiers pass our goodness-of-fit procedure
with a nominal coverage of 90%. Both the mean value curves and the ± one standard deviation prediction bands are computed via logistic
regression. Critical values are estimated via a two-layer deep quantile regression ([64,64] neurons, ReLu activations), which passed the
diagnostic at the lowest sample size (B′ = 25, 000, with the 5-layers DNN). Based on the results, we choose the 5-layer DNN with
B′ = 25, 000.

In addition, we show that the convergence of the class pos-
terior implies the convergence of the cross entropy to the
entropy of the true distribution. This supports our decision
to use the cross entropy loss when selecting the probabilistic
classifier and sample size B.

Lemma F.2. If for every θ ∈ Θ

q := P̂(Y = 1|θ,X)
P−−−−−→

B−→∞
p := P(Y = 1|θ,X),

then H(p, q)
P−−−−−→

B−→∞
H(p).

Proof of Lemma F.2. We can rewrite the cross entropy
H(p, q) and entropy H(p) as

H(p, q) = −
∑

y∈{0,1}

∫
X×Θ

p log (q) dP(x, θ),

H(p) = −
∑

y∈{0,1}

∫
X×Θ

p log (p) dP(x, θ).

In addition, for any (X, θ), it also holds that |q| ≤ 1. The
lemma follows by combining the dominated convergence
theorem with the continuous mapping theorem for the loga-
rithm.

G. Comparison with Monte Carlo Synthetic
Likelihood-Based Methods

In this section we compare the performance of ACORE
with Monte-Carlo (MC) synthetic likelihood-based methods,
more specifically Gaussian process (GP) interpolation (Frate
et al., 2017). The latter method first simulates multiple sam-
ple points for a few different values of θ. For each fixed θ,

one fits a Gaussian synthetic likelihood function. The GP
likelihood model is then used to smoothly interpolate across
the parameter space by fitting a mean function m(θ) and a
covariance function Σ(θ). As a note, Cranmer et al. (2019)
point out that such MC methods are less efficient than meth-
ods that estimate the likelihood ratio directly because of the
need to first estimate the entire likelihood.

For our comparison, we use the two toy examples described
in Section 4 and Table 1. To allocate B sample points for
the GP interpolation, we use the following strategy: For
q ∈ {5, 10, 25}, first choose θ1, ..., θq on an evenly spaced
grid across the parameter space. Then, generate N = B/q
sample points X1, ...,XN at each location θ.

Table 4 summarizes the results. Unlike Table 2, we do not re-
port the cross-entropy loss because GP interpolation is not a
classification algorithm; instead we report the mean squared
error in estimating the likelihood ratio across the parameter
space. Our results show that when the simulated data at each
θ are approximately Gaussian, as in the Poisson example,
MC-based GP interpolation provides a better approximation
of the likelihood ratio due to its parametric assumptions.
However, when the parametric assumptions are not valid, as
in the GMM example, MC-based GP fails to approximate
the likelihood ratio regardless of how large N or B are. In
such settings, we do better with a fully nonparametric ap-
proach. As a note, MC-based GP uses the asymptotic χ2

approximation by Wilks’ theorem to determine the critical
values of the confidence sets. In our experiments, using
quantile regression for critical values instead (as in ACORE)
led to a significant increase in power for the GP likelihood
models: from ≈ 0.48 to ≈ 0.51 for the Poisson example,
and from ≈ 0.02 to ≈ 0.2 for the GMM example.

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

Poisson Example
B Classifier 90 % Mean Squared Average Size of

Error Interval Power Confidence Set [%]

100

MLP [2.14, 989.78] 0.27 72.8 ± 16.4
NN [4.14, 4074.65] 0.25 75.6 ± 23.2

QDA [0.41, 34.79] 0.41 60.1 ± 14.9
G.P. (5) [0.05, 4.09] 0.47 53.5 ± 9.2
G.P. (10) [0.06, 4.97] 0.48 53.2 ± 10.7
G.P. (25) [0.03, 6.54] 0.48 53.2 ± 10.8

500

MLP [0.86, 22.45] 0.38 62.2 ± 19.1
NN [1.95, 32.78] 0.37 64.2 ± 17.3

QDA [0.08, 6.95] 0.45 55.5 ± 10.8
G.P. (5) [0.01, 0.81] 0.49 52.4 ± 5.6
G.P. (10) [0.02, 0.85] 0.49 52.0 ± 5.4
G.P. (25) [0.01, 1.12] 0.48 52.5 ± 6.0

1,000

MLP [0.81, 21.44] 0.42 58.8 ± 17.0
NN [1.77, 17.88] 0.45 56.1 ± 16.2

QDA [0.06, 2.83] 0.49 52.1 ± 9.0
G.P. (5) [0.01, 0.48] 0.49 52.3 ± 5.0
G.P. (10) [0.01, 0.46] 0.48 52.5 ± 5.3
G.P. (25) [0.01, 0.45] 0.48 52.6 ± 5.5

- Exact - 0.54 45.0 ± 4.9

GMM Example
B Classifier 90 % Mean Squared Average Size of

Error Interval (×103) Power Confidence Set [%]

100

MLP [0.34, 1.46] 0.87 14.5 ± 4.5
NN [1.33, 11.77] 0.49 52.1 ± 24.7

QDA [2.88, 3.56] 0.16 84.0 ± 21.8
G.P. (5) [3.35, 3.82] 0.02 97.7 ± 8.8

G.P. (10) [3.34, 3.82] 0.03 96.9 ± 9.5
G.P. (25) [3.36, 3.82] 0.02 98.2 ± 6.1

500

MLP [0.44, 1.35] 0.90 12.1 ± 2.8
NN [0.99, 2.65] 0.57 44.0 ± 23.3

QDA [3.14, 3.73] 0.16 83.8 ± 22.2
G.P. (5) [3.39, 3.83] 0.00 100.0 ± 0.0

G.P. (10) [3.39, 3.83] 0.01 99.1 ± 5.5
G.P. (25) [3.38, 3.83] 0.00 99.8 ± 1.5

1,000

MLP [0.53, 1.17] 0.90 12.1 ± 2.8
NN [0.57, 2.04] 0.71 30.2 ± 18.5

QDA [3.26, 3.94] 0.14 85.7 ± 20.1
G.P. (5) [3.39, 3.98] 0.00 100.0 ± 0.0

G.P. (10) [3.39, 3.98] 0.00 100.0 ± 0.0
G.P. (25) [3.39, 3.98] 0.00 99.9 ± 1.2

- Exact - 0.92 9.5 ± 2.0

Table 4. Results for ACORE (MLP, NN, QDA) and Gaussian Process interpolation (GP for q = 5, 10, 25; see text) for the two toy
examples, Poisson example (left) and GMM example (right), of Section 4. The tables list the mean squared error (MSE) between the
estimated and true likelihood, the power (averaged over θ) and the size of confidence sets, for different values of B and for different
classifiers. We report a 90% confidence interval for the MSE, together with the mean and standard deviation of the size of the estimated
90% confidence set for θ. Best results for each training sample size B are marked in bold-faced. All fitted classifiers produce valid 90%
confidence sets for θ according to our diagnostics.

H. Comparison with Calibrated Approximate
Ratio of Likelihood Classifiers

In this section we compare the performance of ACORE with
the calibrated approximate ratio of likelihood (CARL) es-
timator by Cranmer et al. (2015). CARL approximates the
likelihood ratio Λ(D; Θ0) = L(D; θ0)/L(D; θ1) by turn-
ing the density ratio estimation into a supervised classifica-
tion problem, where a probabilistic classifier is trained to
separate samples from Fθ0 and Fθ1 . As such, CARL classi-
fiers are “doubly parameterized” by θ0 and θ1, whereas the
ACORE classifier is parameterized by a single parameter θ
in the definition of the odds of Fθ versus G.

In our study, we include three different CARL classifiers,
implemented with the MADMINER neural network-based
software (Brehmer et al., 2020a; 2019): (a) a shallow per-
ceptron with 100 neurons (equivalent to the MLP used in
Section 4), (b) a 2-layer deep network with 20 neurons per
layer, and (c) a 2-layer deep network with 20 and 50 neurons
in the two layers respectively.7 To allocate B sample points
for interpolation we devised two schemes: (i) a uniform
sampling, and (ii) a Monte Carlo sampling over the parame-
ter space. For (i), we uniformly sample B parameters and
then generate a sample point X at each parameter value. For

7Changing the number of neurons per layers did not seem to
provide a significant difference in performance for the 2-layer
deep networks. Number of epochs and learning rate were manu-
ally tuned (with a search in the range [20, 200] and 10{−6,...,−2}

respectively).

(ii), we first select evenly spaced parameters θ0,1, ..., θ0,q

and θ1,1..., θ1,q, for the numerator and the denominator re-
spectively. We set q ∈ {10, 20, 30}, resulting in N = B/q
sample points X1, ...,XN at each θ location. Because the
χ2 approximation by Wilks’ theorem did not yield valid
confidence sets for CARL classifiers, we computed critical
values as in ACORE Algorithm 1.

Table 5 shows the results of ACORE and CARL for the syn-
thetic data in Section 4 and Table 1. For both the Poisson
and GMM examples, CARL classifiers yield a higher mean
squared error in estimating the likelihood ratio, as well as
lower power and larger confidence intervals.

I. Runtime Analysis
In this section we provide a runtime analysis for constructing
one ACORE confidence set for the two examples in Section 4
and Table 2. We also provide a running time comparison
with the two methods described in Sections G and H. This
analysis was performed on a 8-Core Intel Xeon 3.33GHz
X5680 CPU.

The procedure for constructing confidence sets with ACORE
is outlined in Algorithm 4. In this analysis we break the
computation into 4 steps: (i) odds ratio training as described
by Algorithm 3, (ii) computing the test statistic (4) for the
observed data, (iii) computing the test statistic (4) in the B

′

sample as described by Algorithm 2 and (iv) quantile regres-
sion algorithm training. Table 6 summarizes our running

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

Poisson Example
B Classifier 90 % Mean Squared Average Size of

Error Interval Power Confidence Set [%]

200

MLP [3.25, 1305.45] 0.17 82.7 ± 15.0
NN [2.88, 185.47] 0.34 66.9 ± 20.7

QDA [0.20, 25.16] 0.45 55.8 ± 13.2
MLP (MC) [2.51, 38.10] 0.24 76.1 ± 21.3

(20,20) DNN (MC) [2.53, 25.41] 0.19 80.9 ± 17.8
(50,20) DNN (MC) [2.76, 26.00] 0.19 81.3 ± 17.8

MLP (U) [2.03, 45.19] 0.19 81.3 ± 19.2
(20,20) DNN (U) [2.95, 19.76] 0.24 76.6 ± 19.8
(50,20) DNN (U) [2.43, 18.72] 0.23 77.8 ± 20.1

800

MLP [1.69, 450.81] 0.27 73.0 ± 20.1
NN [1.47, 19.32] 0.42 59.2 ± 15.9

QDA [0.04, 5.03] 0.49 52.0 ± 9.3
MLP (MC) [2.38, 24.50] 0.22 78.5 ± 21.0

(20,20) DNN (MC) [2.49, 21.49] 0.25 75.3 ± 18.8
(50,20) DNN (MC) [2.52, 18.13] 0.23 76.9 ± 20.1

MLP (U) [2.04, 23.24] 0.20 79.9 ± 17.4
(20,20) DNN (U) [2.48, 17.36] 0.22 77.9 ± 17.6
(50,20) DNN (U) [2.25, 17.87] 0.21 78.9 ± 20.0

1,800

MLP [0.81, 19.11] 0.37 63.7 ± 21.1
NN [1.09, 11.27] 0.44 56.9 ± 14.3

QDA [0.03, 1.60] 0.50 51.0 ± 6.6
MLP (MC) [2.13, 35.39] 0.18 82.4 ± 17.7

(20,20) DNN (MC) [2.74, 28.15] 0.20 80.3 ± 19.7
(50,20) DNN (MC) [2.62, 28.15] 0.18 81.9 ± 19.5

MLP (U) [2.15, 25.51] 0.19 81.4 ± 19.8
(20,20) DNN (U) [2.34, 15.93] 0.23 77.0 ± 22.6
(50,20) DNN (U) [2.38, 17.97] 0.19 81.6 ± 17.2

- Exact - 0.54 45.0 ± 4.9

GMM Example
B Classifier 90 % Mean Squared Average Size of

Error Interval (×103) Power Confidence Set [%]

200

MLP [0.56, 1.69] 0.88 14.2 ± 8.2
NN [1.13, 4.17] 0.50 51.5 ± 24.8

QDA [3.05, 3.63] 0.12 87.6 ± 19.7
MLP (MC) [3.03, 3.61] 0.27 73.5 ± 20.5

(20,20) DNN (MC) [3.13, 3.70] 0.25 75.6 ± 20.0
(50,20) DNN (MC) [3.16, 3.67] 0.28 72.8 ± 19.6

MLP (U) [3.01, 3.72] 0.30 70.2 ± 21.2
(20,20) DNN (U) [3.18, 3.87] 0.24 76.3 ± 21.5
(50,20) DNN (U) [3.12, 3.92] 0.27 73.0 ± 21.2

800

MLP [0.89, 1.59] 0.90 12.1 ± 2.5
NN [0.78, 2.31] 0.69 32.0 ± 18.9

QDA [3.23, 3.66] 0.14 86.1 ± 20.4
MLP (MC) [3.02, 3.58] 0.30 70.8 ± 20.4

(20,20) DNN (MC) [3.10, 3.63] 0.27 73.6 ± 20.2
(50,20) DNN (MC) [3.03, 3.47] 0.30 70.5 ± 18.5

MLP (U) [3.01, 3.62] 0.26 74.7 ± 20.6
(20,20) DNN (U) [3.12, 3.64] 0.26 74.4 ± 19.2
(50,20) DNN (U) [3.00, 3.56] 0.29 71.8 ± 19.9

1,800

MLP [0.33, 1.55] 0.90 11.5 ± 2.6
NN [0.32, 1.57] 0.83 19.3 ± 10.3

QDA [3.29, 3.81] 0.16 83.7 ± 22.2
MLP (MC) [2.99, 3.54] 0.33 67.5 ± 19.6

(20,20) DNN (MC) [3.02, 3.54] 0.31 69.7 ± 19.3
(50,20) DNN (MC) [2.95, 3.51] 0.38 63.1 ± 15.9

MLP (U) [2.99, 3.45] 0.33 67.7 ± 17.0
(20,20) DNN (U) [3.02, 3.56] 0.33 67.3 ± 18.0
(50,20) DNN (U) [2.98, 3.41] 0.38 63.1 ± 15.3

- Exact - 0.92 9.5 ± 2.0

Table 5. Results for ACORE (MLP, NN, QDA) and CARL or uniform (U) and Monte-Carlo (MC) sampling schemes in the Poisson
example (left) and GMM example (right) settings of Section 4. The tables list the mean squared error (MSE) between the estimated and
true likelihood, the power (averaged over θ) and the size of confidence sets, for different values of B and for different classifiers. We
report a 90% confidence interval for the MSE, together with the mean and standard deviation of the size of the estimated 90% confidence
set for θ. The best results for each training sample size B are marked in bold-faced.

times results. ACORE constructs one confidence set in less
than 20 and 30 seconds for Poisson and GMM examples
respectively. The main computational bottleneck is step (iii),
while the computation time of step (i) increases with the
sample size B.

Figure 8 shows the results of comparing confidence set con-
struction runtimes with MC GP and CARL classifiers. For
both the Poisson and the GMM examples, we only consider
the best performing ACORE classifiers, and the two CARL
classifiers with 20 hidden units in both layers. Results show
ACORE classifiers are comparable with GP interpolation in
terms of running times, while CARL classifiers tend to have
significantly longer runtimes.

Confidence Sets and Hypothesis Tests in a Likelihood-Free Inference Setting

Running Times to Generate a Confidence Set (Seconds) – Poisson Example
B Classifier Odds Ratio Odds Ratio Calculate (4) for Quantile Regression Total Running

Training Prediction B
′

Samples Training Time

100
MLP 0.38 ± 0.31 0.42 ± 0.10 10.40 ± 0.71 0.66 ± 0.28 11.86 ± 1.02
NN 0.03 ± 0.01 0.35 ± 0.12 9.83 ± 4.99 0.82 ± 0.67 11.02 ± 5.73

QDA 0.02 ± 0.01 0.18 ± 0.11 4.50 ± 2.65 0.58 ± 0.21 5.29 ± 2.96

500
MLP 1.62 ± 0.39 0.46 ± 0.04 11.49 ± 0.45 0.68 ± 0.09 14.26 ± 0.61
NN 0.13 ± 0.01 0.54 ± 0.03 13.28 ± 0.26 0.66 ± 0.04 14.60 ± 0.29

QDA 0.13 ± 0.01 0.16 ± 0.01 4.12 ± 0.09 0.65 ± 0.06 5.05 ± 0.14

1,000
MLP 2.65 ± 0.88 0.48 ± 0.08 11.93 ± 1.93 0.73 ± 0.06 15.79 ± 2.30
NN 0.24 ± 0.04 0.77 ± 0.21 17.90 ± 2.82 0.67 ± 0.10 19.59 ± 2.83

QDA 0.27 ± 0.08 0.17 ± 0.05 4.37 ± 1.02 0.64 ± 0.16 5.45 ± 1.29

Running Times to Generate a Confidence Set (Seconds) – GMM Example
B Classifier Odds Ratio Odds Ratio Calculate (4) for Quantile Regression Total Running

Training Prediction B
′

Samples Training Time

100
MLP 5.89 ± 1.66 0.45 ± 0.18 10.79 ± 2.06 0.60 ± 0.21 17.74 ± 3.92
NN 0.03 ± 0.00 0.29 ± 0.06 8.60 ± 2.84 0.61 ± 0.18 9.53 ± 3.05

QDA 0.03 ± 0.01 0.14 ± 0.04 3.81 ± 1.38 0.52 ± 0.14 4.50 ± 1.57

500
MLP 9.89 ± 1.34 0.43 ± 0.06 11.64 ± 0.64 0.69 ± 0.06 22.64 ± 1.83
NN 0.17 ± 0.01 0.52 ± 0.04 13.11 ± 0.79 0.63 ± 0.07 14.43 ± 0.85

QDA 0.16 ± 0.01 0.15 ± 0.02 4.05 ± 0.26 0.59 ± 0.08 4.94 ± 0.35

1,000
MLP 13.40 ± 2.60 0.47 ± 0.09 11.76 ± 0.79 0.68 ± 0.11 26.31 ± 3.36
NN 0.34 ± 0.09 0.70 ± 0.11 17.15 ± 1.90 0.71 ± 0.17 18.90 ± 2.06

QDA 0.32 ± 0.05 0.17 ± 0.05 4.75 ± 1.26 0.62 ± 0.07 5.87 ± 1.36

Table 6. Runtimes in seconds for constructing a confidence set with ACORE for the Poisson example (top) and GMM example (bottom).
The procedure for constructing confidence sets is outlined in Algorithm 4, and is split in 4 steps (see text). The rightmost column shows
total runtimes.

100 500 10000

5

10

15

20

25

30

35

40

45

To
ta

l R
un

ni
ng

 T
im

e
[s

]

ACORE and MC GP Running Times (Poisson Example)
QDA
G.P. (5)
G.P. (10)
G.P. (25)

100 500 10000

5

10

15

20

25

30

35

40

45ACORE and MC GP Running Times (GMM Example)
MLP
G.P. (5)
G.P. (10)
G.P. (25)

200 800 1800
Sample size B

0

50

100

150

200

250

300

350

To
ta

l R
un

ni
ng

 T
im

e
[s

]

ACORE and CARL Running Times (Poisson Example)
QDA
MLP (U)
MLP (MC)
(20, 20) DNN (U)
(20, 20) DNN (MC)

200 800 1800
Sample size B

0

50

100

150

200

250

300

350ACORE and CARL Running Times -- (GMM Example)
MLP
MLP (U)
MLP (MC)
(20, 20) DNN (U)
(20, 20) DNN (MC)

Figure 8. Runtimes in seconds for constructing a confidence set for the Poisson example (left panels) and GMM example (right panels).
The best ACORE classifier runtime is compared with Gaussian process interpolation (GP) for q = {5, 10, 25}, and the two smaller CARL
classifiers for both sampling schemes. See text for details. Confidence bars are built with a one standard deviation interval around the
mean.

