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Abstract

In narrow asymptotic settings Gaussian VAE mod-
els of continuous data have been shown to possess
global optima aligned with ground-truth distribu-
tions. Even so, it is well known that poor solutions
whereby the latent posterior collapses to an unin-
formative prior are sometimes obtained in prac-
tice. However, contrary to conventional wisdom
that largely assigns blame for this phenomena on
the undue influence of KL-divergence regulariza-
tion, we will argue that posterior collapse is, at
least in part, a direct consequence of bad local
minima inherent to the loss surface of deep au-
toencoder networks. In particular, we prove that
even small nonlinear perturbations of affine VAE
decoder models can produce such minima, and in
deeper models, analogous minima can force the
VAE to behave like an aggressive truncation oper-
ator, provably discarding information along all la-
tent dimensions in certain circumstances. Regard-
less, the underlying message here is not meant to
undercut valuable existing explanations of posteri-
or collapse, but rather, to refine the discussion and
elucidate alternative risk factors that may have
been previously underappreciated.

1. Introduction

The variational autoencoder (VAE) (Kingma & Welling,
2014; Rezende et al., 2014) represents a powerful generative
model of data points that are assumed to possess some
complex yet unknown latent structure. This assumption
is instantiated via the marginalized distribution py(x) =
| po(x|z)p(z)dz, which forms the basis of prevailing VAE
models. Here z € R" is a collection of unobservable latent
factors of variation that, when drawn from the prior p(z), are
colloquially said to generate an observed data point = € R?
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through the conditional distribution pg(x|z). The latter is
controlled by parameters 6 that can, at least conceptually
speaking, be optimized by maximum likelihood over py(x)
given available training examples.

In particular, assuming n observable points X =
[, ... ()], maximum likelihood estimation is tanta-
mount to minimizing the negative log-likelihood expres-
sion £ 3. —log [pg (z(V)]. Proceeding further, because
computing pg(x) generally entails the intractable marginal-
ization over z, the VAE instead minimizes a convenient
variational upper bound given by
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with equality iff g4(z|z@) = pg(2z|2?) for all 5. The
additional parameters ¢ govern the shape of the variational
distribution g4 (z|x) that is designed to approximate the true
but often intractable latent posterior py(z|x).

Y

+ KL | g4(=|2[p(2)] }

The VAE energy from (1) is composed of two terms, a
data-fitting loss that borrows the basic structure of an au-
toencoder (AE), and a KL-divergence-based regularization
factor. The former incentivizes assigning high probability
to latent codes z that facilitate accurate reconstructions of
each (V). In fact, if ¢4(2|z) is a Dirac delta function, this
term is exactly equivalent to a deterministic AE with data
reconstruction loss defined by — log pg (|z). Overall, it
is because of this association that g, (z|x) is generally re-
ferred to as the encoder distribution, while py (x|2) denotes
the decoder distribution. Additionally, the KL regularizer
KL [g4(z|x)||p(2)] pushes the encoder distribution towards
the prior without violating the variational bound.

For continuous data, which will be our primary focus herein,
it is typical to assume that

p(z) = N(z[0, ),
Po (x‘z) :N(w“l’xa’YI)a
ap (z|lz) = N(z|p., 22), 2)

where v > 0 is a scalar variance parameter, while the
Gaussian moments p, = pu, (2;0), p, = p, (x; ¢), and
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3. = diag[o . (x; ¢)]? are computed via feedforward neu-
ral network layers. The encoder network parameterized by
¢ takes x as an input and outputs g, and 3,. Similarly
the decoder network parameterized by 6 converts a latent
code z into p,. Given these assumptions, the generic VAE
objective from (1) can be refined to  L(0, ¢) =
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excluding an inconsequential factor of 1/2. This expression
can be optimized over using SGD and a simple reparam-
eterization strategy (Kingma & Welling, 2014; Rezende
et al., 2014) to produce parameter estimates {6*, *}. A-
mong other things, new samples approximating the train-
ing data can then be generated via the ancestral process
z"" ~ N(2]0, I) and ™Y ~ pg« (x| 2™").

Although it has been argued that global minima of (3) may
correspond with the optimal recovery of ground truth distri-
butions in certain asymptotic settings (Dai & Wipf, 2019),
it is well known that in practice, VAE models are at risk of
converging to degenerate solutions where, for example, it
may be that g4 (z|x) = p(z). This phenomena, commonly
referred to as VAE posterior collapse (He et al., 2019; Raza-
vi et al., 2019), has been acknowledged and analyzed from
a variety of different perspectives as we detail in Section 2.
That being said, we would argue that there remains lingering
ambiguity regarding the different types and respective caus-
es of posterior collapse. Consequently, Section 3 provides a
useful taxonomy that will serve to contextualize our main
technical contributions. These include the following:

e Building upon existing analysis of affine VAE decoder
models, in Section 4 we prove that even arbitrarily smal-
1 nonlinear activations can introduce suboptimal local
minima exhibiting posterior collapse.

e We demonstrate in Section 5 that if the encoder/decoder
networks are incapable of sufficiently reducing the VAE
reconstruction errors, even in a deterministic setting with
no KL-divergence regularizer, there will exist an implicit
lower bound on the optimal value of . Moreover, we
prove that if this vy is sufficiently large, the VAE will be-
have like an aggressive thresholding operator, enforcing
exact posterior collapse, i.e., g5 (2]z) = p(2).

e Based on these observations, we present experiments in
Section 6 establishing that as network depth/capacity is
increased, even for deterministic AE models with no reg-
ularization, reconstruction errors become worse. This

bounds the effective VAE trade-off parameter -« such that
posterior collapse is essentially inevitable. Collectively
then, we provide convincing evidence that posterior col-
lapse is, at least in certain settings, the fault of deep AE
local minima, and need not be exclusively a consequence
of usual suspects such as the KL-divergence term.

We conclude in Section 7 with practical take-home mes-
sages, and motivate the search for improved AE architec-
tures and training regimes that might be leveraged by analo-
gous VAE models.

2. Recent Work and the Usual Suspects for
Instigating Collapse

Posterior collapse under various guises is one of the most
frequently addressed topics related to VAE performance.
Depending on the context, arguably the most common and
seemingly transparent suspect for causing collapse is the
KL regularization factor that is obviously minimized by
g¢(zlx) = p(z). This perception has inspired various
countermeasures, including heuristic annealing of the K-
L penalty or KL warm-start (Bowman et al., 2015; Huang
et al., 2018; Sgnderby et al., 2016), tighter bounds on the
log-likelihood (Burda et al., 2015; Rezende & Mohamed,
2015), more complex priors (Bauer & Mnih, 2018; Tomczak
& Welling, 2018), modified decoder architectures (Cai et al.,
2017; Dieng et al., 2018; Yeung et al., 2017), or efforts to
explicitly disallow the prior from ever equaling the varia-
tional distribution (Razavi et al., 2019). Thus far though,
most published results do not indicate success generating
high-resolution images, and in the majority of cases, evalua-
tions are limited to small images and/or relatively shallow
networks. This suggests that there may be more nuance
involved in pinpointing the causes and potential remedies
of posterior collapse. One notable exception though is the
BIVA model from (Maalge et al., 2019), which employs a
bidirectional hierarchy of latent variables, in part to com-
bat posterior collapse. While improvements in NLL scores
have been demonstrated with BIVA using relatively deep
encoder/decoders, this model is significantly more complex
and difficult to analyze.

On the analysis side, there have been various efforts to ex-
plicitly characterize posterior collapse in restricted settings.
For example, Lucas et al. (2019) demonstrate that if ~y is
fixed to a sufficiently large value, then a VAE energy func-
tion with an affine decoder mean will have minima that
overprune latent dimensions. A related linearized approxi-
mation to the VAE objective is analyzed in (Rolinek et al.,
2019); however, collapsed latent dimensions are excluded
and it remains somewhat unclear how the surrogate objec-
tive relates to the original. Posterior collapse has also been
associated with data-dependent decoder covariance network-
s X, (2;0) # vI (Mattei & Frellsen, 2018), which allows
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for degenerate solutions assigning infinite density to a single
data point and a diffuse, collapsed density everywhere else.
Finally, from the perspective of training dynamics, (He et al.,
2019) argue that a lagging inference network can also lead
to posterior collapse.

3. Taxonomy of Posterior Collapse

Although there is now a vast literature on the various poten-
tial causes of posterior collapse, there remains ambiguity
as to exactly what this phenomena is referring to. In this
regard, we believe that it is critical to differentiate five subtle
yet quite distinct scenarios that could reasonably fall under
the generic rubric of posterior collapse:

(1) Latent dimensions of z that are not needed for provid-
ing good reconstructions of the training data are set
to the prior, meaning ¢, (z;|z) =~ p(z;) = N(0,1) at
any superfluous dimension j. Along other dimension-
s o2 will be near zero and p, will provide a usable
predictive signal leading to accurate reconstructions
of the training data. This case can actually be viewed
as a desirable form of selective posterior collapse that,
as argued in (Dai & Wipf, 2019), is a necessary (albeit
not sufficient) condition for generating good samples.

(i) The decoder variance y is not learned but fixed to a
large value' such that the KL term from (1) is over-
ly dominant, forcing most or all dimensions of z to
follow the prior A/(0, 1). In this scenario, the actual
global optimum of the VAE energy (conditioned on vy
being fixed) will lead to deleterious posterior collapse
and the model reconstructions of the training data
will be poor. In fact, even the original marginal log-
likelihood can potentially default to a trivial/useless
solution if ~ is fixed too large, assigning a small
marginal likelihood to the training data, provably so
in the affine case (Lucas et al., 2019).

(iii) As mentioned previously, if the Gaussian decoder co-
variance is learned as a separate network structure
(instead of simply X, (z;60) = ~I), there can exist
degenerate solutions that assign infinite density to a s-
ingle data point and a diffuse, isotropic Gaussian else-
where (Mattei & Frellsen, 2018). This implies that
(3) can be unbounded from below at what amounts to
a posterior collapsed solution and bad reconstructions
almost everywhere.”

(iv) When powerful non-Gaussian decoders are used, and
in particular those that can parameterize complex dis-

'Or equivalently, a KL scaling parameter such as used by the
[-VAE (Higgins et al., 2017) is set too large.

2As a side note, category (iii) posterior collapse can also be
reinterpreted as an extreme form of mode collapse, a phenomena
often ascribed to GAN models but that VAEs can also sometimes
experience (Richardson & Weiss, 2018).

tributions regardless of the value of 2z (e.g., Pixel CNN-
based (Van den Oord et al., 2016)), it is possible for
the VAE to assign high-probability to the training data
even if g4 (z|x) = p(z) (Alemi et al., 2017; Bowman
et al., 2015; Chen et al., 2016). This category of pos-
terior collapse is quite distinct from categories (ii)
and (iii) above in that, although the reconstructions
are similarly poor, the associated NLL scores can still
be good.

(v) The previous four categories of posterior collapse can
all be directly associated with emergent properties
of the VAE global minimum under various model-
ing conditions. In contrast, a fifth type of collapse
exists that is the explicit progeny of bad VAE local
minima. More specifically, as we will argue shortly,
when deeper encoder/decoder networks are used, the
risk of converging to bad, overregularized solutions
increases.

The remainder of this paper will primarily focus on category
(v), with brief mention of the other types for comparison
purposes where appropriate. Our rationale for this selec-
tion bias is that, unlike the others, category (i) collapse is
actually advantageous and hence need not be mitigated. In
contrast, while category (ii) is undesirable, it be can be
avoided by learning ~. As for category (iii), this represents
an unavoidable consequence of models with flexible decoder
covariances capable of detecting outliers (Dai et al., 2019).
In fact, even simpler inlier/outlier decomposition models
such as robust PCA are inevitably at risk for this phenome-
na (Candes et al., 2011). Regardless, when X, (x; 6) = ~I
this problem goes away. And finally, we do not address
category (iv) in depth simply because it is unrelated to the
canonical Gaussian VAE models of continuous data that we
have chosen to examine herein. Regardless, it is still worth-
while to explicitly differentiate these five types and bare
them in mind when considering attempts to both explain
and improve VAE models.

4. Insights from Simplified Cases

Because different categories of posterior collapse can be im-
pacted by different global/local minima structures, a useful
starting point is a restricted setting whereby we can compre-
hensively characterize all such minima. For this purpose,
we first consider a VAE model with the decoder network
set to an affine function. As is often assumed in practice,
we choose 3, = I, where v > 0 is a scalar parameter
within the parameter set 6. In contrast, for the mean function
we choose p, = W,z + b, for some weight matrix W,
and bias vector b,,. The encoder can be arbitrarily complex
(although the optimal structure can be shown to be affine as
well).
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Given these simplifications, and assuming the training data
has r > k nonzero singular values, it has been demonstrated
that at any global optima, the columns of W, will corre-
spond with the first s principal components of X provided
that we simultaneously learn v or set it to the optimal value
(which is available in closed form) (Dai et al., 2019; Lucas
et al., 2019; Tipping & Bishop, 1999). Additionally, it has
also be shown that no spurious, suboptimal local minima
will exist. Note also that if » < & the same basic conclu-
sions still apply; however, W, will only have r nonzero
columns, each corresponding with a different principal com-
ponent of the data. The unused latent dimensions will satisfy
qs(z|z) = N (0, I), which represents the canonical form
of the benign category (i) posterior collapse. Collectively,
these results imply that if we converge to any local minima
of the VAE energy, we will obtain the best possible linear
approximation to the data using a minimal number of latent
dimensions, and malignant posterior collapse is not an issue,
i.e., categories (ii)-(v) will not arise.

Even so, if instead of learning ~y, we choose a fixed value that
is larger than any of the significant singular values of X X T
then category (ii) posterior collapse can be inadvertently
introduced. More specifically, let 7, denote the number of
such singular values that are smaller than some fixed y value.
Then along x — 7, latent dimensions ¢, (z|z) = N(0, I),
and the corresponding columns of W, will be set to zero at
the global optima (conditioned on this fixed 7y), regardless of
whether or not these dimensions are necessary for accurately
reconstructing the data. And it has been argued that the risk
of this type of posterior collapse at a conditionally-optimal
global minimum will likely be inherited by deeper models as
well (Lucas et al., 2019), although learning y can ameliorate
this problem.

Of course when we move to more complex architectures,
the risk of bad local minima or other suboptimal stationary
points becomes a new potential concern, and it is not clear
that the affine case described above contributes to reliable,
predictive intuitions. To illustrate this point, we will now
demonstrate that the introduction of an arbitrarily small
nonlinearity can nonetheless produce a pernicious local min-
imum that exhibits category (v) posterior collapse. For this
purpose, we assume the decoder mean function

Hy = To (sz) + by, 4

with 7o (u) £ sign(u) (Ju] —a), , o > 0.

The function 7, is nothing more than a soft-threshold op-
erator as is commonly used in neural network architectures
designed to reflect unfolded iterative algorithms for repre-
sentation learning (Gregor & LeCun, 2010; Sprechmann
et al., 2015). In the present context though, we choose this
nonlinearity largely because it allows (4) to reflect arbitrar-
ily small perturbations away from a strictly affine model,
and indeed if & = 0 the exact affine model is recovered.

Collectively, these specifications lead to the parameteriza-
tion 0 = {W,,b,,7v}and ¢ = {u'”, o)} and energy
(excluding irrelevant scale factors and constants) given by
L(0,9) =
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where p;’ and o ) denote arbitrary encoder moments for
data point ¢ (this is consistent with the assumption of an
arbitrarily complex encoder as used in previous analysis of
affine decoder models). Now define 5 £ -1 3™ (|2 —z||3,
with £ % Do x(¥). We then have the following result (all
proofs are deferred to the supplementary file):
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Proposition 1 For any o > 0, there will always exist data
sets X such that (5) has a global minimum that perfectly
reconstructs the training data, but also a bad local minimum
characterized by

4s(z|2) = N'(2(0,I) and py(x) = N'(@|2,31). (6)

Hence the moment we allow for nonlinear (or more precise-
ly, non-affine) decoders there can exist a poor local min-
imum, across all parameters including a learnable -, that
exhibits category (v) posterior collapse.> In other words,
no predictive information about & passes through the latent
space, and a useless/non-informative distribution pg () e-
merges that is incapable of assigning high probability to the
data (except obviously in the trivial degenerate case where
all the data points are equal to the empirical mean ). We
will next investigate the degree to which such concerns can
influence behavior in arbitrarily deep architectures.

5. Extrapolating to Practical Deep
Architectures

Previously we have demonstrated the possibility of local
minima aligned with category (v) posterior collapse the mo-
ment we allow for decoders that deviate ever so slightly from
an affine model. But nuanced counterexamples designed for
proving technical results notwithstanding, it is reasonable
to examine what realistic factors are largely responsible for
leading optimization trajectories towards such potential bad
local solutions. For example, is it merely the strength of
the KL regularization term, and if so, why can we not just

3This result mirrors related efforts examining linear DNNs,
where it has been previously demonstrated that under certain con-
ditions, all local minima are globally optimal (Kawaguchi, 2016),
while small nonlinearities can induce bad local optima (Yun et al.,
2019). However, the loss surface of these models is complete-
ly different from a VAE, and hence we view Proposition 1 as a
complementary result.
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use KL warm-start to navigate around such points? In this
section we will elucidate a deceptively simple, alternative
risk factor that will be corroborated empirically in Section
6.

From the outset, we should mention that with deep en-
coder/decoder architectures commonly used in practice, a
stationary point can more-or-less always exist at solutions
exhibiting posterior collapse. As a representative and ubig-
uitous example, please see Section 4 of the supplementary
file. But of course without further details, this type of sta-
tionary point could conceivably manifest as a saddle point
(stable or unstable), a local maximum, or a local minimum.
For the strictly affine decoder model mentioned in Section
4, there will only be a harmless unstable saddle point at any
collapsed solution (the Hessian has negative eigenvalues).
In contrast, for the special nonlinear case elucidated via
Proposition 1 we can instead have a bad local minima. We
will now argue that as the depth of common feedforward
architectures increases, the risk of converging to category
(v)-like solutions with most or all latent dimensions stuck at
bad stationary points can also increase.

Somewhat orthogonal to existing explanations of posterior
collapse, our basis for this argument is not directly relat-
ed to the VAE KL-divergence term. Instead, we consider
a deceptively simple yet potentially influential alternative:
Unregularized, deterministic AE models can have bad local
solutions with high reconstruction errors when sufficiently
deep. This in turn can directly translate to category (v) pos-
terior collapse when training a corresponding VAE model
with a matching deep architecture. Moreover, to the extent
that this is true, KL warm-start or related countermeasures
will likely be ineffective in avoiding such suboptimal min-
ima. We will next examine these claims in greater depth
followed by a discussion of practical implications.

5.1. From Deeper Architectures to Inevitable Posterior
Collapse

Consider the deterministic AE model formed by compos-
ing the encoder mean p, = p, (+;0) and decoder mean
B, = ., (-;¢) networks from a VAE model, i.e., re-
constructions & are computed via & = p, [p, (x;¢) ;6]
We then train this AE to minimize the squared-error loss

2l Doiet Hw(i) -t
Analogously, the corresponding VAE trained to minimize

(3) arrives at a parameter set denoted {64, Pvae }- In this
scenario, it will typically follow that
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meaning that the deterministic AE reconstruction error will
generally be smaller than the stochastic VAE version. Note
that if o-f, — 0, the VAE defaults to the same deterministic
encoder as the AE and hence will have identical representa-
tional capacity; however, the KL regularization prevents this
from happening, and any o2 > 0 can only make the recon-
structions worse.* Likewise, the KL penalty factor || 2|2
can further restrict the effective capacity and increase the
reconstruction error of the training data. Beyond these in-
tuitive arguments, we have never empirically found a case
where (7) does not hold (see Section 6 for examples).

i 35} ®)

for any ¢ > 0. Now suppose that the chosen en-
coder/decoder architecture is such that with high prob-
ability, achievable optimization trajectories (e.g., via S-
GD or related) lead to parameters {0uc, Poe} ¢ S, i€,
Prob ({0ue, Pue} € Se) = 0. It then follows that the opti-
mal VAE noise variance denoted v*, when conditioned on
practically-achievable values for other network parameters,
will satisfy ~* =

‘We next define the set

S, & {9,¢ P> [+ -2
1=1
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The equality in (9) can be confirmed by simply differenti-
ating the VAE cost w.r.t. v and equating to zero, while the
inequality comes from (7) and the fact that {0,¢, ¢oc} & Se.

From inspection of the VAE energy from (3), it is readily
apparent that larger values of  will discount the data-fitting
term and therefore place greater emphasis on the KL di-
vergence. Since the latter is minimized when the latent
posterior equals the prior, we might expect that whenever
¢ and therefore * is increased per (9), we are at a greater
risk of nearing collapsed solutions. But the nature of this
approach is not at all transparent, and yet this subtlety has
important implications for understanding the VAE loss sur-
face in regions at risk of posterior collapse.

For example, one plausible hypothesis is that only as
v* — oo do we risk full category (v) collapse. If this
were the case, we might have less cause for alarm since the
reconstruction error and by association «v* will typically be
bounded from above at any local minimizer. However, we
will now demonstrate that even finite values can exactly col-
lapse the posterior. In formally showing this, it is helpful to
introduce a slightly narrower but nonetheless representative
class of VAE models.

“This is provably true in many simple cases, although in con-
trived adversarial conditions (outside of practical regimes of inter-
est) it is challenging to formally show that there are no possible
exceptions.
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Specifically, let f(p.,o.,0,20) =
Eq(ziz) [z — p, (2;0) [|3]. i.e., the VAE data term
evaluated at a single data point without the 1/~ scale factor.
We then define a well-behaved VAE as a model with energy
function (3) designed such that V,,_ f (p, 0,0, 2(?) and
Vo.f (p.,0-,0,x") are Lipschitz continuous gradients
for all ¢. Furthermore, we specify a non-degenerate decoder
as any p,(z;0 = 6) with 0 set to a 6 value such that
Vo.f (uz,az,é,m(i))
that can be arbitrarily small. This ensures that f is an
increasing function of o ., a quite natural stipulation given
that increasing the encoder variance will generally only
serve to corrupt the reconstruction, unless of course the
decoder is completely blocking the signal from the encoder.
In the latter degenerate situation, it would follow that
V/J‘zf (I‘sz Oz, 03 m(z)) = Vﬂzf (I‘sz Oz, 03 m(z)) = Ov
which is more-or-less tantamount to category (v) posterior
collapse.

> ¢ for some constant ¢ > 0

Based on these definitions, we now present the following:

Proposition 2 For any well-behaved VAE with arbitrary,
non-degenerate decoder p,(z;0 = é), there will always
exist a ' < oo such that the trivial solution p,(z;0 #
0) =  and q4(z|x) = p(z) will have lower cost.

Around any evaluation point, the sufficient condition we
applied to demonstrate posterior collapse (see proof details)
can also be achieved with some " < ~' if we allow for
partial collapse, i.e., go- (zj]2) = p(z;) along some but not
all latent dimensions j € {1, ..., x}. Overall, the analysis
loosely suggests that the number of dimensions vulnerable
to exact collapse will increase monotonically with .

Proposition 2 also provides evidence that the VAE behaves
like a strict thresholding operator, completely shutting off
latent dimensions using a finite value for . This is analo-
gous to the distinction between using the ¢ versus ¢ norm
for solving regularized regression problems of the standard
form ming ||z — Aul|3 + vn(u), where A is a design
matrix and 7 is a penalty function. When 7 is the £; norm,
some or all elements of u can be pruned to exactly zero
with a sufficiently large but finite v (Zhao & Yu, 2006). In
contrast, when the ¢» norm is applied, the coefficients will
be shrunk to smaller values but never pushed all the way to
zero unless 7 — o0.

5.2. Practical Implications

In aggregate then, if the AE base model displays unavoid-
ably high reconstruction errors, this implicitly constrains the
corresponding VAE model to have a large optimal ~y value,
which can potentially lead to undesirable posterior collapse
per Proposition 2. In Section 6 we will demonstrate empir-
ically that training unregularized AE models can become
increasingly difficult and prone to bad local minima (or at

least bad stable stationary points) as the depth increases;
and this difficulty can persist even with counter-measures
such as skip connections. Therefore, from this vantage point
we would argue that, although not previously emphasized
in the literature, the AE base architecture itself is effective-
ly a guilty party when it comes to category (v) posterior
collapse.

The perspective described above also helps to explain why
heuristics like KL warm-start are not always useful for im-
proving VAE performance. With the standard Gaussian
model (3) considered herein, KL warm-start amounts to
adopting a pre-defined schedule for incrementally increas-
ing ~y starting from a small initial value, the motivation being
that a small y will steer optimization trajectories away from
overregularized solutions and posterior collapse.

However, regardless of how arbitrarily small v may be fixed
at any point during this process, the VAE reconstructions
are not likely to be better than the analogous deterministic
AE (which is roughly equivalent to forcing v = 0 within the
present context). This implies that there can exist an implicit
~* as computed by (9) that can be significantly larger such
that, even if KL warm-start is used, the optimization trajec-
tory may well lead to a collapsed posterior stationary point
that has this v* as the optimal value in terms of minimizing
the VAE cost with other parameters fixed. Note that if full
posterior collapse does occur, the gradient from the KL term
will equal zero and hence, to be at a stationary point it must
be that the data term gradient is also zero. In such situations,
varying v manually will not impact the gradient balance
anyway.

6. Empirical Assessments

In this section we empirically demonstrate the existence
of bad AE local minima with high reconstruction errors at
increasing depth, as well as the association between these
bad minima and imminent VAE posterior collapse. For this
purpose, we first train fully connected AE and VAE models
with 1, 2, 4, 6, 8 and 10 hidden layers on the Fashion-
MNIST dataset (Xiao et al., 2017). Each hidden layer is
512-dimensional and followed by ReLU activations (see the
supplementary file for further details). The reconstruction
error is shown in Figure 1(fop) (see supplementary for re-
peated trials and error bars, as well as complementary FID
scores).

As the depth of the network increases, the reconstruction er-
ror of the AE model first decreases because of the increased
capacity. However, when the network becomes too deep, the
error starts to increase, indicating convergence to a bad local
minima (or at least stable stationary point/plateau) that is
unrelated to KL-divergence regularization. The reconstruc-
tion error of a VAE model is always worse than that of the
corresponding AE model as expected. Moreover, while KL
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warm-start/annealing can help to improve the VAE recon-
structions to some extent, performance is still worse than
the AE as expected.

We next train AE and VAE models using a more complex
convolutional network on Cifar100 data (Krizhevsky & Hin-
ton, 2009). At each spatial scale, we use 1 to 5 convolution
layers followed by ReLLU activations. We also apply 2 x 2
max pooling to downsample the feature maps to a smaller
spatial scale in the encoder and use a transposed convolution
layer to upscale the feature map in the decoder. The recon-
struction errors are shown in Figure 1(middle). Again, the
trend is similar to the fully-connected network results. See
the supplementary file for an additional ImageNet example.

It has been argued in the past that skip connections can
increase the mutual information between observations ()
and the inferred latent variables z (Dieng et al., 2018), re-
ducing the risk of posterior collapse. And it is well-known
that ResNet architectures based on skip connections can
improve performance on numerous recognition tasks (He
et al., 2016). To this end, we train a number of AE model-
s using ResNet-inspired encoder/decoder architectures on
multiple datasets including Cifar10, Cifar100, SVHN and
CelebA. Similar to the convolution network structure from
above, we use 1, 2, and 4 residual blocks within each spa-
tial scale. Inside each block, we apply 2 to 5 convolution
layers. For aggregate comparison purposes, we normalize
the reconstruction error obtained on each dataset by divid-
ing it with the corresponding error produced by the most
shallow network structure (1 residual block with 2 convolu-
tion layers). We then average the normalized reconstruction
errors over all four datasets. The average normalized er-
rors are shown in Figure 1(bottom), where we observe that
adding more convolution layers inside each residual block
can increase the reconstruction error when the network is
too deep. Moreover, adding more residual blocks can also
lead to higher reconstruction errors. And empirical results
obtained using different datasets and networks architectures,
beyond the conditions of Figure 1, also show a general trend
of increased reconstruction error once the effective depth is
sufficiently deep.

We emphasize that in all these models, as the network com-
plexity/depth increases, the simpler models are always con-
tained within the capacity of the larger ones. Therefore,
because the reconstruction error on the training data is be-
coming worse, it must be the case that the AE is becoming
stuck at bad local minima or plateaus. Again since the AE re-
construction error serves as a probable lower bound for that
of the VAE model, a deeper VAE model will likely suffer the
same problem, only exacerbated by the KL-divergence term
in the form of posterior collapse. This implies that there will
be more o, values moving closer to 1 as the VAE model
becomes deeper; similarly g, values will push towards 0.
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Figure 1. Reconstruction errors for various encoder/decoder mod-
els of varying complexity. Top: Fully connected networks with
different depths trained on Fashion-MNIST. Middle: Convolu-
tion networks with increasing depth/# of spatial scales trained on
Cifar100. Bottom: Averaged AE results from residual networks
with varying number of residual blocks and block depth trained
on SVHN, Cifar10, Cifar100 and CelebA. In all plots, once the
encoder/decoder complexity is sufficiently high, the reconstruction
errors begin to increase.

The corresponding dimensions will encode no information
and become completely useless.

To help corroborate this association between bad AE local
minima and VAE posterior collapse, we plot histograms of
VAE o, values as network depth is varied in Figure 2. The
models are trained on CelebA and the number of convolution
layers in each spatial scale is 2, 4 and 5 from top to bottom.
As the depth increases, the reconstruction error becomes
larger and there are more o, near 1.
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Figure 2. Histogram of o, values as VAE encoder/decoder net-
work depth is varied. There are 2, 4 and 5 convolution layers in
each spatial scale aligned from top to bottom in the figure. As
depth increases, the reconstruction error grows and more o . values
are near 1, indicative of impending posterior collapse.

7. Discussion

In this work we have emphasized the previously-
underappreciated role of bad local minima in trapping VAE
models at posterior collapsed solutions. Unlike affine de-
coder models whereby all local minima are provably global,
Proposition 1 stipulates that even infinitesimal nonlinear
perturbations can introduce suboptimal local minima char-
acterized by deleterious posterior collapse. Furthermore,
we have demonstrated that the risk of converging to such a
suboptimal minima increases with decoder depth. In partic-
ular, we outline the following practically-likely pathway to
posterior collapse:

1. Deeper AE architectures are essential for modeling high-
fidelity images or similar, and yet counter-intuitively,
increasing AE depth can actually produce larger recon-
struction errors on the training data because of bad local
minima (with or without skip connections). An analo-
gous VAE model with the same architecture will likely
produce even worse reconstructions because of the ad-
ditional KL regularization term, which is not designed
to steer optimization trajectories away from poor recon-
structions.

2. At any such bad local minima, the value of v will nec-
essarily be large, i.e., if it is not large, we cannot be at a
local minimum.

3. But because of the thresholding behavior of the VAE as
quantified by Proposition 2, as v becomes larger there
is an increased risk of exact posterior collapse along ex-
cessive latent dimensions. And complete collapse along
all dimensions will occur for some finite ~ sufficiently
large. Furthermore, explicitly forcing - to be small does
not fix this problem, since in some sense the implicit ~v*
is still large as discussed in Section 5.2.

While we believe that this message is interesting in and
of itself, there are nonetheless several practically-relevant
implications. For example, complex hierarchical VAEs like
BIVA notwithstanding, skip connections and KL warm-start
have modest ability to steer optimization trajectories towards
good solutions; however, this underappreciated limitation
will not generally manifest until networks are sufficiently
deep as we have considered. Fortunately, any advances
or insights gleaned from developing deeper unregularized
AEs, e.g., better AE architectures, training procedures, or
initializations (Li & Nguyen, 2019), could likely be adapted
to reduce the risk of posterior collapse in corresponding
VAE models.

In closing, we should also mention that, although this work
has focused on Gaussian VAE models, many of the insights
nonetheless translate into broader non-Gaussian regimes.
For example, a variety of recent VAE enhancements involve
replacing the posterior g4(z|x) and/or the fixed prior p(2)
with parameterized non-Gaussian alternatives, e.g., (Bauer
& Mnih, 2019; Burda et al., 2015; Tomczak & Welling,
2018; van den Berg et al., 2018). These types of modifica-
tion provide greater flexibility in modeling the aggregated
posterior in the latent space, which is useful for generating
better samples (Makhzani et al., 2016). However, it does not
immunize VAEs against the bad local minima introduced
by deep decoders, and good reconstructions are required by
models using Gaussian or non-Gaussian latent priors and
posteriors alike.

Note that to support this claim, we have rerun the exper-
iments from Figure 1(top) using two more flexible, non-
Gaussian VAE variants, namely, the importance weighted
autoencoder (IWAE) (Burda et al., 2015) and a VAE with
Sylvestor normalizing flows (van den Berg et al., 2018). In
both cases the basic trend is the same (please see the supple-
mentary), indicating that our analysis herein still applies in
much the same way outside of purely Gaussian VAE models
as expected.
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