
R2-B2: Recursive Reasoning-Based Bayesian Optimization for
No-Regret Learning in Games

Zhongxiang Dai 1 Yizhou Chen 1 Bryan Kian Hsiang Low 1 Patrick Jaillet 2 Teck-Hua Ho 3

Abstract
This paper presents a recursive reasoning for-
malism of Bayesian optimization (BO) to model
the reasoning process in the interactions between
boundedly rational, self-interested agents with
unknown, complex, and costly-to-evaluate pay-
off functions in repeated games, which we call
Recursive Reasoning-Based BO (R2-B2). Our
R2-B2 algorithm is general in that it does not con-
strain the relationship among the payoff functions
of different agents and can thus be applied to vari-
ous types of games such as constant-sum, general-
sum, and common-payoff games. We prove that
by reasoning at level 2 or more and at one level
higher than the other agents, our R2-B2 agent
can achieve faster asymptotic convergence to no
regret than that without utilizing recursive reason-
ing. We also propose a computationally cheaper
variant of R2-B2 called R2-B2-Lite at the expense
of a weaker convergence guarantee. The perfor-
mance and generality of our R2-B2 algorithm are
empirically demonstrated using synthetic games,
adversarial machine learning, and multi-agent re-
inforcement learning.

1. Introduction
Several fundamental machine learning tasks in the real
world involve intricate interactions between boundedly ra-
tional1, self-interested agents that can be modeled as a form
of repeated games with unknown, complex, and costly-to-
evaluate payoff functions for the agents. For example, in
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1Boundedly rational agents are subject to limited cognition and
time in making decisions (Gigerenzer & Selten, 2002).

adversarial machine learning (ML), the interactions between
the defender D and the attacker A of an ML model can be
modeled as a repeated game in which the payoffs to D and
A are the performance of the ML model (e.g., validation ac-
curacy) and its negation, respectively. Specifically, given a
fully trained image classification model (say, provided as an
online service), A attempts to fool the ML model into mis-
classification through repeated queries of the model using
perturbed input images. On the other hand, for each queried
image that is perturbed by A, D tries to ensure the cor-
rectness of its classification by transforming the perturbed
image before feeding it into the ML model. As another
example, multi-agent reinforcement learning (MARL) in
an episodic environment can also be modeled as a repeated
game in which the payoff to each agent is its return from
the execution of all the agents’ selected policies.

Solving such a form of repeated games in a cost-efficient
manner is challenging since the payoff functions of the
agents are unknown, complex (e.g., possibly noisy, non-
convex, and/or with no closed-form expression/derivative),
and costly to evaluate. Fortunately, the payoffs correspond-
ing to different actions of each agent tend to be correlated.
For example, in adversarial ML, the correlated perturbations
performed by the attackerA (and correlated transformations
executed by the defender D) are likely to induce similar
effects on the performance of the ML model. Such a cor-
relation can be leveraged to predict the payoff associated
with any action of an agent using a surrogate model such
as the rich class of Bayesian nonparametric Gaussian pro-
cess (GP) models (Rasmussen & Williams, 2006) which is
expressive enough to represent a predictive belief of the un-
known, complex payoff function over the action space of the
agent. Then, in each iteration, the agent can select an action
for evaluating its unknown payoff function that trades off be-
tween sampling at or near to a likely maximum payoff based
on the current GP belief (exploitation) vs. improving the
GP belief (exploration) until its cost/sampling budget is ex-
pended. To do this, the agent can use a sequential black-box
optimizer such as the celebrated Bayesian optimization (BO)
algorithm (Shahriari et al., 2016) based on the GP-upper
confidence bound (GP-UCB) acquisition function (Srinivas
et al., 2010), which guarantees asymptotic no-regret perfor-
mance and is sample-efficient in practice. How then can
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we design a BO algorithm to account for its interactions
with boundedly rational1, self-interested agents and still
guarantee the trademark asymptotic no-regret performance?

Inspired by the cognitive hierarchy model of
games (Camerer et al., 2004), we adopt a recursive
reasoning formalism (i.e., typical among humans) to model
the reasoning process in the interactions between boundedly
rational1, self-interested agents. It comprises k levels of
reasoning which represents the cognitive limit of the agent.
At level k = 0 of reasoning, the agent randomizes its choice
of actions. At a higher level k ≥ 1 of reasoning, the agent
selects its best response to the actions of the other agents
who are reasoning at lower levels 0, 1, . . . , k − 1.

This paper presents the first recursive reasoning formalism
of BO to model the reasoning process in the interactions
between boundedly rational1, self-interested agents with un-
known, complex, and costly-to-evaluate payoff functions in
repeated games, which we call Recursive Reasoning-Based
BO (R2-B2) (Section 3). R2-B2 provides these agents with
principled strategies for performing effectively in this type
of game. In this paper, we consider repeated games with
simultaneous moves and perfect monitoring2. Our R2-B2
algorithm is general in that it does not constrain the relation-
ship among the payoff functions of different agents and can
thus be applied to various types of games such as constant-
sum games (e.g., adversarial ML in which the attackerA and
defender D have opposing objectives), general-sum games
(e.g., MARL where all agents have possibly different yet not
necessarily conflicting goals), and common-payoff games
(i.e., all agents have identical payoff functions). We prove
that by reasoning at level k ≥ 2 and one level higher than the
other agents, our R2-B2 agent can achieve faster asymptotic
convergence to no regret than that without utilizing recur-
sive reasoning (Section 3.1.3). We also propose a computa-
tionally cheaper variant of R2-B2 called R2-B2-Lite at the
expense of a weaker convergence guarantee (Section 3.2).
The performance and generality of R2-B2 are demonstrated
through extensive experiments using synthetic games, ad-
versarial ML, and MARL (Section 4). Interestingly, we
empirically show that by reasoning at a higher level, our
R2-B2 defender is able to effectively defend against the
attacks from the state-of-the-art black-box adversarial at-
tackers (Section 4.2.2), which can be of independent interest
to the adversarial ML community.

2In each iteration of a repeated game with (a) simultane-
ous moves and (b) perfect monitoring, every agent, respectively,
(a) chooses its action simultaneously without knowing the other
agents’ selected actions, and (b) has access to the entire history
of game plays, which includes all actions selected and payoffs
observed by every agent in the previous iterations.

2. Background and Problem Formulation
For simplicity, we will mostly focus on repeated games be-
tween two agents, but have extended our R2-B2 algorithm
to games involving more than two agents, as detailed in
Appendix B. To ease exposition, throughout this paper, we
will use adversarial ML as the running example and thus
refer to the two agents as the attacker A and the defender D.
For example, the input action space X1 ⊂ Rd1 of A can be
a set of allowed perturbations of a test image while the input
action space X2 ⊂ Rd2 of D can represent a set of feasible
transformations of the perturbed test image. We consider
both input domains X1 and X2 to be discrete for simplicity;
generalization of our theoretical results in Section 3 to con-
tinuous, compact domains can be easily achieved through a
suitable discretization of the domains (Srinivas et al., 2010).
When the ML model is an image classification model, the
payoff function f1 : X1 ×X2 → R of A, which takes in its
perturbation x1 ∈ X1 and D’s transformation x2 ∈ X2 as
inputs, can be the maximum predictive probability among
all incorrect classes for a test image sinceA intends to cause
misclassification. Since A and D have opposing objectives
(i.e.,D intends to prevent misclassification), the payoff func-
tion f2 : X1 ×X2 → R of D can be the negation of that of
A, thus resulting in a constant-sum game between A and D.

In each iteration t = 1, . . . , T of the repeated game with
simultaneous moves and perfect monitoring23, A and D
select their respective input actions x1,t and x2,t simultane-
ously using our R2-B2 algorithm (Section 3) for evaluating
their payoff functions f1 and f2. Then, A and D receive the
respective noisy observed payoffs y1,t , f1(x1,t,x2,t) + ε1
and y2,t , f2(x1,t,x2,t) + ε2 with i.i.d. Gaussian noises
εi ∼ N (0, σ2

i ) and noise variances σ2
i for i = 1, 2.

A common practice in game theory is to measure the perfor-
mance of A via its (external) regret (Nisan et al., 2007):

R1,T ,
∑T
t=1[f1(x∗1,x2,t)− f1(x1,t,x2,t)] (1)

where x∗1 , arg maxx1∈X1

∑T
t=1 f1(x1,x2,t). The exter-

nal regret R2,T of D is defined in a similar manner. An
algorithm is said to achieve asymptotic no regret if R1,T

grows sub-linearly in T , i.e., limT→∞R1,T /T = 0. Intu-
itively, by following a no-regret algorithm, A is guaranteed
to eventually find its optimal input action x∗1 in hindsight,
regardless of D’s sequence of input actions.

To guarantee no regret (Section 3),A represents a predictive
belief of its unknown, complex payoff function f1 using the
rich class of Gaussian process (GP) models by modeling
f1 as a sample of a GP (Rasmussen & Williams, 2006). D
does likewise with its unknown f2. Interested readers are

3Note that in some tasks such as adversarial ML, the require-
ment of perfect monitoring can be relaxed considerably. Refer to
Section 4.2.2 for more details.
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referred to Appendix A.1 for a detailed background on GP.
In particular, A uses the GP predictive/posterior belief of f1
to compute a probabilistic upper bound of f1 called the GP-
upper confidence bound (GP-UCB) (Srinivas et al., 2010)
at any joint input actions (x1,x2), which will be exploited
by our R2-B2 algorithm (Section 3):

α1,t(x1,x2) , µt−1(x1,x2) + β
1/2
t σt−1(x1,x2) (2)

for iteration t where µt−1(x1,x2) and σ2
t−1(x1,x2) denote,

respectively, the GP posterior mean and variance at (x1,x2)
(Appendix A.1) conditioned on the history of game plays
up till iteration t− 1 that includesA’s observed payoffs and
the actions selected by both agents in iterations 1, . . . , t− 1.
The GP-UCB acquisition function α2,t for D is defined like-
wise. Supposing A knows the input action x2,t selected by
D and chooses an input action x1 to maximize the GP-UCB
acquisition function α1,t (2), its choice involves trading off
between sampling close to an expected maximum payoff
(i.e., with large GP posterior mean) given the current GP
belief of f1 (exploitation) vs. that of high predictive uncer-
tainty (i.e., with large GP posterior variance) to improve the
GP belief of f1 (exploration) where the parameter βt is set to
trade off between exploitation vs. exploration for bounding
its external regret (1), as specified later in Theorem 1.

3. Recursive Reasoning-Based Bayesian
Optimization (R2-B2)

Algorithm 1 describes the R2-B2 algorithm from the per-
spective of attacker A which we will adopt in this section.
Our R2-B2 algorithm for defender D can be derived analo-
gously. We will now discuss the recursive reasoning formal-
ism of BO for A’s action selection in step 2 of Algorithm 1.

3.1. Recursive Reasoning Formalism of BO

Our recursive reasoning formalism of BO follows a similar
principle as the cognitive hierarchy model (Camerer et al.,
2004): At level k = 0 of reasoning, A adopts some random-
ized/mixed strategy of selecting its action. At level k ≥ 1
of reasoning, A best-responds to the strategy of D who is
reasoning at a lower level. Let xk1,t denote the input action
x1,t selected by A’s strategy from reasoning at level k in
iteration t. Depending on the (a) degree of knowledge about
D and (b) available computational resource, A can choose
one of the following three types of strategies of selecting its
action with varying levels of reasoning, as shown in Fig. 1:

Level-k = 0 Strategy. Without knowledge of D’s level of
reasoning nor its level-0 strategy, A by default can reason at
level 0 and play a mixed strategy P0

1,t of selecting its action
by sampling x0

1,t from the probability distribution P0
1,t over

its input action space X1, as discussed in Section 3.1.1.

Algorithm 1 R2-B2 for attacker A’s level-k reasoning
1: for t = 1, 2, . . . , T do
2: Select input action x1,t using its level-k strategy

(while defender D selects input action x2,t)
3: Observe noisy payoff y1,t = f1(x1,t,x2,t) + ε1
4: Update GP posterior belief using 〈(x1,t,x2,t), y1,t〉

Mixed Strategy

…
…

Attacker Defender

(a) Level 0

best-responds

Mixed Strategy

…
…

Attacker Defender

(b) Level 1

best-responds

Mixed Strategy

…
…

Attacker Defender

(c) Level 2

Figure 1. Illustration of attackerA’s strategies of selecting its input
action from reasoning at levels k = 0, 1, and 2.

Level-k = 1 Strategy. If A thinks that D reasons at level
0 and has knowledge of D’s level-0 mixed strategy P0

2,t,
then A can reason at level 1 and play a pure strategy that
best-responds to the level-0 strategy of D, as explained in
Section 3.1.2. Such a level-1 reasoning of A is general
since it caters to any level-0 strategy of D and hence does
not require D to perform recursive reasoning.

Level-k ≥ 2 Strategy. If A thinks that D reasons at level
k − 1, then A can reason at level k and play a pure strategy
that best-responds to D’s level-(k− 1) action, as detailed in
Section 3.1.3. Different from the level-1 reasoning of A, its
level-k reasoning assumes that D’s level-(k − 1) action is
derived using the same recursive reasoning process.

3.1.1. LEVEL-k = 0 STRATEGY

Level 0 is a conservative, default choice for A since it does
not require any knowledge about D’s strategy of selecting
its input action and is computationally lightweight. At level
0, A plays a mixed strategy P0

1,t by sampling x0
1,t from the

probability distribution P0
1,t over its input action space X1:

x0
1,t ∼ P0

1,t. A mixed/randomized strategy (instead of a
pure/deterministic strategy) is considered because without
knowledge of D’s strategy, A has to treat D as a black-box
adversary. This setting corresponds to that of an adversarial
bandit problem in which any deterministic strategy suf-
fers from linear worst-case regret (Lattimore & Szepesvári,
2020) and randomization alleviates this issue. Such a ran-
domized design of our level-0 strategies is consistent with
that of the cognitive hierarchy model in which a level-0
thinker does not make any assumption about the other agent
and selects its action via a probability distribution without
using strategic thinking (Camerer et al., 2004). We will now
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present a few reasonable choices of level-0 mixed strategies.
However, in both theory (Theorems 2, 3 and 4) and practice,
any strategy of action selection (including existing methods
(Section 4.2.2)) can be considered as a level-0 strategy.

In the simplest setting where A has no knowledge of D’s
strategy, a natural choice for its level-0 mixed strategy is
random search. That is, A samples its action from a uni-
form distribution over X1. An alternative choice is to use
the EXP3 algorithm for the adversarial linear bandit prob-
lem, which requires the GP to be transformed via a ran-
dom features approximation (Rahimi & Recht, 2007) into
linear regression with random features as inputs. Since
the regret of EXP3 algorithm is bounded from above by
O(
√
d′1T log |X1|) (Lattimore & Szepesvári, 2020) where

d′1 denotes the number of random features, it incurs sub-
linear regret and can thus achieve asymptotic no regret.

In a more relaxed setting where A has access to the his-
tory of actions selected by D, A can use the GP-MW algo-
rithm (Sessa et al., 2019) to derive its level-0 mixed strat-
egy; for completeness, GP-MW is briefly described in Ap-
pendix A.2. The result below bounds the regret of A when
using GP-MW for level-0 reasoning and its proof is slightly
modified from that of Sessa et al. (2019) to account for its
payoff function f1 being sampled from a GP (Section 2):

Theorem 1. Let δ ∈ (0, 1), βt , 2 log(|X1|t2π2/(3δ)),
and γT denotes the maximum information gain about payoff
function f1 from any history of actions selected by both
agents and corresponding noisy payoffs observed by A up
till iteration T . Suppose that A uses GP-MW to derive its
level-0 strategy. Then, with probability of at least 1− δ,

R1,T = O(
√
T log |X1|+

√
T log(2/δ) +

√
TβT γT ) .

From Theorem 1, R1,T is sub-linear in T .4 So, A using GP-
MW for level-0 reasoning achieves asymptotic no regret.

3.1.2. LEVEL-k = 1 STRATEGY

If A thinks that D reasons at level 0 and has knowledge
of D’s level-0 strategy P0

2,t, then A can reason at level 1.
Specifically, A selects its level-1 action x1

1,t that maximizes
the expected value of GP-UCB (2) w.r.t.D’s level-0 strategy:

x1
1,t , arg maxx1∈X1

Ex0
2,t∼P0

2,t
[α1,t(x1,x

0
2,t)] . (3)

If input action space X2 of D is discrete and not too large,
then (3) can be solved exactly. Otherwise, (3) can be solved
approximately via sampling from P0

2,t. Such a level-1 rea-
soning of A to solve (3) only requires access to the history

4The asymptotic growth of γT has been analyzed for some
commonly used kernels: γT = O((log T )d1+1) for squared expo-
nential kernel and γT = O(T d1(d1+1)/(2ν+d1(d1+1)) log T ) for
Matérn kernel with parameter ν > 1. For both kernels, the last
term in the regret bound in Theorem 1 grows sub-linearly in T .

of actions selected by D but not its observed payoffs, which
is the same as that needed by GP-MW. Our first main result
(see its proof in Appendix C) bounds the expected regret of
A when using R2-B2 for level-1 reasoning:

Theorem 2. Let δ ∈ (0, 1) andC1 , 8/ log(1+σ−21 ). Sup-
pose that A uses R2-B2 (Algorithm 1) for level-1 reasoning
and D uses mixed strategy P0

2,t for level-0 reasoning. Then,
with probability of at least 1− δ, E[R1,T ] ≤

√
C1TβT γT

where the expectation is with respect to the history of actions
selected and payoffs observed by D.

It follows from Theorem 2 that E[R1,T ] is sublinear in T .4

So, A using R2-B2 for level-1 reasoning achieves asymp-
totic no expected regret, which holds for any level-0 strategy
of D regardless of whether D performs recursive reasoning.

3.1.3. LEVEL-k ≥ 2 STRATEGY

If A thinks that D reasons at level 1, then A can reason at
level 2 and select its level-2 action x2

1,t (4) to best-respond
to level-1 action x1

2,t (5) selected by D, the latter of which
can be computed/simulated by A in a similar manner as (3):

x2
1,t , arg maxx1∈X1

α1,t(x1,x
1
2,t) , (4)

x1
2,t , arg maxx2∈X2

Ex0
1,t∼P0

1,t
[α2,t(x

0
1,t,x2)] . (5)

In the general case, if A thinks that D reasons at level
k − 1 ≥ 2, then A can reason at level k ≥ 3 and select its
level-k action xk1,t (6) that best-responds to level-(k − 1)

action xk−12,t (7) selected by D:

xk1,t , arg maxx1∈X1
α1,t(x1,x

k−1
2,t ) , (6)

xk−12,t , arg maxx2∈X2
α2,t(x

k−2
1,t ,x2) . (7)

Since A thinks that D’s level-(k − 1) action xk−12,t (7) is
derived using the same recursive reasoning process, xk−12,t

best-responds to level-(k−2) action xk−21,t selected byA, the
latter of which in turn best-responds to level-(k − 3) action
xk−32,t selected by D and can be computed in the same way
as (6). This recursive reasoning process continues until it
reaches the base case of the level-1 action selected by either
(a) A (3) if k is odd (in this case, recall from Section 3.1.2
that A requires knowledge of D’s level-0 strategy P0

2,t to
compute (3)), or (b) D (5) if k is even. Note that A has to
perform the computations made by D to derive xk−12,t (7) as
well as the computations to best-respond to xk−12,t via (6).
Our next main result (see its proof in Appendix C) bounds
the regret ofAwhen using R2-B2 for level-k ≥ 2 reasoning:

Theorem 3. Let δ ∈ (0, 1). Suppose that A and D use
R2-B2 (Algorithm 1) for level-k ≥ 2 and level-(k − 1)
reasoning, respectively. Then, with probability of at least
1− δ, R1,T ≤

√
C1TβT γT .
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Theorem 3 reveals that R1,T grows sublinearly in T .4 So,
A using R2-B2 for level-k ≥ 2 reasoning achieves asymp-
totic no regret regardless of D’s level-0 strategy P0

2,t. By
comparing Theorems 1 and 3, we can observe that if A uses
GP-MW as its level-0 strategy, then it can achieve faster
asymptotic convergence to no regret by using R2-B2 to rea-
son at level k ≥ 2 and one level higher than D. However,
when A reasons at a higher level k, its computational cost
grows due to an additional optimization of the GP-UCB ac-
quisition function per increase in level of reasoning. So, A
is expected to favor reasoning at a lower level, which agrees
with the observation in the work of Camerer et al. (2004) on
the cognitive hierarchy model that humans usually reason at
a level no higher than 2.

3.2. R2-B2-Lite

We also propose a computationally cheaper variant of R2-
B2 for level-1 reasoning called R2-B2-Lite at the expense of
a weaker convergence guarantee. When using R2-B2-Lite
for level-1 reasoning, instead of following (3), A selects its
level-1 action x1

1,t by sampling x̃0
2,t from level-0 strategy

P0
2,t of D and best-responding to this sampled action:

x1
1,t , arg maxx1∈X1

α1,t(x1, x̃
0
2,t) . (8)

Our final main result (its proof is in Appendix D) bounds the
expected regret ofA using R2-B2-Lite for level-1 reasoning:

Theorem 4. Let δ ∈ (0, 1). Suppose that A uses R2-
B2-Lite for level-1 reasoning and D uses mixed strat-
egy P0

2,t for level-0 reasoning. If the trace of the co-
variance matrix of x0

2,t ∼ P0
2,t is not more than ωt for

t = 1, . . . , T , then with probability of at least 1 − δ,
E[R1,T ] = O(

∑T
t=1

√
ωt +

√
TβT γT ) where the expec-

tation is with respect to the history of actions selected and
payoffs observed by D as well as x̃0

2,t for t = 1, . . . , T .

From Theorem 4, the expected regret bound tightens if D’s
level-0 mixed strategy P0

2,t has a smaller variance for each
dimension of input action x0

2,t. As a result, the level-0 ac-
tion x̃0

2,t of D that is sampled by A tends to be closer to
the true level-0 action x0

2,t selected by D. Then, A can
select level-1 action x1

1,t that best-responds to a more pre-
cise estimate x̃0

2,t of the level-0 action x0
2,t selected by D,

hence improving its expected payoff. Theorem 4 also re-
veals thatA using R2-B2-Lite for level-1 reasoning achieves
asymptotic no expected regret if the sequence (ωt)t∈Z+ uni-
formly decreases to 0 (i.e., ωt+1 < ωt for t ∈ Z+ and
limT→∞ ωT = 0). Interestingly, such a sufficient condition
for achieving asymptotic no expected regret has a natu-
ral and elegant interpretation in terms of the exploration-
exploitation trade-off: This condition is satisfied if D uses a
level-0 mixed strategy P0

2,t with a decreasing variance for
each dimension of input action x0

2,t, which corresponds to
transitioning from exploration (i.e., a large variance results
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Figure 2. (a-c) Mean regret of agent 1 in synthetic games where
the legend in (a) represents the levels of reasoning of agents 1
vs. 2. Attack score of A in adversarial ML for (d-e) MNIST and
(f) CIFAR-10 datasets where the legend in (d) represents the levels
of reasoning of A vs. D.

in a diffused P0
2,t and hence many actions being sampled) to

exploitation (i.e., a small variance results in a peaked P0
2,t

and hence fewer actions being sampled).

4. Experiments and Discussion
This section empirically evaluates the performance of our
R2-B2 algorithm and demonstrates its generality using syn-
thetic games, adversarial ML, and MARL. Some of our
experimental comparisons can be interpreted as compar-
isons with existing baselines used as level-0 strategies (Sec-
tion 3.1.1). Specifically, we can compare the performance of
our level-1 agent with that of a baseline method when they
are against the same level-0 agent. Moreover, in constant-
sum games, we can perform a more direct comparison by
playing our level-1 agent against an opponent using a base-
line method as a level-0 strategy (Section 4.2.2). Additional
experimental details and results are reported in Appendix F
due to lack of space. All error bars represent standard error.

4.1. Synthetic Games

Firstly, we empirically evaluate the performance of R2-B2
using synthetic games with two agents whose payoff func-
tions are sampled from GP over a discrete input domain.
Both agents use GP-MW and R2-B2/R2-B2-Lite for level-
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0 and level-k ≥ 1 reasoning, respectively. We consider 3
types of games: common-payoff, general-sum, and constant-
sum games. Figs. 2a to 2c show results of the mean regret5

of agent 1 averaged over 10 random samples of GP and 5
initializations of 1 randomly selected action with observed
payoff per sample: In all types of games, when agent 1
reasons at one level higher than agent 2, it incurs a smaller
mean regret than when reasoning at level 0 (blue curve),
which demonstrates the performance advantage of recursive
reasoning and corroborates our theoretical results (Theo-
rems 2 and 3). The same can be observed for agent 1 using
R2-B2-Lite for level-1 reasoning (orange curve) but it does
not perform as well as that using R2-B2 (red curve), which
again agrees with our theoretical result (Theorem 4). More-
over, comparing the red (orange) and blue curves shows
that when against the same level-0 agent, our R2-B2 (R2-
B2-Lite) level-1 agent outperforms the baseline method of
GP-MW (as a level-0 strategy).

Figs. 2a and 2c also reveal the effect of incorrect thinking of
the level of reasoning of the other agent on its performance:
Since agent 2 uses recursive reasoning at level 1 or more,
agent 2 thinks that it is reasoning at one level higher than
agent 1. However, it is in fact reasoning at one level lower
in these two figures. In common-payoff games, since agents
1 and 2 have identical payoff functions, the mean regret of
agent 2 is the same as that of agent 1 in Fig. 2a. So, from
agent 2’s perspective, it benefits from such an incorrect
thinking in common-payoff games. In constant-sum games,
since the payoff function of agent 2 is negated from that
of agent 1, the mean regret of agent 2 increases with a
decreasing mean regret of agent 1 in Fig. 2c. So, from agent
2’s viewpoint, it hurts from such an incorrect thinking in
constant-sum games. Further experimental results on such
incorrect thinking are reported in Appendix F.1.1b.

An intriguing observation from Figs. 2a to 2c is that when
agent 1 reasons at level k ≥ 2, it incurs a smaller mean
regret than when reasoning at level 1. A possible explana-
tion is that when agent 1 reasons at level k ≥ 2, its selected
level-k action (6) best-responds to the actual level-(k − 1)
action (7) selected by agent 2. In contrast, when agent 1
reasons at level 1, its selected level-1 action (3) maximizes
the expected value of GP-UCB w.r.t. agent 2’s level-0 mixed
strategy rather than the actual level-0 action selected by
agent 2. However, as we shall see in the experiments on
adversarial ML in Section 4.2.1, when the expectation in
level-1 reasoning (3) needs to be approximated via sam-
pling but insufficient samples are used, the performance of
level-k ≥ 2 reasoning can be potentially diminished due to
propagation of the approximation error from level 1.

5The mean regret T−1 ∑T
t=1(maxx1∈X1,x2∈X2 f1(x1,x2)−

f1(x1,t,x2,t)) of agent 1 pessimistically estimates (i.e., upper
bounds) R1,T /T (1) and is thus not expected to converge to 0.
Nevertheless, it serves as an appropriate performance metric here.

Moreover, Fig. 2c shows another interesting observation
that is unique for constant-sum games: Agent 1 achieves a
significantly better performance when reasoning at level 3
(i.e., agent 2 reasons at level 2) than at level 2 (i.e., agent
2 reasons at level 1). This can be explained by the fact
that when agent 2 reasons at level 2, it best-responds to
the level-1 action of agent 1, which is most likely different
from the actual action selected by agent 1 since agent 1
is in fact reasoning at level 3. In contrast, when agent 2
reasons at level 1, instead of best-responding to a single
(most likely wrong) action of agent 1, it best-responds to the
expected behavior of agent 1 by attributing a distribution
over all actions of agent 1. As a result, agent 2 suffers from
a smaller performance deficit when reasoning at level 1 (i.e.,
agent 1 reasons at level 2) compared with reasoning at level
2 (i.e., agent 1 reasons at level 3) or higher. Therefore, agent
1 obtains a more dramatic performance advantage when
reasoning at level 3 (gray curve) due to the constant-sum
nature of the game. A deeper implication of this insight
is that although level-1 reasoning may not yield a better
performance than level-k ≥ 2 reasoning as analyzed in
the previous paragraph, it is more robust against incorrect
estimates of the opponent’s level of reasoning in constant-
sum games.

Experimental results on the use of random search and EXP3
(Section 3.1.1) for level-0 reasoning (instead of GP-MW)
are reported in Appendix F.1.1c; the resulting observations
and insights are consistent with those presented here. This
demonstrates the robustness of R2-B2 and corroborates the
generality of our theoretical results (Theorems 2 and 3)
which hold for any level-0 strategy of the other agent. We
have also performed experiments using synthetic games
involving more than two agents (Appendix F.1.2), which
yield some interesting observations that are consistent with
our theoretical analysis.

4.2. Adversarial Machine Learning (ML)

4.2.1. R2-B2 FOR ADVERSARIAL ML

We apply our R2-B2 algorithm to black-box adversarial ML
for image classification problems with deep neural networks
(DNNs) using the MNIST and CIFAR-10 image datasets.
We consider evasion attacks: The attacker A perturbs a test
image to fool a fully trained DNN (referred to as the target
ML model hereafter) into misclassifying the image, while the
defender D transforms the perturbed image with the goal of
ensuring the correct prediction by the classifier. To improve
query efficiency, dimensionality reduction techniques such
as autoencoders have been commonly used for black-box
adversarial attacks (Tu et al., 2019). In our experiments,
variational autoencoders (VAE) (Kingma & Welling, 2014)
are used by both A and D to project the images to a lower-
dimensional space (i.e., 2D for MNIST and 8D for CIFAR-
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10).6 Following a common practice in adversarial ML, we
focus on perturbations with bounded infinity norm as actions
of A and D: The maximum allowed perturbation to each
pixel added by either A or D is no more than a pre-defined
value ε where ε = 0.2 for MNIST and ε = 0.05 for CIFAR-
10. We consider untargeted attacks whereby the goal of
A (D) is to cause (prevent) misclassification by the target
ML model. So, the payoff function of A is the maximum
predictive probability among all incorrect classes (referred
to as attack score hereafter) and its negation is the payoff
function ofD. As a result, the application of R2-B2 to black-
box adversarial ML represents a constant-sum game. An
attack is considered successful if the attack score is larger
than the predictive probability of the correct class, hence
resulting in misclassification of the test image. Both A and
D use GP-MW/random search7 and R2-B2/R2-B2-Lite for
level-0 and level-k ≥ 1 reasoning, respectively.

Figs. 2d to 2f show results of the attack score of A in ad-
versarial ML for both image datasets while Table 1 shows
results of the number of successful attacks by A over 150
iterations of the game; the results are averaged over 10 ini-
tializations of 5 randomly selected actions with observed
payoffs.8 It can be observed from Figs. 2d to 2f that when
A reasons at one level higher than D (orange, red, and gray
curves), its attack score is higher than when reasoning at
level 0 (blue, green, and purple curves). Similarly, when
D reasons at one level higher (green, purple, and yellow
curves), the attack score ofA is reduced. These observations
demonstrate the performance advantage of using recursive
reasoning in adversarial ML. Such an advantage of recursive
reasoning can also be seen from Table 1: For MNIST, when
random search is used for level-0 reasoning and A reasons
at one level higher than D, it achieves a larger number of
successful attacks (12.8, 10.2, and 3.0) than when reasoning
at level 0 (2.6, 0.8, and 1.8). Similarly, when D reasons at
one level higher, it reduces the number of successful attacks
by A (0.8, 1.8, and 0.9) than when reasoning at level 0 (2.6,
12.8, and 10.2). The observations are similar for MNIST
with GP-MW for level-0 reasoning as well as for CIFAR-10
(Table 1).

The performance advantage of A reasoning at level 2 is
observed to be smaller than that at level 1; this may be ex-
plained by the propagation of error of approximating the
expectation in level-1 reasoning (3), as explained previ-
ously in Section 4.1. We investigate and report the effect

6We have detailed in Appendix F.2.1a how VAE can be realisti-
cally incorporated into our algorithm.

7For CIFAR-10 dataset, A uses only random search for level-0
reasoning due to high dimensions, as explained in Appendix F.2.1a.

8The results here use a test image from each dataset that can
clearly illustrate the effects of both attack and defense. Refer
to Appendix F.2.1b for more details and results using more test
images; the observations are consistent with those presented here.

Table 1. Average number of successful attacks by A over 150 iter-
ations in adversarial ML for MNIST and CIFAR-10 datasets where
the levels of reasoning are in the form of A vs. D.

Levels of reasoning MNIST (random) MNIST (GP-MW) CIFAR-10
0 vs. 0 2.6 4.3 70.1
1 vs. 0 12.8 6.0 113.1

1 vs. 0 (R2-B2-Lite) 10.2 6.8 99.7
0 vs. 1 0.8 0.4 25.2

0 vs. 1 (R2-B2-Lite) 1.8 1.0 29.7
2 vs. 1 3.0 5.2 70.9
1 vs. 2 0.9 0.4 54.0

of the number of samples for such an approximation in Ap-
pendix F.2.1c, which reveals that the performance improves
with more samples, albeit with higher computational cost.
Moreover, some insights can also be drawn regarding the
consequence of an incorrect thinking about the opponent’s
level of reasoning in constant-sum games. For example,
for the gray curves in Figs. 2d to 2f, D reasons at level 1
because it thinks that A reasons at level 0. However, A is in
fact reasoning at level 2. As a result, in this constant-sum
game, D’s incorrect thinking about the opponent’s level of
reasoning negatively impacts D’s performance since the
attack scores are increased. This is consistent with the corre-
sponding analysis in synthetic games regarding the effect of
incorrect thinking about the level of reasoning of the other
agent (Section 4.1).

4.2.2. COMPARISON WITH STATE-OF-THE-ART
ADVERSARIAL ATTACK METHODS

It was mentioned in Section 3.1 that our theoretical results
hold for any level-0 strategy of the other agent. So, any
existing adversarial attack (defense) method can be used the
level-0 strategy of A (D). In this experiment, we perform a
direct comparison of R2-B2 with the state-of-the-art black-
box adversarial attack method called Parsimonious (Moon
et al., 2019): We use Parsimonious as the level-0 strategy of
A and let D use R2-B2 for level-1 reasoning. We consider
a realistic setting where in each iteration, D only needs to
receive the image perturbed by A and choose its action that
best-responds to this perturbed image. In this manner,D nat-
urally has access to the history of actions selected by A (as
required by perfect monitoring in our repeated game) since
it receives all images perturbed by A. Additional details of
the experimental setting are reported in Appendix F.2.2a.

We randomly select 70 images from the CIFAR-10 dataset
that are successfully attacked by Parsimonious using ε =
0.05 over 500 iterations without the defender D.9 Our level-
1 R2-B2 defender manages to completely prevent any suc-
cessful attacks for 53 of these images and requires Parsimo-
nious to use more than 3.5 times more queries on average to

9Compared to the work of Moon et al. (2019), we use fewer
iterations and a larger ε, which we think is more realistic as attacks
with an excessively large no. of queries may be easily detected.
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Figure 3. Loss incurred by Parsimonious with and without our
level-1 R2-B2 defender on 4 randomly selected images that are
successfully attacked by Parsimonious.

succeed for 10 other images.10 Fig. 3 shows results of the
loss incurred by Parsimonious (i.e., its original attack objec-
tive) with and without our level-1 R2-B2 defender for 4 of
the successfully defended images; results for other images
are shown in Appendix F.2.2a. This experiment not only
demonstrates the generality of our R2-B2 algorithm, but can
also be of significant independent interest to the adversar-
ial ML community as a defense method against black-box
adversarial attacks.

In addition, as another comparison, we use the same experi-
mental setting with the CIFAR-10 dataset in Section 4.2.1
and play Parsimonious against a level-0 defender using
random search. The results show that when against the
same level-0 defender, Parsimonious achieves a significantly
smaller average number of successful attacks (27.6) com-
pared with our level-1 attacker (113.1, as shown in Table 1).
In other words, our level-1 defender can defend effectively
against Parsimonious, while our level-1 attacker can attack
better than Parsimonious. Note that the unsatisfactory per-
formances of Parsimonious in our experiments might be
largely explained the fact that it does not consider the pres-
ence of a defender. Moreover, our level-1 R2-B2 defender
can also defend against black-box adversarial attacks from
standard BO algorithms (Appendix F.2.2b)11, which have
become popular recently (Ru et al., 2020).

4.3. Multi-Agent Reinforcement Learning (MARL)

We apply R2-B2 to policy search for MARL with more
than two agents. Each action of an agent represents a par-
ticular set of policy parameters controlling the behavior of
the agent in an environment. The payoff to each agent cor-
responding to a selected set of its policy parameters (i.e.,

10The remaining 7 images are so easy to attack such that the
attacks are already successful during the initial exploration phase
of our level-1 R2-B2 defender.

11The BO attacker here only takes its perturbations as inputs
and thus does not consider the defender.

action) is its mean return (i.e., cumulative reward) from
the execution of all the agents’ selected policies across 5
independent episodes. Since the agents interact in the en-
vironment, the payoff function of each agent depends on
the policies (actions) selected by all agents. We use the
predator-prey game from the widely used multi-agent parti-
cle environment in (Lowe et al., 2017). This 3-agent game
(see Fig. 15 in Appendix F.3) contains two predators who
are trying to catch a prey. The prey is rewarded for being far
from the predators and penalized for stepping outside the
boundary. The two predators have identical payoff functions
and are rewarded for being close to the prey (if the prey stays
within the boundary). So, the predator-prey game represents
a general-sum game. All agents use random search12 and
R2-B2 for level-0 and level-k ≥ 1 reasoning, respectively.

Fig. 4 shows results of the (scaled) mean return of the agents
averaged over 10 initializations of 5 randomly selected ac-
tions with observed payoffs. It can be observed from Fig. 4b
that when the prey reasons at level 1 and both predators
reason at level 0 (orange curve), its mean return is much
higher than when reasoning at level 0 (blue curve); this
results from the prey’s ability to learn to stay within the
boundary. Specifically, there exist some “dominated actions”
in this game, namely, those causing the prey to step beyond
the boundary. Regardless of the predators’ policies, such
dominated actions never give large returns to the prey and
are thus likely to yield small values of GP-UCB for any ac-
tions (policies) selected by the predators. So, by reasoning
at level 1 (i.e., by maximizing the expected value of GP-
UCB), the prey is able to eliminate those dominated actions
and thus learn to stay within the boundary. From Fig. 4a,
the mean return of the predators is also improved (orange
curve) because the prey’s ability to stay within the bound-
ary allows the predators to improve their rewards by being
close to the prey despite using random search for level-0
reasoning. In contrast, when the prey reasons at level 0, the
predators rarely get rewarded (blue curve) since the prey
repeatedly steps beyond the boundary. On the other hand,
when predator 1 reasons at level 2 (purple curve), the mean
return of the predators is further increased since predator
1 is now able to learn to actively move close to the prey
instead of moving around using random search for level-0
reasoning (orange curve). When both predators reason at
level 2 (green curve), their mean return is improved even
further. In both of these scenarios, the mean return of the
prey stays close to that associated with the orange curve:
Although the predators are able to actively approach the
prey, this also further helps to prevent the prey from moving
beyond the boundary, which compensates for the loss in its
mean return due to the more strategic predators.

12All agents use only random search for level-0 reasoning due
to high dimensions, as explained in Appendix F.3.
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(a) predators (b) prey

Figure 4. Mean return of predators and prey in predator-prey game
where the legend in (b) represents the levels of reasoning of preda-
tor 1 vs. predator 2 vs. prey.

5. Related Work
The recent work of Sessa et al. (2019) combines online
learning and GP-UCB to derive a no-regret learning al-
gorithm called GP-multiplicative weight (GP-MW) for re-
peated games. As explained in Section 3.1.1, GP-MW can
be used as a level-0 mixed strategy (i.e., no recursive rea-
soning) in our R2-B2 algorithm. Moreover, BO has also
been recently applied in game theory to find the Nash equi-
libria (Picheny et al., 2019).

Humans possess the ability to reason about the mental states
of others (Goldman, 2012). In particular, a person tends to
reason recursively by analyzing the others’ thinking about
himself, which gives rise to recursive reasoning (Pynadath &
Marsella, 2005). The recursive reasoning model of humans
has inspired the development of the cognitive hierarchy
model in behavioral game theory, which uses recursive rea-
soning to explain the behavior of players in games (Camerer
et al., 2004). Moreover, the improved decision-making ca-
pability offered by recursive reasoning has motivated its
application in ML and sequential decision-making problems
such as interactive partially observable Markov decisionn
processes (Gmytrasiewicz & Doshi, 2005; Hoang & Low,
2013), MARL (Wen et al., 2019), among others.

Deep neural networks (DNNs) have recently been found
to be vulnerable to carefully crafted adversarial exam-
ples (Szegedy et al., 2014). Since then, a variety of ad-
versarial attack methods have been developed to exploit this
vulnerability of DNNs (Goodfellow et al., 2015). However,
most of the existing attack methods are white-box attacks
since they require access to the gradient of the ML model.
In contrast, the more realistic black-box attacks (Tu et al.,
2019; Moon et al., 2019), which we have adopted in our ex-
periments, only require query access to the target ML model
and have been attracting significant attention recently. Of
note, BO has recently been used for black-box adversarial
attacks (without considering defenses) and demonstrated
promising query efficiency (Ru et al., 2020). On the other
hand, many attempts have been made to design adversarial
defense methods (Madry et al., 2017; Tramèr et al., 2018)
to make ML models robust against adversarial attacks. In

our experiments, we have adopted the input reconstruc-
tion/transformation technique (Meng & Chen, 2017; Saman-
gouei et al., 2018) as the defense mechanism, in which the
defender attempts to transform the perturbed input to en-
sure the correct prediction by the ML model. Refer to the
detailed survey of adversarial ML in (Yuan et al., 2019).

6. Conclusion and Future Work
This paper describes the first BO algorithm called R2-B2
that is endowed with the capability of recursive reasoning
to model the reasoning process in the interactions between
boundedly rational1, self-interested agents with unknown,
complex, and expensive-to-evaluate payoff functions in re-
peated games. We prove that by reasoning at level k ≥ 2
and one level higher than the other agents, our R2-B2 agent
can achieve faster asymptotic convergence to no regret than
that without utilizing recursive reasoning. We empirically
demonstrate the competitive performance and generality
of R2-B2 through extensive experiments using synthetic
games, adversarial ML, and MARL. For our future work,
we plan to investigate the connection of R2-B2 to other
game-theoretic solution concepts such as Nash equilibrium.
We will also explore the extension of R2-B2 to a more gen-
eral setting where a level-k agent selects its best response
to the action of the other agent who reasons according to
a distribution (e.g., Poisson) over lower levels instead of
only at level k − 1, which is also captured by the cogni-
tive hierarchy model (Camerer et al., 2004). We will con-
sider generalizing R2-B2 to nonmyopic BO (Kharkovskii
et al., 2020b; Ling et al., 2016), batch BO (Daxberger &
Low, 2017), high-dimensional BO (Hoang et al., 2018),
differentially private BO (Kharkovskii et al., 2020a),
and multi-fidelity BO (Zhang et al., 2017; 2019) set-
tings and incorporating early stopping (Dai et al., 2019).
For applications with a huge budget of function evalu-
ations, we like to couple R2-B2 with the use of dis-
tributed/decentralized (Chen et al., 2012; 2013a;b; 2015;
Hoang et al., 2016; 2019b;a; Low et al., 2015; Ouyang &
Low, 2018) or online/stochastic (Hoang et al., 2015; 2017;
Low et al., 2014; Xu et al., 2014; Teng et al., 2020; Yu et al.,
2019a;b) sparse GP models to represent the belief of the
unknown objective function efficiently.
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