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Abstract
Deep neural networks can achieve remarkable
generalization performances while interpolating
the training data; rather than the U-curve emblem-
atic of the bias-variance trade-off, their test er-
ror often follows a “double descent” curve — a
mark of the beneficial role of overparametriza-
tion. In this work, we develop a quantitative the-
ory for this phenomenon in the context of high-
dimensional random features regression. We ob-
tain a precise asymptotic expression for the bias-
variance decomposition of the test error, and show
that the bias displays a phase transition at the in-
terpolation threshold, beyond it which it remains
constant. We disentangle the variances stemming
from the sampling of the dataset, from the additive
noise corrupting the labels, and from the initial-
ization of the weights. Following up on (Geiger
et al., 2019a), we demonstrate that the latter two
contributions are the crux of the double descent:
they lead to the overfitting peak at the interpola-
tion threshold and to the decay of the test error
upon overparametrization. We quantify how they
are suppressed by averaging the outputs of inde-
pendently initialized estimators, and compare this
ensembling procedure with overparametrization
and regularization. Finally, we present numerical
experiments on a standard deep learning setup
to show that our results are relevant to the lazy
regime of deep neural networks.

1. Introduction
Deep neural networks have achieved breakthroughs
in a plethora of contexts, such as image classifica-
tion (Krizhevsky et al., 2012; LeCun et al., 2015), speech
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recognition (Hinton et al., 2012), and automatic transla-
tion (Sutskever et al., 2014). Yet, theory lags far behind
practice, and the key reasons underpinning the success of
DNNs remain to be clarified.

One of the main puzzles is to understand the excellent gen-
eralization performance of heavily overparametrized deep
neural networks able to fit random labels (Zhang et al.,
2016). Such interpolating estimators—that can reach zero
training error— have attracted a growing amount of theoret-
ical attention in the last few years, see e.g. (Advani & Saxe,
2017; Belkin et al., 2018; Neal et al., 2018; Hastie et al.,
2019; Mei & Montanari, 2019). Indeed, classical learn-
ing theory suggests that generalization should first improve
then worsen when increasing model complexity, following
a U-shape curve characteristic of the bias-variance trade-
off. Instead, deep neural networks (Neyshabur et al., 2014;
Spigler et al., 2018; Nakkiran et al., 2019) as well as other
machine learning models (Belkin et al., 2018), follow a
different curve, coined double descent.

This curve displays two regimes : the classical U-curve is
superseded at high complexity by a modern interpolating
regime where the test error decreases monotonically with
overparametrization (Breiman, 1995). Between these two
regimes, i.e. at the interpolation threshold where training
error vanishes, a peak occurs in absence of regularization,
sometimes called the jamming peak due to similarities with
a well-studied phenomenon in the Statistical Physics litter-
ature (Opper & Kinzel, 1996; Engel & Van den Broeck,
2001; Franz & Parisi, 2016; Spigler et al., 2018; Krzakala
& Kurchan, 2007; Zdeborová & Krzakala, 2007). The rea-
sons behind the performance of deep neural networks in the
overparametrized regime are still poorly understood, even
though some mechanisms are known to play an important
role, such as the implicit regularization of stochastic gradi-
ent descent which allows to converge to the minimum norm
solution, and the convergence to mean-field limits (Rosset
et al., 2004; Advani & Saxe, 2017; Chizat et al., 2019; Arora
et al., 2019a; Mei et al., 2019).

Here we present a detailed investigation of the double de-
scent phenomenon, and its theoretical explanation in terms
of bias and variance in the so-called lazy regime (Chizat
et al., 2019). This theoretically appealing scenario, where
the weights stay close to their initial value during train-
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ing, is called lazy learning as opposed to feature learn-
ing where the weights change enough to learn relevant fea-
tures (Chizat et al., 2019; Woodworth et al., 2019; Geiger
et al., 2019b). Although replacing learnt features by ran-
dom features may appear as a crude simplification, empiri-
cal results show that the loss in performance can be rather
small in some cases (Arora et al., 2019b;a). A burst of
recent papers showed that in this regime, neural networks
behave like kernel methods (Daniely et al., 2016; Lee et al.,
2017; Jacot et al., 2018) or equivalently random projection
methods (Rahimi & Recht, 2008; Chizat et al., 2019; Arora
et al., 2019a). This mapping makes the training analytically
tractable, allowing, for example, to prove convergence to
zero error solutions in overparametrized settings.

Optimization plays an important role in neural networks
by inducing implicit regularization (Neyshabur et al., 2017)
and fluctuations of the learnt estimator (Geiger et al., 2019a).
Disentangling the variance stemming from the randomness
of the optimization process from that the variance due to the
randomness of the dataset is a crucial step towards a unified
picture, as suggested in (Neal et al., 2018). In this paper,
we address this issue and attempt to reconcile the behavior
of bias and variance with the double descent phenomenon
by providing a precise and quantitative theory in the lazy
regime.

Contributions We focus on an analytically solvable
model of random features (RF), introduced by (Rahimi &
Recht, 2008), that can be viewed either as a randomized ap-
proximation to kernel ridge regression, or as a two-layer neu-
ral network whose first layer contains fixed random weights.
The latter provides a simple model for lazy learning. Indeed,
suppose that a neural network learns a function fθ(x) that re-
lates labels (or responses) yi to inputs xi with, i = 1, . . . , N
via a set of weights θ. The lazy regime is defined as the
setting where the model can be linearized around the initial
conditions θ0. Assuming that the initialization is such that
fθ0 ≈ 01, one obtains:

fθ(x) ≈ ∇θfθ(x)|θ=θ0 · (θ − θ0) . (1)

In other words, the lazy regime corresponds to a linear fitting
problem with a random feature vector ∇θfθ(x)|θ=θ0 .

In this setting our contributions are:

• We demonstrate how to disentangle quantitatively the
contributions to the test error of the bias and the various
sources of variance of the estimator, stemming from the
sampling of the dataset, from the additive noise corrupt-
ing the labels, and from the initialization of the random
feature vectors.
1One can alteratively define the estimator as fθ − fθ0 (Chizat

et al., 2019).

• We give a sharp asymptotic formula for the effect of
ensembling (averaging the predictions of indepently ini-
tialized estimators) on these various terms. We show in
particular how the over-fitting peak at the interpolation
threshold can be attenuated by ensembling, as observed
in real neural networks (Geiger et al., 2019a). We also
compare the effect of ensembling, overparametrizing and
optimally regularizing.

• Several conclusions stem from the above analysis. First,
the over-fitting near the interpolation threshold is entirely
due to the variances due to the additive noise in the ground
truth and the initialization of the random features. Second,
the data sampling variance and the bias both display a
phase transition at the interpolation threshold, and remain
constant in the overparametrized regime. Hence, the
benefit of ensembling and overparametrization beyond
the interpolation threshold is solely due to a reduction of
the noise and initialization variances.

Finally, we present numerical results on a classic deep learn-
ing scenario in the lazy learning regime to show that our
findings, obtained for simple random features and i.i.d. data,
are relevant to realistic setups involving correlated random
features and realistic data.

The analytical results we present are obtained using a
heuristic method from Statistical Physics called the Replica
Method (Mézard et al., 1987), which despite being non-
rigorous has shown its remarkable efficacy in many machine
learning problems (Seung et al., 1992; Engel & Van den
Broeck, 2001; Advani et al., 2013; Zdeborová & Krzakala,
2016) and random matrix topics, see e.g. (Livan et al.,
2018; Tarquini et al., 2016; Aggarwal et al., 2018). While it
is an open problem to provide a rigorous proof of our com-
putations, we check through numerical simulations that our
asymptotic predictions are extremely accurate at moderately
small sizes.

Related work On the empirical side, the authors
of (Geiger et al., 2019a) carried out a series of experiments
in order to shed light on the generalization properties of
neural networks. The current work is partly inspired by
their observations and arguments about the role of the vari-
ance due to the random initialization of the weights in the
double-descent curve. Another related work is (Neal et al.,
2018), which disentangles the various sources of variance
in the process of training deep neural networks.

On the theoretical side, our paper builds on the results of
(Mei & Montanari, 2019), which provide an analytic expres-
sion of the test error of the RF model in the high-dimensional
limit where the number of random features, the dimension
of the input data and the number of data points are sent
to infinity with their relative ratios fixed. The double de-
scent was also studied analytically for various types of linear
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Figure 1. Illustration of a RF network. The first layer weights are
fixed and initialized as i.i.d. centered Gaussian variables of unit
variance. The second layer weights are trained via ridge regression.

models, both for regression (Advani & Saxe, 2017; Hastie
et al., 2019; Nakkiran, 2019; Belkin et al., 2019; d’Ascoli
et al., 2020) and classification (Deng et al., 2019; Kini &
Thrampoulidis, 2020; Gerace et al., 2020).

An example of a practical method that uses ensembling in
kernel methods is detailed in (Drucker et al., 1994). Note
that this work performs an average over the sampling of the
random feature vectors in contrast to (Zhang et al., 2013)
where the average is taken over the sampling of the data set.

Reproducibility The codes necessary to reproduce the
results presented in this paper and obtain new ones are given
at:
https://github.com/mariaref/Random_Features.git

2. Model
This work is centered around the RF model first introduced
in (Rahimi & Recht, 2008). Although simpler settings such
as linear regression display the double descent phenomenol-
ogy (Hastie et al., 2019), this model is more appealing in
several ways. First, the presence of two layers allows to
freely disentangle the dimensionality of the input data from
the number of parameters of the model. Second, it closely
relates to the lazy learning, as described above. Third, and
most importantly for our specific study, the randomness
of the first layer weights enables to study the impact of
ensembling.

We consider a regression task involving a two-layer neural
network whose first layer contains fixed random weights2

2Note the closeness between the RF model and the ”hidden
manifold model” introduced in (Goldt et al., 2019). The task stud-
ied here can be seen as a linear regression task on a structured
data set Z ∈ RP , obtained by projecting the original latent fea-
tures X ∈ RD . The difference here is that the dimension of the
latent space, denoted as D here, is sent to infinity together with
the dimension of the ambient space.

(see figure 1):

f̂(x) =

P∑
i=1

aiσ

( 〈θi,x〉√
D

)
. (2)

In the above, θi is the ith random feature, i.e the ith column
of the random feature matrix Θ ∈ RP×D whose elements
are drawn i.i.d from N (0, 1). σ is a pointwise activation
function, which we will take to be ReLU : x 7→ max(0, x).

The training data is collected in a matrixX ∈ RN×D whose
elements are drawn i.i.d from N (0, 1). We assume that the
labels are given by a linear ground truth corrupted by some
additive Gaussian noise:

yµ = 〈β,Xµ〉+ εµ, ||β|| = F, εµ ∼ N (0, τ), (3)
SNR = F/τ.

The generalization to non-linear functions can also be per-
formed as in (Mei & Montanari, 2019).

The second layer weights, i.e the elements of a, are calcu-
lated by the means of ridge regression:

LRF(a) ≡ 1

N

N∑
µ=1

(
yµ−

P∑
i=1

aiσ

( 〈θi,Xµ〉√
D

))2

+
Pλ

D
‖a‖22,

â ≡ arg min
a∈RP

LRF(a).

Note that as P → ∞, this is equivalent to kernel ridge
regression with respect to the following kernel:

K (x,x′) = E
θ∼P

[
σ(〈x,θ〉/

√
D)σ

(
〈x′,θ〉 /

√
D
)]
,

where P = Unif
(
SD−1(

√
D)
)

.

The key quantity of interest is the test error of this model,
defined as the mean square error evaluated on a fresh sample
x ∼ N (0, 1) corrupted by a new noise ε̃:

RRF = E
x

[(
〈β,x〉+ ε̃− f̂(x)

)2]
, ε̃ ∼ N (0, τ̃). (4)

3. Analytical results
In this section, we present our main result, which is an
analytical expression for all terms appearing in the decom-
position of the test error in terms of its bias and variance
components.

3.1. Decomposition of the test error

The risk function (4) can be decomposed into five terms:

E
Θ,X,ε

[RRF]=ENoise+EInit+ESamp+EBias+τ̃
2. (5)
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The first three contribute to the variance, the fourth is the
bias, and the final term τ̃2 is simply the error of an oracle
predictor. It does not play any role and will be set to zero in
the rest of the paper: the only reason it was included is to
avoid confusion with ENoise defined below.

Noise variance: The first term is the variance associated
with the additive noise corrupting the labels of the dataset
which is learnt, ε:

ENoise = E
x,X,Θ

[
E
ε

[
f̂(x)2

]
−
(
E
ε

[
f̂(x)

])2]
. (6)

Initialization variance: The second term encodes the fluc-
tuations stemming from the random initialization of the
random feature vectors, Θ:

EInit = E
x,X

[
E
Θ

[
E
ε

[
f̂(x)

]2]
− E

Θ,ε

[
f̂(x)

]2]
.

Sampling variance: The third term measures the fluctua-
tions due to the sampling of the training data,X:

ESamp = E
x

[
E
X

[
E

Θ,ε

[
f̂(x)

]2]
− E
X,Θ,ε

[
f̂(x)

]2]
. (7)

Bias: Finally, the last term in (5) is the bias, i.e. the error
that remains once all the sources of variance have been
averaged out. It can be understood as the approximation
error of our model and takes the form:

EBias = E
x

[(
〈β,x〉 − E

X,Θ,ε

[
f̂(x)

])2
]
. (8)

Note that this decomposition is sequential: we first remove
the noise variance, then remove the initialization variance
from the noise averaged predictor, and finally remove the
residual sampling variance from the noise and initialization
averaged predictor. This order was chosen to enable com-
parison with other bias-variance decompositions (Mei &
Montanari, 2019; Neal et al., 2018).

Other sources of variance By performing ridge regres-
sion, we are missing out on two sources of variance which
could be incurred by SGD dynamics. First, the noise in SGD
creates an extra source of variance. Second, even noiseless
GD would add an extra contribution to initialization vari-
ance. Indeed, in the overparametrized regime, the ridge
regression problem is underdetermined: there is a frozen
part of the estimator which cannot be learnt (Advani & Saxe,
2017). This part, which is set to zero in ridge regression,
adds an extra (harmful) dependency on initialization in GD.
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Figure 2. All the terms entering our analytical expressions for the
decomposition of the error (Equations 10-15), as function of the
overparametrization ratio P/N for λ = 10−5 and N/D = 1. Nu-
merical estimations obtained for a finite size D = 200 (diamonds)
shows that the asymptotic predictions are extremely accurate even
at moderate sizes.

3.2. Main Analytical result

Consider the high-dimensional limit where the input dimen-
sion D, the hidden layer dimension P (which is equal to
the number of parameter in our model) and the number of
training points N go to infinity with their ratios fixed:

N,P,D →∞, P

D
= O(1),

N

D
= O(1). (9)

We obtain the following result:

E
x,ε,Θ,X

[
〈β,x〉f̂(x)

]
=F 2Ψ1, (10)

E
x,Θ,X

[
E
ε

[
f̂(x)

]2]
=F 2Ψv

2, (11)

E
x,Θ,X

[
E
ε

[
f̂(x)2

]
−E
ε

[
f̂(x)

]2]
=τ2Ψv

3, (12)

E
x,X

[
E
ε,Θ

[
f̂(x)

]2]
=F 2Ψe

2, (13)

E
x,X

[
E
ε,Θ

[
f̂(x)2

]
− E
ε,Θ

[
f̂(x)

]2]
=τ2Ψe

3, (14)

E
x

[
Eε,Θ,X

[
f̂(x)

]2]
=F 2Ψd

2, (15)

where the terms {Ψ1,Ψ
v
2,Ψ

v
3,Ψ

e
2,Ψ

e
3,Ψ

d
2} are computed

following methods developed in Statistical Physics. The
main steps of our procedure are as follows:

1. Mapping to a random matrix theory problem. The first
step is to express the right-hand sides of Equations 10-
15 as traces over random matrices. This is achieved by
replacing our model with its asymptotically equivalent
Gaussian covariate model (Mei & Montanari, 2019), in
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which the non-linearity of the activation function is en-
coded as an extra noise term. This enables to take the
expectation value with respect to the test sample x.

2. Mapping to a statistical physics model. The random
matrix theory problem resulting from the solution of
ridge regression (4) involves inverse random matrices.
In order to evaluate their expection value, we use the
formula:
M−1ij = limn→0

∫ ∏n
α=1

∏D
i=1 dη

α
i η

1
i η

1
j e−

1
2η
α
i Mijη

α
j ,

which is based on the Replica Trick (Mézard et al., 1987;
Bun et al., 2016). The Gaussian integrals over ε,Θ,X
can then be straightforwardly performed and leads to a
Statistical Physics model for the auxiliary variables ηαi .

3. Mean-Field Theory. The model for the ηαi variables can
then be solved by introducing as order parameters the
n×n overlap matrices Qαβ = 1

P

∑P
i=1 η

α
i η

β
i and using

replica theory (Mézard et al., 1987), see the supplemental
material (SM) for the detailed computation3.

The full analytical expressions resulting from this procedure
are deferred to the SM. The Ψ’s may also be estimated nu-
merically at finite size by evaluating the traces of the random
matrices appearing in the Gaussian covariate model at the
end of step 1. Figure 2 shows that results thus obtained are
in excellent agreement with the asymptotic expressions even
at moderate sizes, e.g. D = 200, proving the robustness
of steps 2 and 3, which differ from the approach presented
in (Mei & Montanari, 2019).

The indices v, e, d in {Ψ1,Ψ
v
2,Ψ

v
3,Ψ

e
2,Ψ

e
3,Ψ

d
2} stand for

vanilla, ensemble and divide and conquer. The vanilla
terms, which amount to a bias-variance decomposition with
respect to noise in the labels, are sufficient to obtain the
test error of a single RF model and were computed in (Mei
& Montanari, 2019). The ensemble terms and divide and
conquer terms, which are new, respectively allow to study
initialization and sampling variance, and hence obtain the
test error given by averaging the predictions of several dif-
ferent learners trained on the same dataset (ensembling) and
on different splits of the dataset (divide and conquer), see
section 5. Figure 2 shows that the vanilla terms exhibit a
radically different behavior from the others: at vanishing
regularization, they diverge at P = N then decrease mono-
tonically, whereas the others display a kink followed by a
plateau. This behavior will be key to the following analysis.

3In order to obtain the asymptotic formulas for the Ψ’s we
need to compute (what are called in the Statistical Physics jargon)
fluctuations around mean-field theory.

4. Analysis of Bias and Variances
The results of the previous section, allow to rewrite the
decomposition of the test error as follows:

ENoise = τ2Ψv
3, (16)

EInit = F 2(Ψv
2 −Ψe

2), (17)

ESamp = F 2
(
Ψe

2 −Ψd
2

)
, (18)

EBias = F 2
(
1− 2Ψ1 + Ψd

2

)
. (19)

These contributions, together with the test error, are shown
in figure 3 in the case of small (top) and large (bottom)
regularization.
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Figure 3. Decomposition of the test error into the bias and the var-
ious sources of variance as function of the overparametrization
ratio P/N for N/D = 1, SNR = F/τ = 1. Two values of the
regularization constant are used: λ = 10−5 (top) and λ = 10−1

(bottom). Notice the contrasting behaviors at the interpolation
threshold: the noise and initialization variances diverge then de-
crease monotonically whereas the sampling variance and the bias
display a kink followed by a plateau. These singular behaviors are
smoothed out by regularization.

Interpolation Threshold The peak at the interpolation
threshold is completely due to noise and initialization vari-
ance, which both diverge at vanishing regularization. In
contrast, the sampling variance and the bias remain finite
and exhibit a phase transition at P = N , which is revealed
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by a kink at vanishing regularization. Adding regulariza-
tion smooths out these singular behaviours: it removes the
divergence and irons out the kink.

Overparametrized regime In the overparametrized
regime, the sampling variance and the bias do not vary
substantially (they remain constant for vanishing regulariza-
tion). The decrease of the test error is entirely due to the
decrease of the noise and initalization variances for P >N .
In the limit P/N→∞, the initialization variance vanishes,
whereas there remains an irreducible noise variance.

In conclusion, we find that the origin of the double descent
curve lies in the behavior of noise and initialization vari-
ances. The benefit of overparametrizing stems only from
reducing these two contributions.

These results are qualitatively similar to the empirical de-
composition of (Neal et al., 2018) for real neural networks.
Our results differ however from those of (Mei & Montanari,
2019) where the authors relate the over-fitting peak occur-
ring at P = N to a divergence in both the variance and the
bias terms. This is due to the fact the bias term, as defined in
that paper, also includes the initialization variance4. When
the two are disentangled, it becomes clear that it is only the
latter which is responsible for the divergence: the bias is, in
fact, well-behaved at P = N .

Discussion The phenomenology described above can be
understood by noting that the model essentially performs
linear regression, learning a vector a ∈ RP on a projected
dataset Z ∈ RN×P (the activations of the hidden nodes
of the RF network). Since a is constrained to lie in the
space spanned by Z, which is of dimension min(N,P ), the
model gains expressivity when P increases while staying
smaller than N .

At P = N , the problem becomes fully determined: the
data is perfectly interpolated for vanishing λ. Two types
of noise are overfit: (i) the stochastic noise corrupting the
labels, yielding the divergence in noise variance, and (ii) the
deterministic noise(Abu-Mostafa et al., 2012; d’Ascoli et al.,
2020) stemming from the non-linearity of the activation
function which cannot be captured, yielding the divergence
in initialization variance. However, by further increasing
P , the noise is spread over more and more random features
and is effectively averaged out. Consequently, the test error
decreases again as P increases.

When we make the problem deterministic by averaging out
all sources of randomness, i.e. by considering the bias, we
see that increasing P beyond N has no effect whatsoever.

4For a given set of random features this is legitimate, but from
the perspective of lazy learning the randomness in the features
corresponds to the one due to initialization, which is an additional
source of variance.

Indeed, the extra degrees of freedom, which lie in the null
space of Z, do not provide any extra expressivity: at van-
ishing regularization, they are killed by the pseudo-inverse
to reach the minimum norm solution. For non-vanishing
λ, a similar phenomenology is observed but the interpola-
tion threshold is reached slightly after P = N since the
expressivity of the learner is lowered by regularization.

5. On the effect of ensembling
In order to further study the effect of the variances on the
test error, we wish to study the impact of ensembling. In the
lazy regime of deep neural networks, the initial values of
the weights only affect the gradient at initialization, which
corresponds to the vector of random features. Hence, we
can study the effect of ensembling in the lazy regime by
averaging the predictions of RF models with independently
drawn random feature vectors.

Expression of the test error Consider a set of K>1 RF
networks whose first layer weights are drawn independently.
These networks are trained independently on the same train-
ing set. In the analogy outlined above, they correspond toK
independent inizializations of the neural network. At the end
of training, one obtains K estimators {f̂Θk} (k = 1, ...,K).
When a new sample x is presented to the system, the output
is taken to be the average over the outputs of theK networks,
as illustrated in figure 4. By expanding the square and tak-
ing the expectation with respect to the random initalizations,
the test error can then be written as:

E
{Θk}

[RRF] = E
x
{Θk}

(〈β,x〉 − 1

K

∑
k

f̂Θk
(x)

)2


= E
x

[
〈β,x〉2

]
− 2

K

K∑
i=1

E
x
Θi

[
〈β,x〉f̂Θi

(x)
]

+
1

K2

K∑
i,j=1

E
x

Θi,Θj

[
f̂Θi

(x)f̂Θj
(x)
]
. (20)

The key here is to isolate in the double sum the K(K − 1)
ensemble terms i 6= j, which involve two different inital-

izations and yield Ex
[
EΘ

[
f̂Θ(x)

]2]
, from the K vanilla

terms which give Ex,Θ
[
f̂Θ(x)2

]
. This allows to express

the test error in terms of the quantities defined in (10) to
(15) and leads to the analytic formula for the test error valid
for any K ∈ N:

E
{Θ(k)},X,ε

[RRF] = F 2 (1− 2Ψv
1) +

1

K

(
F 2Ψv

2 + τ2Ψv
3

)
+

(
1− 1

K

)(
F 2Ψe

2+τ2Ψe
3

)
. (21)
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Figure 4. Illustration of the ensembling procedure over K RF net-
works trained on the same data but with different realizations of
the first layer, {Θ1, ...ΘK}.
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Figure 5. Test error when ensembling K = 1, 2, 10 differently
initialized RF models as function of the overparametrization ratio
P/N . We fixed λ = 10−5, N/D = 1, SNR = 10. For com-
parison, we show the results of numerical simulations at finite
D = 200: the vertical bars depict the standard deviation over
10 runs6. Note that our analytic expression 21 gives us access to
the limit N → ∞, where the divergence at P = N is entirely
suppressed.

We see that ensembling amounts to a linear interpolation
between the vanilla terms Ψv

2,Ψ
v
3, for K = 1, and the

ensemble terms Ψe
2,Ψ

e
3 for K →∞.

The effect of ensembling on the double descent curve is
shown in figure 5. As K increases, the overfitting peak at
the interpolation threshold is diminished. This observation
is very similar to the empirical findings of (Geiger et al.,
2019a) in the context of real neural networks. Our analytic
expression agrees with the numerical results obtained by
training RF models, even at moderate size D = 200.

Note that a related procedure is the divide and conquer
approach, where the dataset is partitioned into K splits of
equal size and each one of the K differently initialized
learners is trained on a distinct split. This approach and was
studied for kernel learning in (Drucker et al., 1994), and is
analyzed within our framework in the SM.

6The variability observed here was absent in figure 2 because
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Figure 6. Decomposition of the test error into the bias and the
various sources of variance as function of the overparametrization
ratio P/N for λ = 10−5, N/D = 1, SNR = 1. The thin dashed
lines are taken from figure 3 (top) where we had K = 1; the
thick solid lines show how ensembling at K = 10 suppressed the
divergences of the noise and initialization variances.

Ensembling reduces the double trouble The bias-
variance decomposition of the test error makes the sup-
pression of the divergence explicit. The bias and variances
contribution read for the averaged estimator:

ENoise = τ2
(

Ψe
3 +

1

K
(Ψv

3 −Ψe
3)

)
, (22)

EInit =
F 2

K
(Ψv

2 −Ψe
2) , (23)

ESamp = F 2
(
Ψe

2 −Ψd
2

)
, (24)

EBias = F 2
(
1− 2Ψ1 + Ψd

2

)
. (25)

These equations show that ensembling only affects the noise
and initialization variances. In both cases, their divergence
at the interpolation threshold (due to Ψv

2,Ψ
v
3) is suppressed

as 1/K, see figure 6 for an illustration. At P > N , en-
sembling and overparametrizing have a very similar effect:
they wipe out these two troubling sources of randomness by
averaging them out over more random features. Indeed, we
see in figure 5 that in this overparametrized regime, sending
K→∞ has the same effect as sending P/N→∞: in both
cases the system approaches the kernel limit. At P <N , this
is not true: as shown in (Jacot et al., 2020), the K→∞ pre-
dictor still operates in the kernel limit, but with an effective
regularization parameter λ̃ > λ which diverges as P/N→0.
This (detrimental) implicit regularization increases the test
error.

we are considering the true RF model rather than the asymptotically
equivalent Gaussian covariate model. This shows that most of this
variability is caused by the finite-size deviation between the two
models.
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Figure 7. Comparison of the test error of a RF model (blue) with
that obtained by doubling the number features (orange) or ensem-
bling over two initializations of the features (green), as function
of N/D. The parameters are λ = 10−5, SNR = 10, P/D = 0.5
(solid lines) and P/D = 5 (dashed lines).

Ensembling vs. overparametrization As we have
shown, ensembling and overparametrizing have similar ef-
fects in the lazy regime. But which is more powerful: en-
sembling K models, or using a single model with K times
more features? The answer is given in figure 7 for K = 2
where we plot our analytical results while varying the num-
ber of data points, N . Two observations are particularly
interesting. First, overparametrization shifts the interpola-
tion threshold, opening up a region where ensembling out-
performs overparametrizing. Second, overparametrization
yields a higher asymptotic improvement in the large dataset
limit N/D → ∞, but the gap between overparametrizing
and ensembling is reduced as P/D increases. At P �D,
where we are already close to the kernel limit, both methods
yield a similar improvement. Note that from the point of
view of efficiency, ridge regression involves the inversion of
a P × P matrix, therefore ensembling is significantly more
efficient.

Ensembling vs. optimal regularization In all the results
presented above, we keep the regularization constant λ fixed.
However, by appropriately choosing the value of λ at each
value of P/N , the performance is improved. As figure 7
reveals, the optimal value of λ decreases with K since the
minimum of the test error shifts to the left when increasing
K. In other words, ensembling is best when the predictors
one ensembles upon are individually under-regularized, as
was observed previously for kernel learning in (Zhang et al.,
2015).

Through a comparison between the performance, in test
error perspective, of the ensembled system with K → ∞
and of a single RF model (K = 1) optimally regularized,
figure 8 shows that the ensembled system always performs
better than the optimally regularized one.
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Figure 8. Left: Test error as a function of λ for various values of
K and parameters P/D = 2, N/D = 1, SNR = 10. Right:
Comparison of test error for an optimal regularized system with
K = 1 and the system with K →∞ with λ = 10−5. Optimiza-
tion performed over 50 values of λ from 10−5 to 102. Parameters
are N/D = 1, SNR = 10.

6. Numerical experiments on neural networks
Finally, we investigate whether the phenomenology de-
scribed here holds for realistic neural networks learning
real data in the lazy regime.

We train a 5-layer fully-connected network on the CIFAR-10
dataset. We keep only the first ten PCA components of the
images, and divide the images in two classes according to
the parity of the labels. We perform 105 steps of full-batch
gradient descent with the Adam optimizer and a learning
rate of 0.1, and scale the weights as prescribed in (Jacot
et al., 2018).

We gradually go from the usual feature learning regime to
the lazy learning regime using the trick introduced in (Chizat
et al., 2019), which consists in scaling the output of the
network by a factor α and replacing the learning function
fθ(x) by α(fθ(x)−fθ0(x)). For α�1, one must have that
θ−θ0∼1/α in order for the learning function to remain of
order one. In other words, the weights are forced to stay
close to their initialization, hence the name lazy learning.

Results are shown in figure 9. Close to the lazy regime
(α = 100, right panel), a very similar behavior as the RF
model is observed. The test error curve7 obtained when
ensembling K = 20 independently initialized networks be-
comes roughly flat after the interpolation threshold (which
here is signalled by the peak in the test accuracy). As we
move away from the lazy regime (α= 10, left panel), the
same curve develops a dip around the interpolation thresh-
old and increases beyond P > N as observed previously
in (Geiger et al., 2019a). This may arguably be associated
to the beneficial effect of feature learning.

Acknowledgements We thank Matthieu Wyart and Lenka
Zdeborová for discussions related to this project. This
work is supported by the French Agence Nationale de la

7Note that we are considering a binary classification task here:
the error is defined as the fraction of misclassified images.
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Figure 9. Test error on the binary 10-PCA CIFAR10 as function
of the number of nodes per layer of the 5-layer neural network
trained until convergence with the full-batch Adam. We compare
the test error of a single predictor (K = 1), averaged over 20
initializations of the weights (the standard deviation is depicted
as vertical bars), with the ensembling predictor at K = 20. Left:
α = 10. Right: α = 100, where we are closer to the lazy
regime and the ensembling curve flattens beyond the interpolation
threshold, which occurs around 30 nodes per layer.
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Upon completion of this paper, we became aware of two
related parallel works presenting bias-variance tradeoffs for
RF models. The variance due to the sampling of the dataset
was considered in (Yang et al., 2020), whereas (Jacot et al.,
2020) focused on the variance due to the randomness of the
random feature vectors.
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