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Double Trouble in Double Descent:
Bias and Variance(s) in the Lazy Regime
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1 Further analytical results

1.1 Asymptotic scalings
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Figure 1: Log-log behaviour of the quantities of interest at Left: P/N — co and Right: P — N with A = 1072,
N/D =1 and 7 = 1. In both cases, one observes an inverse scaling law.

Figure [1| (left) shows that the various terms entering the decomposition of the test error approach their asymptotic
values at a rate (P/N)~!. This scaling law is consistent with that found in [3] for real neural networks, where P is
replaced by the width of the layers of the network. As for the divergence of the noise and initialization variances
observed at the interpolation threshold, figure [1] (right) shows that they also follow an inverse power law (P/N —1)~1
at vanishing regularization.

1.2 Divide and Conquer approach

As mentioned in the main text, another way to average the predictions of differently initialized learners is the divide
and conquer approach [2]. In this framework, the data set is divided into K splits of size N/K. Each of the K
differently initalized learner is trained on a distinct split. This approach is extremely useful for kernel learning [5],
where the computational burden is in the inversion of the Gram matrix which is of size N x N. In the random
projection approach considered here, it does not offer any computational gain, however it is interesting how it affects
the test error.

Within our framework, the test error can easily be calculated as:

1 1
_ 2 _ v - 2,V 2\ v = 2,4
{@)(k%,x,s [Ree] = F? (1 - 297)+ - (F?Uy + 7°0%) + <1 K) P2, (1)

where the effective number of data points which enters this formula is Nog = N/K due to the splitting of the training
set.

Comparing the previous expression with that obtained for ensembling (24) is instructive: here, increasing K replaces
the vanilla terms W%, UY by the divide and conquer term Wd. This shows that divide and conquer has a denoising
effect: at K — oo, the effect of the additive noise on the labels is completely suppressed. This was not the case for
ensembling. The price to pay is that Neg decreases, hence one is shifted to the underparametrized regime.

In Figure [2] we see that the kernel limit error of the divide and conquer approach, i.e. the asymptotic value of the
error at P/N — oo, is different from the usual kernel limit error, since the effective dataset is two times smaller at
K = 2. The denoising effect of the divide and conquer approach is illustrated by the fact that its kernel limit error
is higher at high SNR, but lower at low SNR. This is of practical relevance, and is much related to the beneficial
effect of bagging in noisy dataset scenarios. The divide and conquer approach, which only differs from bagging by
the fact that the different partitions of the dataset are disjoint, was shown to reach bagging-like performance in
various setups such as decision trees and neural networks [I].
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Figure 2: Comparison between performances of ensembling and divide and conquer for K = 2 at different SNR.
Left: SNRzé = 10. Right: SNRzg = 1 Computations performed with fixed N/D =1, F =1 and A = 1075,

1.3 Is it always better to be overparametrized ?

A common thought is that the double descent curve always reaches its minimum in the over-parametrized regime,
leading to the idea that the corresponding model ”cannot overfit”. In this section, we show that this is not always
the case. Three factors tend to shift the optimal generalization to the underparametrized regime: (i) increasing the
numbers of learners from which we average the predictions, K, (ii) decreasing the signal-to-noise ratio (SNR), F/T,
and (iii) decreasing the size of the dataset, N/D. In other words, when ensembling on a small, noisy dataset, one is
better off using an underparametrized model.

These three effects are shown in figure 3] In the left panel, we see that as we increase K, the minimum of test error
jumps to the underparametrized regime P < N for a high enough value of K. In the central/right panels, a similar
effect occurs when decreasing the SNR or decreasing N/D.

4 4
1.4 / — k=1
— K=2
3 3
1.2 — K=10
— K=
1.0 2 2
0.8 1 1
0.6
0 0
107! 10° 10! 102 107! 100 10! 102 107! 100 10! 102
P P Lid
N N N

Figure 3: Generalisation error as a function of P/N: depending on the values of K, F//7 and N/D, optimal
generalization can be reached in the underparametrized regime or the overparametrized regime. Left: F/7 =1,
N/D =1 and we vary K. This is the same as figure 5 in the main text, except that the higher noise causes the
ensembling curve at K — oo to exhibit a dip in the underparametrized regime. Center: K =2, N/D =1 and we
vary F'/7. Right: F/r =1, K =2 and we vary N/D.

2 Statement of the Main Result

2.1 Assumptions

First, we state precisely the assumptions under which our main result is valid. Note, that these are the same as in
[4].

Assumption 1: o : R — R is a weakly differential function with derivative ¢’. Assume there exists cp,c; < oo € R
such that for all u € R |o(u)], |0’ (u)| < coetl¥l. Then define:

po=E[o(w)] m =Efuo(u)] ui=El[o*w)] - pg— i, (2)



where the expectation is over u ~ N (0,1). To facilitate readability, we specialize to the case po = 0. This simply
amounts to a shift ctivation function & of the network, &(z) = o(z) — uo.

Assumption 2: We work in the high-dimensional limit, i.e. in the limit where the input dimension D, the hidden
layer dimension P and the number of training points N go to infinity with their ratios fixed. That is:

P —yi—o), L=y -oq). (3)

N,P,D — —
) ) OO) _D

This condition implies that, in the computation of the risk R, we can neglect all the terms of order O(1) in favour of
the terms of order O(D).
Assumption 3: The labels are given by a linear ground truth, or teacher function:

yu =fa(Xp) + e, Jalx) = (B,m), [IBIl=F, €. ~N(0,T). (4)

Note that as explained in [4], it is easy to add a non linear component to the teacher, but the latter would not be
captured by the model (the student) in the regime N/D = O(1), and would simply amount to an extra noise term.

2.2 Results

Here we give the explicit form of the quantities appearing in our main result. In these expressions, the index
a € {v,e,d} distinguishes the vanilla, ensembling and divide and conquer terms.

v, = %Tr 1187 H [P,
vy = %ﬂ #1877 H [Puy] ],
vy = %Tr (#1877 H [Pay]],
45 Lo 1 ]
v = %Tr H 157 H [Pas] |
v — %Tr [# [ H [Pug] ]

where the Hessian matrix H[F], for a given function F : (q,r,,7) — R is defined as:

OF OF oF OF
s Y Yy oy

0q0 orod oroq  Oror
HF= |4 9r o %r

5007 oG 0307 OGoF .
ar' %r' Gr BF | |a=a
dqor oror  dqor o7 | |r=r
G=0

with ¢* and r* being the solutions of the fixed point equation for the function Sy : (¢,7) — R defined below:
9So(q,r) _
{35%(; ) 0
?97?’ =0.

ufwlq

= M7 log [ 5———
So(g,7) Yiaq + 12 log (M%%T-F 1

+ 1> + g + (1 —¢1)log(q) + ¢ log (ufenr + 1) — log(r).

The explicit expression of the above quantities in terms of (g, , ¢, 7) is given below.



2.3 Explicit expression of S?, S¢, ¢

Here we present the explicit formulas for SV, S¢, S¢, which are defined as the functions (¢, r, G, 7) ~ R such that:
Sv(Qv T, Qa 7:) =2 (SO(q, 7‘) + gfv(Qa T) + ’ng(Qa T))
S(g,7,4,7) = Sola,r) +7f*(a,7) + @ g°(q.7)
S%aq,r,4,7) = Solg,r) + 7 f4(q,7) + g% (q. ),

where we defined the functions (q,r) — R,

2
ﬂﬂ/fﬂ/& 1-— djl r
Y ) = A i + - —,
flar) = Miie, p21q + pivrr + 1 q ¢
gv (q ,,,) - _ Nfﬂ%d’%%q #%1/11’1/)2 1 B 1
’ (W3rr + 1) (u21qg + pirr + 1) pivir+1 g 7’
2
e 2rpdr (L4 quien) + (14 quien)” — r2pd? (=1 + o)
f (q7’r) - 2 2 2 2 3
r2 (1 +rpjys + quivr)
e ¢1
g Qar = 5
(¢,7) Z
1
d _
f (Qar) - ﬁa
d Y1
g Qar - 5 -
(g,7) Z

2.4 Explicit expression of Py,, Py , Py, P, , Ps. . Pg,

Here we present the explicit formulas for Py,, Py, , Py, Py,, Py, P\i‘fz, which are defined as the functions (q,r, ¢, 7) —
R such that:

Py, = P1ipopi (M;lgl + i ded (Mx My Mx)™ + i (MXM%)11> ;

Pyy = Dyiapo (U7 + p24) [ Py x — 203131 Py x + 13 Py

Pyy = DY (a7 + 1u2q) 1 (M3 + o [Mx My Mx]™) — 2020 [Mx M ] + 2 (M35
Pyg = DYiopdr (i Py x — 2uiuivn Py x + 1 Pivw ]

Py = Dytbondi [uf (M3 + pdu2? [Mox My Mx]'?) = 232461 [Mx M) + 2 M3y ']

Pyg = Duir 37 (147 Pxx + 203307 Povx + piv Pvw ]

where we defined the scalars Py x, Pwx, Pww as follows:

Py = aNiE + M2 + 209 (papithr)® [Mx Nx My )™ + (ppuihr)? [Mx My Mx] ™
+ Yo (pun pathr)* [Mx My Nx My Mx]™2

Py = 2 [Nx Miy]™ + [Mx My + o (paprtpn) [Mx My Nx M) 2,

Pl = [My]" + o (papatpn)? [Mij Nx M ]2 |

Py x = Pxx,

Py x = Pyx,

Pyw = Piyw,

Pix = (N§l<” + 2 i) [NEMEME + (pagaathr)* [M)d(MgVN)d(MgVM)d(]H) ,

11

11

Piyx = [NSM{] 4 (pain)? [ME M NS M
11

Piw = (upatpr)” [M{; N My |



and the 2 x 2 matrices Mx, My, Nx as follows:

r F a(1+p3ear) @ piplyiF :

MY = Lrufnr (14pdear)” MY, = +2udgrr+ulvng (1‘*‘“(%7/’”’""”3'1’)“})2 Ny = L
= T T ’ - q2ll2/»¢31/’27: q 1+P«%1l117‘ ’ - 9 2 (7 |
(1+”%1/’1’°)2 Thuinr (1-‘,—“%1,[)117"-‘,-’142111)1(1)2 1+2p2P1r+p2eiq (L4 piinr)
Mg = MY, My = My — T 2{0 1], Ny=— L1 2[’2 T}
(14 p3eprr + p2¢p1g)” 110 I+ pdgyr)” I 7
A — r [1 0} il — q(1 + p3yr) [1 0} N — 1 [F 0]
T by [0 1] T T I g+ pdeng [0 17 T (L) [0 7]

3 Replica Computation
3.1 Toolkit

3.1.1 Gaussian integrals

In order to obtain the main result for the generalisation error, we perform the averages over all the sources of
randomness in the system in the following order: over the dataset X, then over the noise W, and finally over the
random feature layers ©. Here are some useful formulaes used throughout the computations:

[ ez Gumit iz gy = (det G)~3e271%5 i
[ waem 237Gt it g = Pl(det G)~2e27iC J
f:z:axbefémiGijzi*Jimidz = P? (detG)~ 3e27iCis J (5)
fxaxbxce—%mGijmj—i-Jmidx — bec(det G) %€2J Gy J
[ zamprewge 2@ CGumithividy = Py (det G)~2e37i%5 J
with
P, =[G Jla,
Pl = ((G™Nab + [GT1]a[GT 1),
Py = Z (G GlG™ e + G RIGHRIG ),
a,b,c€perm(abe)
Pha= > (656 g+ 67 G TG TG ]z + (G g6 TG Tg))
a,b,¢,deperm (abed)

3.1.2 Replica representation of an inverse matrix

To obtain gaussian integrals we will use the ”replica” representation the element (ij) of a matrix M of size D:

1
1,1
M = = limy (H [T dnt ) 1;1; €Xp <_277?Mij77;‘1> : (6)

a=1i=1
Indeed, using the gaussian integral representation of the inverse of M,

D
_ _ 1
Mijl =Z 1/ (H dm) 1;7)j €Xp <_277iMij77j> )

=1
(2m)P
det M

= 1
= / (H d’li) exp (—ZniMijle) :
i=1




Using the replica identity, we rewrite this as
2 1
—1 _ . n—1 ) B ]
My~ = 1111_)11102 / (1_[1 dﬁi) 77 eXp (2772M2J77J) .

Renaming the integration variable of the integral on the left as n' and the n — 1 others as n%, o € {2,n}, we obtain
expression (@

3.2 The Random Feature model

In what follows, we will explicitly leave the indices of all the quantities used. We use the notation, called Einstein
summation convention in physics, in which all repeated indices are summed but the sum is not explicitly written.
Indices i € {1...D} are used to refer to the input dimension, h € {1...P} to refer to the hidden layer dimension and
u € {1...N} to refer to the number of data points.

3.2.1 W.ith a single learner

In the random features model, the predictor can be computed explicitly:

N 1 -
0= 5y 2 (277 + YL, (7)
) = ano (22 0
=y 2, (Z7Z + hriboAIy) 0 (G\Zigi) JVD, 9)
where
Yu = fa (XM)+6W (10)
1 1
Zﬂh = ﬁa (\/EGhiXNi> . (11)
Hence the test error can be computed as:
T T -1 O ix; 2
Rrr =E, (fd(a:) — Y, Zuh (Z Z + ’L/Jliﬁg)\IN) w0 ( \/5 ) /\/5) ‘| (12)
—E, [fa(®)?] = 2y, Zun (27 Z + ¥1tbo)Iy) ., Vie /VD
+ YT Zu (Z7Z +1MIn) ,, Unny (272 + 010600D), ), 25,09, /D, (13)
where
Vi =Eq [fd@c)o <<@\jgi>)} , (14)
oo o (%) (%)

3.2.2 Ensembling over K learners

When ensembling over K learners with independently sampled random feature vectors, the predictor becomes:

_ (k)
1 T (k) (7T (k) 7 (k) ! 0, Ti
= Z Z Z pY | L 1
f(z) 7D Ek Yu L,y ( + Y112 N)hh/U o ) (16)
where
k) _ 1 I o x
Z, = 757 <\f®’” X,“). (17)



The generalisation error is then given by:

VD

=E, [fa(z)?] — %ZyTZ(k) (ZT(’f)Z(k) + 1/’1¢2>\IN>_1 v® VD
%

- (k) ?
Rrr =E; (fd(w) - %ZyTz(k) (ZT(k)Z(k) + ¢1¢2)\IN) Yo (9}”%) /\/5> (18)
3

1 -1 -t
+ om0y Z® (ZT(’“)Z(’“) + ¢1w2AIN) Uk (ZT(”Z(” + z/mpz)\IN) zOTy/D,  (19)
k

£k
where
*)
v —E, | fa@)o <<@¢g’>>] , (20)
(k) )
Ul _E, |0 <<®ygi>> . <<@ﬁj>ﬂ | )

3.2.3 Equivalent Gaussian Covariate Model

It was shown in [4] that the random features model is equivalent, in the high-dimensional limit of Assumption 2, to
a Gaussian covariate model in which the activation function o is replaced as:

egf')XM gng')XM (k)
o| 22— | — 4+ ——==+ u W’ 22
( \/5 Ho M1 \/B M wh ( )

with W) ¢ RNxP W:Z) ~ N(0,1) and po, p1 and pi, defined in (2)). To simplify the calculations, we take pg = 0,
which amounts to adding a constant term to the activation function o.

This powerful mapping allows to express the quantities U, V. We will not repeat their calculations here: the only
difference here is U, which carries extra indices k, ! due to the different initialization of the random features @(*).
In our case,

2
U = 2000y, + nbudun. (23)
Hence we can rewrite the test error as
1 1
_ 2 o v - 2\yv 2\qyv - 2\y€e 2\ye
{@(&X’E [Ree] = F* (1 -2W1) + & (F?08 + 720y) + (1 K) (F?05 + 7205) (24)
where W, W5, WS WE WS are given by:
1 [ T -1
U= (%XG)(”T) AQ) (Z(l)TZ(1)+w1w2)\IN) }
o_ Lo (00T 70 1 gmgmT L 2 WT ZQ) oo (L xT) z0
U= =Tr | (ZMWTZM 4\ Ly OWOMT 4 12Ty ) (ZMWTZMW L yyuily) Z XX ) z®|,
D | D D
oo iy —(Z(I)TZ(l)—&—z/) I )’1 M oWeWT 4 214 ) (ZzMWT 7 o) ZOT Z@
37 p 12 A Iy D + Iy + P12 In ;
1T —1 -1 1
s = < Tr (Z(l)TZ(l) +¢1¢2A1N) (‘g@(l)e(?”) (Z(2>TZ<2) +w1¢2AIN) AQN (DXXT) Z(l)] :
1 r -1 2 _1
U= (20720 4 paty) <%@<1>@<2)T> (207 2® 4 ity Z(z)Tz(l)} .

3.3 Computation of the vanilla terms

To start with, let us compute the vanilla terms (those who carry a superscript v), which involve a single instance
of the random feature vectors. Note that these were calculated in [4] by evaluating the Stieljes transform of the



random matrices of which we need to calculate the trace. The replica method used here makes the calculation of
the vanilla terms carry over easily to the the ensembling terms (superscript ) and the divide and conquer term
(superscript d). To illustrate the calculation steps, we will calculate WY, then provide the results for ¥4 and ¥;.
In the vanilla terms, the two inverse matrices that appear are the same. Hence we use twice the replica identity @,
introducing 2n replicas which all play the same role:

2n
I 1
MM = 71336/ (H dn) NINIRTE €XP (—277"‘Mijn"‘> ~ (25)
a=1

The first step is to perform the averages, i.e. the Gaussian integrals, over the dataset X, the deterministic noise W
induced by the non-linearity of the activation function and the random features ©.

3.3.1 Averaging over the dataset

Replacing the activation function by its Gaussian covariate equivalent model and using , the term U3 can be
expanded as:

vy =

o=

—1 2 —1
[Z,m (ZTZ + 12In),,, (Mlghn’@hzi + Mf5h1h2) (Z7Z + 12N n),, thu]

1T L, o
=5 (Dl@hli@hgi + :uz(ghlha) (ZunZn / (H dn® > Mh My iy Thr €XD <_277h 2"z + V1o AIN) nh’)

1 Ml M1 H1
@hﬂ@hzl + M*(Shlhz) (@X + ,u*W> (@X + ,LL*W)
D2 ( VD hy \VD B

2n
1 1 1 M1
dn® | mknh, i, mi exp | =i | & <®X+u*W) (@X+M W) +P102A0mn | M | -
/(}1 ) Wy s Th 2" \ D\ VD e \VD N e "

Now, we introduce Ay := ﬁnfj@hi, and enforce this relation using the Fourier representation of the delta-function:
1= / G NG N (VPN =i ®ns) (26)

The average over the dataset X,; has the form of with:

2
(Gx)ppt it = Oppr (§ii/ + 'ulle A7 ff) ) (27)
K * /(/) o,
(x )i = P S X W (28)

Using formulae , we obtain:

2n
N . iP
v == <H dn"‘dA“dA“> (%AW + ufmlnf)
a=1

{Mf??;lbWhWh/Wi/ + 13PN AL (G i + (G Ix)i(Gx X)) + 20 e/ ¢1>\%W}mi(G}1JX)z‘]

n 1 3 * (e} « (o9
eXp<—210gdet(GX)—277;Of (%WhWh’éaﬁ_ulg2wl WA (Gx)iil Z/Wh’+¢1w2>\5hh’) 0o, +iA (VP —nh@m)>

Note that due to with a slight abuse of notation we got rid of indices u, which all sum up trivially to give a global
factor V.



3.3.2 Averaging over the deterministic noise

The expectation over the deterministic noise W), is a Gausssian integral of the form with:

[GW}hh' = 5hh/ D nh Aaﬁnh'v (29)
[Jw], =0, (30)
AP =G5, — 2 — Z 2GR i J (31)

Note that the prefactor involves, constant, linear and quadratic terms in W since:

— *V 1/} a — «
(GXle)z' = % W] [GXl/\ ]1
Thus, one obtains:
w 2n
v 2 a jyagya —
vy =5 (H dn®dA* dA ) (BIONAT + @2nin?) (13 " (G n?] + pin [N Hw N?] + 203 b [N Swn]
a=1

n n 1 Y] a a
exp (—2 logdet(Gx) — 5 log det(Gw ) — 5’(/J1’(/}2)\ Z(n,‘f)Z +iIA(VPAS — @hi)) ,

with
2,2
(Hw)ij = (Gx)ij + ulg;% [0 (G "] [GX'N], [GN] (32)
(Sw)in = % (G, [Gitn?], (33)

3.3.3 Averaging over the random feature vectors

The expectation over the random feature vectors ®p; is a Gausssian integral of the form with:

[Golnns i = Onn it (34)
[Joly; = =i (35)

Preforming this integration results in:

vy = % (H d ad/\“dX’> (BRI N AT + i) (12 [ (G n?] + pin [N Hw N2 + 203 2 [N Swn?]]

n 1 1
exp <2 log det(Gx) — 5 log det(Gw) — SvrvaA Y (1) = Suimp AP, +iv/P W“)

3.3.4 Expression of the action and the prefactor

To complete the computation we integrate with respect to 5\?, using again formulae :

(G515 = o ngy, (36)
[J5]; = iVPXL. (37)

This yields the final expression of the term:
w 2n 2n
v 2 « [e% —
vy =5 (H dn > (H ) > (HINN] + idmgn?) [ [0 (G ] + i [N Hw A?] + 208 3401 [N S

D
exp (—Z logdet(Gx) — 5 logdet(Gw) -5 log det(G5) — 71/111/12)\2 ne)? )\"(GA )“'6)\6)

10



The above may be written as

Ty = / (H dn) (H dA) Py [, N exp <—§S” [n,)\]> , (38)

with the prefactor Pyy and the action S¥ defined as:

Pyy [0, A == (130N A? + i2nin?) (12 [0 (Guhn?] + pivn [N Hw 2] + 2031201 [N Swn?]]

2
o (
v 1 (0% P « — «
SY [0, A] ==z log det(Gx) + 12 log det(Gw ) + log det(G5) + Bwlwg/\ Z(nh)2 + 5 ()\i (Gj\l)if/@) .

3.3.5 Expression of the action and the prefactor in terms of order parameters

Here we see that we have a factor D — oo in the exponential part, which can be estimated using the saddle point
method. Before doing so, we introduce the following order parameters using the Fourier representation of the
delta-function:

1= /anBanﬁeéaﬁ(PQaﬂ_ngnﬁ), (39)
1= / dRopdR opelins (PRas= XN, (40)

This allows to rewrite the prefactor only in terms of @, R: for example,

[P + p2nin? = Y1 D(uIRY + 12Q").

To do this, there are two key quantities we need to calculate: )\G)_(l/\ and TIGﬁ/lW To calculate both, we note that
Gx ang Gy are both of the form I 4 X, therefore there inverse may be calculated using their series representation.
The result is:

@ 1 o Y— —17a8
[Mx]*? = A G\ = [R(I + i3y R) 1™, (41)
[e3 1 « — _17aB8
(M = B (G’ = [QU + 1241 AQ) ™. (42)
Using the above, we deduce:
A Hy A2 = DM + Pppiy [Mx My Mx]'™? (43)
MSwn? = P [MxMw]". (44)

The integrals over 7, A become simple Gaussian integrals with covariance matrices given by Q, R, yielding:

1= /anﬂanﬁe_wlzD (logdet Q—QTrQQ), (45)
_ » - (log det R—?TrRR)
1= dRa,nga/ge 2 . (46)

The next step is to take the saddle point with respect to the auxiliary variables Q and R in order to eliminate them:

95" . .
oo ~v (@71 -20)=0=0=a, (47)
afB
asv o A—1 _ o ~ o 1 —1
S _(R 2R) —0= k=R (48)

One finally obtains that:

w; = [ (T14) (ITdr) Pus (@ Rewp <§S [Q,RJ), (49)

With:
Py [Q, B =D (uiR'2 + p2Q2) |2 My ] + i (MAZ + v (M Miy Mc]'?) + 2u2en [Mx My ] ]
SY[Q, R] =tz log det(G x) + 2 log det(Gw) + ¢392 ATrQ + Tr (RQ™") + (1 — 1) log det @ — log det R. (50)
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3.3.6 Saddle point equations

The aim is now to use the saddle point method in order to evaluate the integrals over the order parameters. Thus,
one looks for R and @ solutions to the equations:
as? aS”

8@(1,8 07 3Ra/3 0 vaaﬂ ) y 2T

To solve the above, it is common to make a replica symmetric ansatz. In this case, we assume that the solutions to
the saddle points equations take the form:

q q q r T T
o |1 S R=|7 (51)
: q iz
q q q T T
The action takes the following form:
SY(q,r,q,7) = 2n(So(q,r) + ST (g, 7,4, 7))
2 ﬂ?ﬂ/}lq r 9
So(q,m) = Mivaq + Polog | ——— + 1| + — 4+ (1 — 1) log(q) + ¥z log (uiyrr + 1) — log(r)
pirr +1 q
Si(q,7,q,7) = f(g,7)q + g"(q,7)7
: 1—y 7
() = Mp2y + 12 n o
flar) = Xie, p21q + 3 + 1 q e
2,292 2
1
9°(g;r) = — Heb1012g k2L —-—. (52)

(W3rr + 1) (p2¢1q + pdir +1) - pdygr +1 q

3.3.7 Fluctuations around the saddle point

We introduce the following notations:

OF
v F T = — s
[ T ( *)]aﬁ aTa6|T*
[__9%F 9°F
0Qap0 0Qa30R
[HTF(T*)}a[ﬂ,'yJ = QQ%FQ’YE QQ%F 'Yé‘| s
LORABOQ~s OR.pORs T,

roF  9F 9F  OF
g g g
HIF)= |57 B 5E 57
W wE m g
| 5q0F OroF 0Gor  OFOF

ST
= QR
OO Ty

Proposition Let ¢* and 7* be the solutions of the fixed point equation for the function Sy : (¢,7) — R defined in

F2):

9So(g,r) _
{a;@g )_O
alar) —

Then we have that

12



Sketch of proof Solving the saddle point equations:

one finds ¢ = 7 = 0, which is problematic because the prefactor vanishes: Py, oc u3G + p2r.

Therefore we must go beyond the saddle point contribution to obtain a non zero result, i.e. we have to examine the
quadratic fluctuations around the saddle point. To do so we preform a second-order expansion of the action as
a function of @ and R:

Pyy(T) = Pyy(T.) + (T — T,) ' VPyy(T) + %(T —T,)" Hr [Pyy(T2)] (T — T.),
SY(T) ~ So(T) + %(T —T,)" Hr [SY(T,)] (T — T.).

Computing the second derivative of , it is easy to show that:

[Hr [S*(T)] op 45 = [Hr [S*(T)]] 05 (dar0p6 + Gasdpy) »
[Hr [Pey(T)]] 5.5 = [Hr [Pay(T)]] 5 (0ary0p5 + 0asy)

where
8%F 9*F
9Qap0Qas 0Qu30Ra4
Hy [Fl,z = | 09355000 0Qe7ftes
OR0p0Quap ORapORap
1 9*F  9*F 9 P’k PPF
= o=bap | 0 WX+ (1= dap) | 0 T |
9°F  9°F _ aB) | 9°F  9°F
2n oroq oror 2n(2n — 1) o707 oFoT
Hence,

VY = lim [ dTPyy(T)exp 25" T,
n—0 3

D
= lim Py:(T}) +V Pge (T*)ag / dT(T — T*)ag exp (—SU(T)>
n—0.__3 , 3 2

0

0
+ %HT [Pyy (T*)]aﬁ/dT(T —T,)2 5 exp (_I;SU(T)>

1 v v
= Jim o Hr [Puy(T2)] 4 e FIT /dT(T —T,)2 ge % Xap(T-T)op HrlS"(T)ay

T =0 2 det Hr [S*(T,)]
— %Tr {H [S”r1 H [P\I/3H

v 2 -
85T 2 iy [Py (L), Hr [SU(T1)

In the last step, we used the fact that:

hm eigsv(T*) = hm e*’ﬂDSo(q*,r*) — 1
n—0 n—0 ’

71113%) det Hr [SY(T)] = 1.

The last equality follows from the fact that for a matrix of size n x n of the form M,g = adap + b(1 — dag), we have

detM:(a—b)"(l—i— )—>1

n—0

n
a—>b
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3.3.8 Expression of the vanilla terms

Using the above procedure, one can compute the terms Wy, U5, ¥ of : for each of these terms, the action is the
same as in , and the prefactors can be obtained as:

Py, [Q, ) = pfvonés (MY + o (M My M) + s (Mx M)
Pyy[Q, R] = Dyivps (i R™ + 12Q") (2 Pxx — 2uipv1haPxw + 2 Pww)
Pyy [Q, R = Dys (13 R + 12Q"?) [uf (M + 3 (M + pdudyi [MxMé’va]m) + 203 py [MXM&/]M} :

1 2
Pxx =N+ JM;? + 2 (1 pethr)? [Nx My Mx )™ + ('ull;jz/Jl)[MX]WW]V[X]12 + (papatn)* [Mx My Nx My Mx]'2,
2 2

1
Pxw = [NxMw]"* + " [Mx Mw]"? + (1 pisipn)? [Mx My Nx My ]'?
Piw = M2 4 o (ppstpn)? [Myy Nx My ] ™

Where a new term appears:
[Nx]*® = [R(I + 3¢ R) 2] (54)

3.4 Computation of the ensembling terms
3.4.1 Expression of the action and the prefactor

In the ensembling terms, the two inverse matrices are different, hence one has to introduce two distinct replica
variables. We distinguish them by the use of an extra index a € {1,2}, denoted in brackets in order not to be
confused with the replica indices a.

o {M@)}; = lim (H Hdna(a> P Opl@ ) e _72,7 MOpe@ | (55)

ii
J a=1la=1 (a)

]

Calculations of the Gaussian integrals follow through in a very similar way as for the vanilla terms. The matrices
appearing in the process are:

(G = b0 + 1L 37 At (56)
(a)a

(JX) :U’l,u* \/ Z )\oz(a a a)W (57)

(G = a1 3 @ agpaiy®) (58)
af

(Jiy)n=0 (59)

e \(ab

(G )hh’)u/ = 6hh’ [ (60)

J5)@ — ﬂz/\am) a(a) (61)

(Ge );11/5 (ab) 25ab6u (J‘((l)ng(b)7 (62)

(JOF@ = iV/PAT . (63)

(64)
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with

AP = Gapbap — M%%% > oA las N, (65)
]
i = 05 ]+ X [0 o500 [ o5 o5
af,ab ! !
[S{e/[/]ih _ % ; {Ggf—l)\a(a)L [G%/—lna(a)}h . (67)

Starting with the computation of V5 in order to illustrate the method used, the prefactor Py¢ and the action are S¢
are given by:

2
P o e .
Py [, )] ZZ%&WWQ) [uf {n””(Gwl)(”)nm)} + i |:)‘1(1)HW/\1(2):| + 203 ey [Al(”Swnl(”}] , (68)

1 ala ala e— « a
5[ Al =1z log det(G) + iz log det(Giy) + log det(G5) + 12\ Sy + Ao >(GX yab, bxf}b)) .

a5 (W@
(69)

3.4.2 [Expression of the action and the prefactor in terms of order parameters

This time, because of the two different systems, the order parameters carry an additional index a, which turns them
into 2 x 2 block matrices:

= / QLD Q) QL P~ ) (70)
1= / AR AR Fels” (4R NN (71)

The systems being decoupled, we make the following ansatz for the order parameters:

q 0] g 0 r 0| 7 0
_ |0 g | 0O q | o r| 0 7
Q*q 0 | ¢ 0 B=|— 0 | r 0 (72)
L0 g | o q | | 0 Folo ro

In virtue of the simple structure of the above matrices, the replica indices « trivialize and we may replace the
matrices (Q and R by the 2 x 2 matrices:

Define:
M)y = 5N (651, A = [RU+ e R) 1y (73)
N = [QU+ 1 A°Q)7] ) - (74)
where products are now over 2 X 2 matrices. Then, one has:
Py: [Q, R] :==Dpivip R [ufMﬁém +pd (MS‘}(U) + pindyl [M§M5VM§(](12)) + 203 24 [M)‘?Mvev](m} :
S[Q, R] 1=t log det(G% ) + 1 log det(Gfy) + Y [(w%w2A>TrQ<“><“> +Tr (R(“)(“)(Q’l)“)(“)) + log det Q<“><“>}

— 1 logdet Q — log det R.
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Where we have:

2 2 =2
e 1 T+ pir(re — ) 7 (75)

* T U ud)? — () 7 P (r? =)

Al oy = Oaby — 1101 [MK] (s » (76)
(M) (apy = 20(ab) — pign [AC(I + Mz¢1qu)71](ab) J (77)
det(GS) = det(d(ap) + 115 Rean))s (78)
det(Gyy) = det(dab + Y19 A{4p))- (79)

Finally, we are left with:

S¢(q,7,q,7) =n(So(q, ) + S1(q,7, ¢, 7)),
St(q,r 4, 7) =2 f(q,7) + 3°9°(g,7),

) 23y (1+ quden) + (1+ giden)” - rzui‘w%(—l + 1)
2r2 (1 + rpfyn + quiyn)

_%

g (Qar) _2(]2

Where Sy was defined in .

3.4.3 Expression of the ensembling terms

Evaluating the fluctuations around the saddle point follows through in the same way as for the vanilla terms, with
the following expressions of the prefactors:

Py [Q, R] = DY3opi7 (i Py x — 2ui i Py x + 13 Piyw ]| (80)
Py [Q, R] = Dy, R [uvaev(m + 13 (Mf((lz) + pipnt [MfcMﬁvM%](m)) + 2uf b [M)?Mﬁv](m)} , (81)
Pix = VaNG? + MY + 200 (i pratpr)? [ME NS M) + (o patpr)? [M§ My M5

4 e e e e e 112 (82)

+ o (papatpn)” [M My N My, M|
Py x = 2 [N My )™ + [ME M1 + o (pappn)? [M§ My NS M2, (83)
Piyw = M1 + da(p1pathr)* [Mi Ng Mg 1" (84)

3.5 Computation of the divide and conquer term

Here, we are interested in computing the term W¢. This term differs from the previous ones in that there are now
two independent data matrices X () and X . The calculations for the action and the prefactor are very similar to
calculations performed for the ensembling terms U5, ¥§, with the addition that X now also carries an index (a).
Firstly let us write U9 as a trace over random matrices:

2
vl = % I xXWzOL-19gMg@ g2 -172) x(2)| (85)
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Calculations follow through in the same way as in the previous sections. Using the replica formula , and
performing the integrals over the Gaussian variables the following quantities appear:

2
(@ =+ T AN, (56)
(ng()ga) MlM* \/ Z )\oz(a) a(a) a) (87)
(Gl = b + 2 3@ gosanyo®) (88)
af
(Ji)n =0, (89)
(GE) s s = O ar, (90)
Jg)(a) 'LZ )\a(a) a(a) (91)
dyapB, ab) ab i3’ 04 ﬁ(b)

(GH 2675 , (92)
(JHH = z'\/ﬁx;?“(‘”. (93)

(94)

The saddle point ansatz for @ and R is the same as the one for the ensembling terms (see (72))). The procedure to
evaluate W¢ is also the same as the one for ¥§ except the Hessian is taken with respect to S¢. The final result is
given below.

Pya [Q, R =Dpip1s7 [Y1pi Px x + 2p2pii Pwx + 2 Pww]
Pxx = (N)1<1 + 2(p1 pthn)? [Nx My M + (g patfn)* [MXMWNXMWMX]H) )
Py x =[NxMw]" + (mpsihr)? [Mx Mw Nx Myw]"
Pww =(papethn)? [Mw Nx My ]'
Sq,r,q. 7 =n (So(g,r) + 57 (q. 7,4, 7)) ,

d N R T
Sl(anyqu) _,’,74— q2 .
With:
r
My =——55—,
T T+ e
Azl—/,L?wlMx,
q
My = ——5——,
VT i2gA
7
N -
YT )
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