
Quantile Normalization for Matrix Factorization

A. Proofs

A.1. Proof of Proposition 2.1

We denote by P "
`` the matrix diagpu`qKdiagpv`q and

P "
`´ “ diagpu`´1qKdiagpv`q. Recall that P "

``1m “ a

whereas pP "
`´ qT 1n “ b For convenience, we can assume

that the array x is sorted in non-decreasing order and that
the entries of x are distinct. The first assumption is without
loss of generality, since applying a permutation to the entries
of x and a has the effect of applying the same permutation
to the vectors rR" and rT". The latter assumption can be
accomplished by infinitesimally perturbing the entries of
x and using the fact that rR", rS", and rT" are all continuous
functions of x.

Under these assumptions, it suffices to prove that the vectors
rS" pa,x;b,yq, rR" pa,x;b,yq, and rT",b,q pa,x;yq are non-
decreasing. These three claims follow from the following
monotonicity property of P "

`` and P "
`´ .

Lemma A.1. For any 0 § k § m, the sum of the last

k columns of diagpaq´1P "
`` is a vector whose entries are

non-decreasing. Similarly, for any 0 § k § n, the sum of

the last k rows of diagpbq´1P "
`´ is a vector whose entries

are non-decreasing.

Let us first see how this implies the proposition. Let M
be any matrix each of whose rows sums to 1 and such that
the sum of its last k columns is a non-decreasing vector.
Under these conditions, if w is a non-decreasing vector,
then Mw is non-decreasing. Indeed, if we denote by Mj

the jth column of M , we can write

Mw “
ÿ

j

Mjwj “
ÿ

j

Mj

˜
w1 `

ÿ

1§J†j

wJ`1 ´ wJ

¸

“ w1

ÿ

j

Mj `
ÿ

J

pwJ`1 ´ wJq
ÿ

j°J

Mj .

By assumption,
∞

j Mj “ 1, the all-ones vector, and∞
j°J Mj is a non-decreasing vector. Since w is non-

decreasing, wJ`1 ´ wJ is non-negative for each J . We
obtain that Mw is the sum of a constant vector and a non-
negative linear combination of non-decreasing vectors, and
is therefore non-decreasing.

Applying this argument to diagpbq´1pP "
`´ qT and the non-

decreasing vector x gives the first claim on the vector
of sorted values, whereas applying the same argument to
diagpaq´1P "

`` and the non-decreasing vectors b and q gives
the second and third claims.

All that remains is to prove the lemma.

Proof of Lemma A.1. We prove only the the first claim,
since the second follows upon taking transposes and in-
terchanging pa,xq and pb,yq. Write M “ diagpaq´1P "

`` .

Writing Mj for the jth column of M , our goal is to show that∞
j°J Mj is a non-decreasing vector for any J . Fix i † i1.

We first note that j fiÑ rpjq :“ Mij

Mi1j
is non-increasing. In-

deed, for j † j1, we have rpjq{rpj1q “ MijMi1j1
Mi1jMij1 • 1 by

Lemma A.2. Therefore, for any i † i1, we have
ÿ

j§J

Mi1j

ÿ

j°J

Mij “
ÿ

j§J

rpjq´1Mij

ÿ

j°J

rpjqMi1j

• prpm ´ kq´1
ÿ

j§J

Mijqprpm ´ kq
ÿ

j°J

Mi1jq

“
ÿ

j§J

Mij

ÿ

j°J

Mi1j .

Recall that each row of M sums to 1. Adding∞
j°J Mij

∞
j°J Mi1j to both sides of the above inequality

therefore yields
ÿ

j°J

Mij §
ÿ

j°J

Mi1j .

Since this argument holds for any i † i1, the vector∞
j°J Mj is non-decreasing, as claimed.

Lemma A.2. If c is submodular and x and y are non-

decreasing, then for any ` • 0 the matrix M :“
diagpaq´1P "

`` satisfies MijMi1j1 {Mi1jMij1 • 1 for all

i § i1
, j § j1

.

Proof. By the definition of P "
`` , we can write M “

diagpaq´1diagpu`qKdiagpv`q, so

MijMi1j1

Mi1jMij1
“ a´1

i a´1
i1 pu`qipu`qi1 pv`qjpv`qj1KijKi1j1

a´1
i a´1

i1 pu`qipu`qi1 pv`qjpv`qj1Ki1jKij1

“ KijKi1j1

Ki1jKij1

“ e
1
" pcpxi1 ,yjq`cpxi,yj1 q´cpxi,yjq´cpxi1 ,yj1 qq

“ exp

˜
´1

"

ª xi1

xi

ª yj1

yj

B2c

BxBy
dydx

¸

• 1 ,

where the last inequality follows from the assumption that c
is submodular.

A.2. Computing the Jacobians

For z P Rn`m we write zf P Rn (resp. zg P Rm) for the
subvector of z with the first n (resp. the last m) entries
of z, i.e., z “ pzT

f , zT
g qT . Let ⇧ : Rn`m Ñ Rnˆm be

the linear mapping defined for any z P Rn`m by ⇧z “
´pzf1T

m ` 1nzT
g q. For any vector u P Rd, we denote by

diagpuq the d ˆ d diagonal matrix with diagonal equal to u.



Quantile Normalization for Matrix Factorization

We define for x P Rn and z P Rn`m the function

⌧ : px, zq fiÑ
„

min"pCpxq ` ⇧zq ` " log a
min"pCpxqT ` p⇧zqT q ` " log b

⇢
,

where Cpxq “ rcpxi, yjqsij P Rnˆm, and for any A P
Rnˆm, min"pAq “ ´" logpe´A{"1mq.

If we denote by zpxq “ pfpxqT ,gpxqT qT the output of
the Sinkhorn iterations upon convergence, then it holds
that ⌧px, zpxqq “ 0. ⌧ being continuously differentiable,
the implicit function theorem tells us that if the Jacobian
Jz⌧px, zpxqq is invertible, then there exists an open neigh-
borhood of x where x fiÑ zpxq is invertible and its Jacobian
satisfies Jxzpxq “ ´Jz⌧px, zpxqq´1Jx⌧px, zpxqq. Let us
therefore compute these terms.

In order to compute ´Jz⌧px, zq´1, we first observe that for
any H P Rnˆm,

rJAmin"pAqspHq “ pe´A{" ˝ Hq1m

e´A{"1m
,

therefore, for any � P Rn`m,

rJzmin"pCpxq ` ⇧zqsp�q “ pM ˝ ⇧�q1m

M1m
,

where we write for convenience

M “ e´ Cpxq`⇧z
" .

Notice now that

M˝⇧� “ ´M˝p�f1
T
m`1n�T

g q “ ´diagp�f qM´Mdiagp�gq ,

therefore

pM ˝ ⇧�q1m “ ´�f ˝ pM1mq ´ M�g ,

from which we obtain

rJzmin"pCpxq ` ⇧zqsp�q

“ ´�f ˝ pM1mq ` M�g

M1m
“ ´�f ´ M�g

M1m
.

Similarly, we obtain

rJzmin"pCT pxq ` p⇧zqT qsp�q “ ´�g ´ MT �f

MT 1n
.

Wrapping up, we finally obtain that

rJz⌧px, zqsp�q “ ´
«

�f ` M�g
M1m

MT �f
MT 1n

` �g

�
,

and therefore, writing M1 “ diagp1{M1mqM and M2 “
diagp1{MT 1nqMT :

´Jz⌧px, zq “
„

In M1

M2 Im

⇢
.

Using matrix inversion with the Schur complement, we
finally get

´ Jz⌧px, zq´1 “
„
In ` M1S´1M2 ´M1S´1

´S´1M2 S´1

⇢
, (2)

where S “ Im ´ M2M1.

To compute Jx⌧px, zq, we first observe that for any � P Rn,

rJx⌧px, zqsp�q “
„ rJAmin"pCpxq ` ⇧zqs prJxCpxqsp�qq

rJAmin"pCT pxq ` p⇧zqT qs
`
rJxCT pxqsp�q

˘
⇢

.

Here, rJxCpxqsp�q “ diagp�q� and rJxCT pxqsp�q “
�T diagp�q, where � “ rc1pxi, yjqsi,j . Therefore, using
again the notation M1 and M2 , one has

rJx⌧px, zqsp�q “
„ pM1 ˝ diagp�q�q1m

pM2 ˝ �T diagp�qq1n

⇢
“

„
� ˝ pM1 ˝ �q1m

pM2 ˝ �T q�
⇢

.

(3)

Combining (2) and (3), we finally get from the implicit
function theorem that rJxzpxqsp�q is equal to:
„`

In ` M1S´1M2

˘
p� ˝ pM1 ˝ �q1mq ´ M1S´1pM2 ˝ �T q�

S´1
`
´M2p� ˝ pM1 ˝ �q1mq ` pM2 ˝ �T q�

˘
⇢

.

At this point, we should notice that the above derivation is
only valid is the Jacobian Jz⌧px, zpxqq is invertible. How-
ever, on easily see that for any px, zq P Rn ˆ Rn`m,
⌧px, zq “ ⌧px, z ` �z0q with z0 “ p1T

n ,1T
mqT and � ° 0;

and simultaneously, the n ` m equality in ⌧px, zq are re-
dundant, since as soon as n ` m ´ 1 of them are satisfied
then they are all satisfied. This implies that Jz⌧ is nowhere
invertible. In order to make it invertible, we can just remove
the first dimension in the definition of ⌧px, zq, and simulta-
neously constrain the first coordinate of z to be 0. One can
easily check that in that case, all the computations above
remain valid after removing the first row/column of each
matrix vector of dimension n.

B. Additional experiments

B.1. Simulations

In this section we provide more experimental results for
the “larger experiment” simulated problem described in the
main text, where we factorize a matrix with dimensions
d “ 500, n “ 256, k “ 10, modified by a ground truth
quantile normalization and corrupted by truncated Gaussian
noise. Figure 4 showed the performance during training
of NMF, QMQF and QMF with different batch size for a
learning rate equal to 0.01, and m “ 16 quantiles.

We first assess the influence of the learning rate. In Figure 8,
we plot the performance during training of NMF and QMF
with various batch size with learning rate 0.01 (left, identical



Quantile Normalization for Matrix Factorization

to Figure 4), and a larger learning rate 0.1 (right). While
NMF does not seem to be influenced by the learning rate
in this case, we see that the performance of QMF degrades
when the learning rate is too large, particularly for small
batch sizes, as expected. Overall, this confirms that taking
0.01 allows QMF to converge to a good solution, at least
when the batch size is at least 64.

Second, we discuss the impact of m, the number of quantile
levels. Figure 9 shows the training error of QMF when the
learning rate is fixed to 0.01, and we vary m among 4, 8 and
16. We see that m “ 4 leads to a suboptimal approximation
compared to m “ 8 or m “ 16, suggesting that m should
be large enough to model the quantile transformation. On
the other hand, the fact that m “ 16 is not better than m “ 8
(while the ground truth quantile transformation is obtained
with m “ 256 quantile levels) suggests that a relatively
small number of quantile levels is enough to approximate a
complex transform, in that case.

Figure 10 illustrates the different behaviors of NMF, QMF
and QMFQ on a simple matrix X (simulated according
to the “toy illustration”, with d “ 160, n “ 80, k “ 8,
see main text for details), where we see strong row-wise
patterns due to different quantile transformations applied
rowwise. We see in particular the that residuals after matrix
approximation by NMF have still strong rowwise patterns,
and overall larger values than those after QMF and QMFQ
approximation.

In Figures 11 and 12, finally, we compare the quantile trans-
forms inferred by QMF and QMFQ, respectively, on the
“larger experiment” with the parameters of Figure 4. Each
figure shows the quantile functions inferred for the first 20
features (out of a total of d “ 500 features). While the
reconstructed quantiles are generally very good approxima-
tions of the ground truth (in blue), we see a few cases where
QMFQ (a more costly option) recovers slightly better the
ground truth quantile function than QMF. In particular, it
seems that QMF sometimes allocates its budget of quan-
tile values not optimally (e.g. lower left plot of Figure 11)
whereas QMFQ does a better job in Figure 12. It would be
interesting to better understand why we see this behavior.

B.2. Genomics

In this section we provide additional experimental results
regarding the use of QMF for cancer genomics data inte-
gration. In particular, to assess the influence of the number
of quantile values m, we show in Figure 13 the decrease in
KL loss during optimization, on the 9 cancer data sets, for
NMF and for QMF with m “ 8 or 16 target quantiles. The
loss tends to decrease initially faster with NMF, but after
about 100 iterations QMF reaches lower loss values than
NMF consistently across all cancers and converges to lower
values. We do not see any important difference between

m “ 8 and m “ 16.



Quantile Normalization for Matrix Factorization

Figure 8. Sensitivity of QMF to learning rate. The setup here is identical to that of Figure 4 in the paper: we consider a synthetic model
with additive censored Gaussian noise. We show the results of different methods for a learning rate equal to 0.01 (left) or 0.1 (right).

Figure 9. Sensitivity of QMF to the number of target quantiles: we
have observed that setting m to a number larger than 8 is usually
sufficient to obtain good results. Here again the setup is identical
to that of Figure 4, with a learning rate set to 0.01



Quantile Normalization for Matrix Factorization

Figure 10. Example of data matrix on the left, along reconstruction errors of all 3 approaches considered here, QMFQ, QMF and NMF.

Figure 11. Reconstruction of quantile distributions for QMF in the synthetic + noise setting of Fig. 4 in the paper for the first 20 features.



Quantile Normalization for Matrix Factorization

Figure 12. Reconstruction of quantile distributions for QMFQ in the synthetic + noise setting of Fig. 4 in the paper for the first 20 features.

Figure 13. Decrease of Kullback-Leibler divergence on the 9 genomics datasets, using QMF with a batch size of 64 and a learning rate of
0.001 with different number of quantiles m.


