Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

Ashok Cutkosky ' 2

Abstract

We provide a new online learning algorithm that
for the first time combines several disparate no-
tions of adaptivity. First, our algorithm obtains a
“parameter-free” regret bound that adapts to the
norm of the comparator and the squared norm of
the size of the gradients it observes. Second, it ob-
tains a “strongly-adaptive” regret bound, so that
for any given interval of length NV, the regret over
the interval is O(\/ﬁ). Finally, our algorithm ob-
tains an optimal “dynamic” regret bound: for any
sequence of comparators with path-length P, our
algorithm obtains regret O(v/PN) over intervals
of length N. Our primary technique for achieving
these goals is a new method of combining con-
strained online learning regret bounds that does
not rely on an expert meta-algorithm to aggregate
learners.

1. Online Learning and Strong-Adaptivity

Online learning is a popular way to analyze iterative op-
timization algorithms (Shalev-Shwartz, 2011; Zinkevich,
2003). Briefly, online learning is a game played between
the learning algorithm and an environment over 7" rounds.
In each round, the learning algorithm outputs a vector w;
in some convex space W and then the environment reveals
a loss function ¢; and the learner suffers loss ¢;(w;). The
goal is typically to obtain small regret:

T
Rr(w) = th(wt) — Ly (w)
t=1

We can use this game to model the progress of an iterative
machine learning training procedure: let w, be the tth set
of model parameters output by the training algorithm and
£, be the loss on the tth minibatch. Then the regret simply

'Google Research “Boston University, Boston Mas-
sachusetts, USA. Correspondence to: Ashok Cutkosky
<ashok @cutkosky.com>>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

measures how fast the training algorithm is able to converge
to the optimal parameters w. More generally, online learn-
ing can be used to model many sequential decision making
processes in which the characteristics of the ¢, may change
from round to round. For example, ¢; may represent out-
comes varying from the effects of a medical treatment to the
score obtained by a game-playing robot.

In order to achieve tractable theoretical guarantees, in this
paper we will make the common assumption that each /; is
a convex function. With this assumption, we can set g; to
be a subgradient of ¢, at w; and then obtain
T
Ry(w) <Y {ge, we — 1b) (1)

t=1

All our results will come from upper bounding this lin-
earized regret, so for simplicity in the rest of this paper we
assume that each loss ¢; is linear and use the right hand side
of (1) as the definition of the regret. This setting is often
called online linear optimization (OLO), and many popular
and successful algorithms have been designed an analyzed
for this setting (Duchi et al., 2010; McMahan & Streeter,
2010; Zinkevich, 2003)

It is well-known that in online linear optimization, one
cannot guarantee worst-case regret better than O(DG/T),
where G = max ||g;|| and D = sup, ,cyy ||z — yl| is the
diameter of the domain W, and this bound is achieved by
online gradient descent (Abernethy et al., 2008). As a result,
much of the work in online linear optimization is in design-
ing adaptive algorithms (Hazan et al., 2008; Duchi et al.,
2010; McMahan & Streeter, 2010). These algorithms should
perform better in non-worst-case settings without sacrificing
worst-case guarantees, and typically obtain bounds of the
form:

The above bound achieves adaptivity to non-worst-case se-
quences of losses g;, but does not adapt to a non-worst-
case comparison point w. In order to fix this, so-called
“parameter-free” algorithms (Cutkosky & Orabona, 2018;
Kempka et al., 2019; Cutkosky & Sarlos, 2019; van der
Hoeven, 2019; Mhammedi & Koolen, 2020) obtain smaller

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

regret when 0 is small:

Ry (w) <[]

T
> lgell?
t=1

In a parallel direction, other works go beyond the minimax
optimality of online gradient descent by considering harder
notions of regret. In particular, one attractive goal is to
obtain a so-called strongly-adaptive guarantee. Strongly-
adaptive algorithms obtain:

sup Xb:(gt,wt —) =0 (DG\/H)

WeEW 1a

for all intervals [a, b] C [1,T] simultaneously. This guar-
antee was first obtained by (Daniely et al., 2015), and later
(Jun et al., 2017) improved the logarithmic dependencies

to a regret bound of O (DG /T 1og(T)) . Intuitively, these

algorithms provide robustness to environments that display
some kind of shifting behavior, with losses on different
intervals having very different statistics.

Finally, the notion of dynamic regret allows the comparison
point w to change:

T
) = Z<gtawt — W)

t=1

Ry (i, ...

This setting has been studied in several previous works (of-
ten under the names “shifting” or “tracking” regret) (Herb-
ster & Warmuth, 1998; Gyorgy et al., 2012; Gyorgy &
Szepesvari, 2016; Zhang et al., 2018a), and there are sev-
eral notions of performance in this setting (see Zhang et al.
(2018b) for a description of many of them), but in this paper
we focus on obtaining a regret bound in terms of the path-
length P = EZ;l |1 — 20¢]|. Online gradient descent
already obtains regret Dv/T + P+/T, but this can be im-
proved to v D PT (and no further) without any knowledge
of P, as shown by Zhang et al. (2018a).

Given these disparate threads of research, it is natural to
look for an approach that can obtain all three goals in a
single algorithm. This is the main result of our paper: given
any norm || - ||, we provide an algorithm such that for any
interval [a, b] the dynamic regret over that interval is:

b

Z<gt7wt —) <

t=a
b—1 T
0 <D2 + DY by — wtn) > lgell? log(T)
t=a t=1

Moreover, for the interval [1,T'] our algorithm maintains a

non-dynamic “parameter-free” regret bound:

T T
O { Il > llgeli2 tog(llwll D llgelI2)
t=1 t=1

Note that in all cases, our bounds achieve adaptivity to the
value of ||g¢||?, which we call a second-order bound, and
so automatically perform better when the losses are less
adversarial.

Previous algorithms obtain parts of this goal. For exam-
ple, the algorithm of (Zhang et al., 2018a) obtains optimal
dynamic regret with a second-order bound, but only for
the interval [a, b] = [1,T] (it is not strongly-adaptive). On
the other hand, (Zhang et al., 2019a) does not consider
the dynamic-regret setting, but obtains a strongly-adaptive

algorithm with regret D\/ maxj|g, | Zf:a |lgs|| for any in-

terval [a, b]', which does not quite achieve a second-order
bound. To the best of our knowledge, the only other algo-
rithm to achieve strongly adaptive regret that also obtains a
second-order bound is (Zhang et al., 2019b). However, their
algorithm runs in O(log?(T')) time per update, while ours
runs in O(log(7T')) time, which matches the best-known rate
for any strongly-adaptive algorithm.

We are not aware of any algorithms that achieve the
parameter-free regret bound while also achieving either
strongly-adaptive or dynamic regret bounds. Further, we
believe our result is the first to combine strongly-adaptive
regret with the optimal dependence on path-length for dy-
namic regret. Interestingly, it turns out that this latter result
is due almost entirely to an improvement in analysis rather
than a novel property of our algorithm. We suspect that
our same proof shows that essentially all known strongly-
adaptive algorithms to-date also achieve the optimal depen-
dence on the path-length in dynamic regret.

In order to obtain these improved results, our techniques are
qualitatively somewhat different from previous approaches.
The standard paradigm for designing strongly-adaptive
methods, as outlined initially by (Daniely et al., 2015), is to
instantiate O(log(7")) different online learning algorithms,
each dedicated to a different interval in [1, T']. The intervals
are chosen cleverly so that any [a, b] can be decomposed
into a disjoint union of log(b — a) intervals. Then, a meta-
algorithm is used to aggregate the O(log(7")) outputs of the
base algorithms in order to create a single method that never
performs much worse than any of the base algorithms.

Our approach eschews the use of a meta-algorithm. In-
stead, we provide a generic technique that takes an online
learner and any interval [a,b] and provides a new learner

"Their algorithm technically considers the case of non-negative
smooth losses, but with a little effort one can see they achieve this
stated bound in our setting.

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

whose regret on any interval I D [a, b] is at most an addi-
tive constant worse than the regret of the original learner
on that interval, and whose regret on the interval [a,] is

b
2i=a llgell?

[a,b], we run a second online learner whose predictions
are added to those of the first learner on that interval. The
second learner’s objective is in some sense to minimize
the “residual” in the loss obtained by the first learner. This
new approach is what allows our algorithm to maintain the
parameter-free regret bound.

at most O () Intuitively, on the interval

2. Setting, Notation, and General Strategy

We consider the online linear optimization game in which
the learner outputs w; € W for some convex domain W
and then suffers loss (g, w;) for some loss vector g;. We
define the dynamic regret over an interval I = [a, b] as

Ri(W) = Z<gt7wt — i)

tel

where W denotes the vector of comparison points
Wy, ..., wr. We will occassionally refer to Ry(w) with-
out a bold-font w. This indicates a non-dynamic regret
in which w = (i,...,w). Given an interval I = [a,}],
we denote the comparator path-length over the interval as
b—1 ¢ .
Pr = >3/", w1 — wel. We also use a compressed-
sum notation to reduce clutter in formulas: || g||2,, indicates

b
t—a llgell*.

We assume that the domain W is a convex subset of R%, and
let || - || indicate the standard Euclidean norm. Note that all
of our presentation is essentially unchanged if W is a subset
of a Hilbert space and || - || is the Hilbert space norm, but
we restrict to R? for ease of exposition. We will constrain
g+ to satisfy ||g¢]| < 1 for all t. We assume that our domain
W is bounded, and use D to indicate the diameter of W
with respect to this norm: D = sup,, , ey (| — y||. Finally,
we assume that the origin is in W. This assumption is
without loss of generality: if the origin is not in W, we can
simply choose some arbitrary point w € W and translate
our coordinates to make w the origin.

A key component in our analysis is the existance so-called
“parameter-free” algorithms (Mcmahan & Streeter, 2012;
Orabona, 2014; Orabona & Pal, 2016; Foster et al., 2018;
Cutkosky & Orabona, 2018). These are algorithms that
obtain non-dynamic regret

R (w) < 0 (6 + ||l

VT log(TTw]l/))

where € > 0 is an arbitrary user-specified constant. The key
advantage of these algorithms is that their regret automat-
ically adjusts to the value of ||w||. In particular, if w = 0,
the regret is bounded by the constant €. Put another way, the

total loss of the algorithm, ZtT:l (g¢, wy) cannot be larger
than e. In this paper, we will use algorithms that not only
are parameter-free, but also achieve a second-order regret
bound. Specifically, we have the following consequence of
results in (Cutkosky & Sarlos, 2019; Cutkosky & Orabona,
2018):

Theorem 1. For any convex set W, and any 1 > 0, there
exists an algorithm that obtains (non-dynamic) regret

T
Ry py(ih) =Y {ge, wy — 1b)
t=1
[2
<+ Ol \/(1+ |gt||§:T)10g(w (1+¢”gt||1:T))
i1)
+C’||u°)||log< w|(+w|9t||1:T)>

for some absolute constant C, where ||g;||2.; is notation for

T
Zt:] ||gt

2,50 long as ||g¢|| < 1forall T

2.1. Overview of Approach

Our general approach bears many similarities to the pioneer-
ing work of (Daniely et al., 2015). We will construct a set of
“representative intervals” S such that any interval [a, b] can
be written as a disjoint union of at most log, (b—a) intervals
in S. Then we will construct an algorithm such that, for
each interval T € S, the regret over the interval is O(1/|1]),
where |I] is the length of the interval. Since each general
interval [a, b] can be constructed using a small number of in-
tervals in .S, this will be sufficient to show strongly-adaptive
regret. The run-time of our algorithm will be proportional
to the number of intervals in .S, and so it is important that S
be reasonably small. As outlined in Section 5, we use the
geometric covering intervals suggested by (Daniely et al.,
2015), which leads to |S| = O(log(T)).

In order to build an algorithm that has low regret for each
interval I € S, we provide a generic procedure that takes an
arbitrary algorithm and an interval I and produces a new al-
gorithm whose regret on I is O(+/|I|) without changing the
regret on any other interval. By applying this construction
for each interval in S, we develop our desired algorithm. We
outline how to achieve this in Section 3. Our main Theorem
is then presented in Theorem 6. Finally, we show that this
approach to strongly-adaptive regret also implies optimal
dynamic regret in Theorem 7.

3. Residual Learning

In this section we show how to take an algorithm A and
an interval [a, b] and produce a new algorithm that never
has worse regret than A, but is also guaranteed to have
low regret on the given interval. To gain some intuition for

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

how our technique works, let us for the moment ignore the
constraint set W and allow our algorithm to be improper,
in the sense that its outputs w; may lie outside . Then,
one first idea is to have a second learner 5 run only on the
interval [a, b] on the losses ;(w) = (g, w — x+), where x;
is the tth output of 4. In some sense, B is attempting to
minimize the residual error left by the first learner. If y;
is the output of B, we might think to play w; = x; + y;.
Intuitively, if x; is doing poorly, y. can pick up the slack and
vice versa. Unfortunately, this technique does not quite work
because now [3’s comparison points are essentially w; + x,
which can have a much larger path-length than the original
w¢. Note that in the case of non-dynamic regret and the
fixed interval [1, T, (Cutkosky, 2019) avoided this problem
by assuming that A has a reasonable regret bound, which
implies that the x; have some nice properties. However, in
our case we do not wish to assume anything about the loss
of A on the interval [a, b], and so we need a more delicate
approach.

Our key idea to fix the problem with adding iterates is to
introduce an extra dimension. B will output points in W x
[0,1] € R4, and its loss at time point ¢ is given by:

Le(y, 2) = (g, y) — 2(ge, T¢)

Notice that ¢;(y, z) is convex (in fact, linear) in (y, z). Then
at time ¢, if (y¢, 2¢) is the output of the second learner, we
play the point w; = xy + y¢ — 2z:x¢. Using this method, ¢;
has the following powerful properties:

<9t, wt — UQ)t> = ét(yty Zt) - Et(ﬁ)t, 1))
(g, we — W) = (ge, xr — W) + Le(ys, 2¢) — ££(0,0) (3)

The first fact implies that the total regret over the interval
[a,] is equal to the regret of BB on its losses ¢;, which is
under control as long as BB obtains a good regret guarantee.
The second fact implies that the regret over the interval
[a, b] is equal to the regret of A on the same interval plus the
regret of 3 to the constant comparison point (0, 0). This is
where we invoke the existence of parameter-free algorithms.
By setting B to be the algorithm specified by Theorem 1
that obtains constant regret with respect to the origin, we
control this extra regret and so experience very little extra
loss over the regret of A.

Note that this intuition does not deal with the issue of en-
forcing w; € W. To address this issue, we take a brief
detour to discuss a general method for applying contraints
to online learning algorithms.

4. Adding Constraints

In order to remove the improperness from the approach
outlined in the previous section, we need some way to
enforce the constraint w, € W. Our strategy for this is

Algorithm 1 Varying Constraints
Input: online learning algorithm A. Sequence of do-
mains V7, ..., Vi contained RY.
fort=1...T do
Get wy € V from A.
Define the function IT;(z) = argmin,,cy, |w — z||.
Output w; = T (wy).
Getloss g..
Let v, = pot=gtr.
Define the function S;(w) = ||w — I (w)]|.
Define /;(w) by:

<gt7 ’UJ>

if (g¢, we) > (g, Wy)
(ge, w) — (ge,ve) St(w) z

if (g, we) < (ge, W)

Compute §; € 8&(%).
Send g; to A as tth loss.
end for

a generalization of the reduction between unconstrained
and constrained online learning proposed by (Cutkosky &
Orabona, 2018). Their method takes the prediction w, of
an unconstrained algorithm and outputs the constrained pre-
diction II(w;) = argmin, cy; [[w — wy||. Then the origi-
nal algorithm is provided with the surrogate loss function
£o(w) = (g, w) + | g1 (w), where S(x) = || — TT(w)]
The additional term ||g;||S(w) serves as a penalty for at-
tempting to violate the constraints. This penalty is carefully
designed in such a way that the regret of the unconstrained
algorithm on the penalized losses is an upper bound on the
regret of the constrained points on the true losses. We make
two mild improvements upon their reduction. First, we de-
sign a better penalty term that allows us to remove an extra
factor of two from the original regret analysis. Second, we
observe that it is possible to change the constraint set at
every round, so long as the comparison points w; always
lie with in tth constraint. The algorithm and analysis are
present in Algorithm 1 and Theorem 2.

Theorem 2. The functions l, defined in Algorithm I are
convex functions defined on all of V' and the gradients g,
sent to A by Algorithm 1 satisfy ||g¢|| < ||g¢|. Also, for all
t and all w € V; we have

(gt,u% - ﬁf) < gt(wt) - Zt(UDJ) < <gtawt - 7j}>

Proof. First, note depending on the values of w¢, w; and gt,
{4 is either (g¢, w) for all w, or (g¢, w) — (g, v¢).S(w) for all
w. In the former case, we have g; = ¢; and so all claims in
the statement are immediate. Let us focus on the latter case.
We have from (Cutkosky & Orabona, 2018) Proposition 1
that S;(w) is a 1-Lipschitz convex function, so that to show
that /, is convex it suffices to show that (g¢,ve) < 0. To this
end, observe that we can write w; = w; + av; where o =

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

|lwe — || = S(wy) > 0. Therefore, if (g¢, we) < (g, Wy),
we must have (g;,v;) < 0 so that /; is convex. Further,
we have 0S;(w;) = {v¢} by Theorem 4 of (Cutkosky &
Orabona, 2018). Therefore §; = ¢g: — (g¢,v¢)ve. Since
|lue]l = 1, by triangle inequality we have ||g:|| < 2/g|.
Then wse have that g, is orthogonal projection of g, onto
subspace perpendicular to vy, so that ||G¢|| < ||g¢]|-

Next, notice that if (§:, wt) < (g, W), we have

(g¢, We) = (ge, we) + (g, W — wy)
<gta wt> - a<gt7 vt>
= ét(wt)
This implies (g¢, W, — w) = ft(wt) - ét(zi/) < {(gr, wy — W)
as desired. O

Theorem 2 allows us to add arbitrary time-varying con-
straints to an online learning algorithm without damaging
regret bounds, even if those bounds happen to depend on
the values of ||g:||. Using this, we can fix the approach out-
lined in Section 3. Recall that given z;, we have a second
algorithm B that outputs (y, 2;) in response to losses

zt(yaz) = <9t7y> - <gt»$t>z

and our final output is wy = x4 + y; — zix¢. In order to
guarantee that w; € W, we use the fact that z; € W and
define the set

Vi=A{(y,2):

Notice that V; is a convex set, and (0, 0) and (w, 1) are both
in V; for all values of w € W. Therefore we can simply
constrain B to play within the set V;, and by definition we
will have w; = z¢y + y+ — z:x¢ € W. Moreover, since
(0,0) and (uy, 1) are both in V;, we can still make use of
the important properties (2) and (3). The full algorithm is
described in Algorithm 2 and the analysis is in Theorem 3
below:

e +y—zxy €W, z€(0,1),y e W}

Theorem 3. Let A be an online learner that outputs x €
W in response to losses g;. Let 11, . .., [k be some disjoint
intervals in [1,T]. Let J be any interval such that for all
k, either J contains Iy or is disjoint from Ij,. Then given
€ > 0, Algorithm 2 guarantees regret:

Ry(%) = {gi,w, — 1) < R (W) + e
teJ

where R (W) = Y ,c;(ge, @t —) is the regret of A
on the interval J. Further, for each interval Iy, we have
Ry, (W) bounded by:

e+ 0 |(D+Pr),| D llg:l|*log

tely

(KD 2ier, ||gtll2>
€

b—1 o
where D = sup, ,cw ||* —yll and Pap) = >, |i 41 —
Wel|.

Algorithm 2 Residual Algorithm
Input: Intervals [4,..., [k, online learner A, number
€ > 0.
Initialize algorithm B from Algorithm 1 using the algo-
rithm of Theorem 1 as the base unconstrained algorithm,
with ¢ = ¢/K.
fort=1...Tdo
Get x; € W from A.
if t ¢ I, for some k then
Output w; = ;.
Get g; and send it to A.
else
If ¢ is at the beginning of some I}, reinitialize 5.
Let k be such that ¢ € I, with I, = [a, b].
Sett/ =t—a+1.
Set Vir = {(y,2) € REXR : 24 +y — 224 €
W and z € [0,1]}.
Send Vy to B as t'th constraint set.
Set (yt, z¢) to the t'th output of B.
Output wy = x4 + yp — zpaxr € W.
Get loss g;.
Send g, to A as tth loss.
Send (g¢, —{gt, x+)) to BB as t'th loss.
end if
end for

Proof. For the first statement, we break up the interval J
into disjoint components that are either equal to some Iy,
or have no intersection with any I;. Observe that the to-
tal regret over J is just the sum of the regrets over these
components. For any component C' that has no intersection
with I, we have w; = x;, where x; is the output of A.
Therefore the regret obtained over the rounds that do not lie
in any [}, is identical to the regret of .4 over these rounds.

Next, we compute the regret over any interval I,. Let us
write I, = [a, b]. Observe thatin I, wy = @t + yr — 2124
where z; is the output of A and (y;, z¢) is the t — a + 1st
the output of B when running over I;. Therefore we have

Ry, (W) = Z<gt7xt + Yy — 2y — Wy)

tely
= Z<gt7$t —) + Z(gt,yt — 2%)
tely tely

b
= Rt (W) + > (969 — 0) + (—gs, @) (2 — 0))

t=a

Now, notice that Zf=a<gt, ye — 0) + (—gi, xe) (2 — 0)) is
the (non-dynamic) regret of B with respect to (0, 0). Then,
for all ¢, (0,0) € V; so that by Theorem 1 and Theorem

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

2, we have that the regret is at most ¢/ K. Therefore since we have g; = §; and so the statement follows. In the latter
there are only K total intervals Ij, summing up these regret ~ case, we write:
bounds proves the first statement of the Theorem.

. . <gt7wt - wt> > Et(wt) - t(wt)
For the second statement, we again write I, = [a, b] and . .
. = (gts we) = (ge, ve) [lwe —]| = (ge, W)
compute: R e R
. (G, wt) = (Ges0e) + (ge, wi — Wy)
Ry, (W) = Z<gt; Tt + Y — 24T — W) R o — {or, Ut>AHwt il
t=a (e, we) > (Ge, i) + (e, wi — W)
—i< —) + (— (2 — 1) —<9t (wt_wt)>wt—1f1t||
= 2 Gt Yt — Wt gt) (2 " we — vy |

Gt, W) > (Gy, W
Therefore the regret is the dynamic regret of B with respect (e we) 2 (e, 0r)

to the sequence of comparators (g, 1), ..., (i, 1). We 5o that the statement still follows.
analyze this dynamic regret separately in Theorem 4 below,
from which the result follows. O Now we have for any X' > 0,

Theorem 4. Suppose V1, ..., Vr is a sequence of convex i . i i
domains, all of which have bounded diameter D. Suppose - Di+ X Z gi Z gi» i) + X Z gi
w1, ..., W is a sequence of points such that 1; € V; for . =t =l . =l
all t. Then if we run Algorithm 1 with base algorithm A < Z Go,ws) Z
equal to the algorithm of Theorem 1, the combined method T = o —
achieves dynamic regret: M Guer

d = fim < X||§1;T|>

> {gr, iy — i)

X X
t=1 < e+ XC[Glog (G) +CXlog (G)
HwTIIG . [T ||G ¢ ‘
< e+ Cllr||y/Glog >+C|w||log(;) . . <
€+
< inf lo
< inf — +Cy/G g< ; >

> G
+ Pr + PTC\/G log ((tDe~! 4 1)G) =
-1
+ PrClog ((tDe ' + 1)G) 1 Clog (XG)
. €
= O[(lior | + Pr)+/Glog (1D T+ 1)G)
_ Set X = ¢ + Dt to obtain:
+(|wrll + Pr)log (tDe™! + 1)G)]
t
where G = 1+ 5 [|g:||% Pr = 3,2 lesa > a
and we follow the notation in the pseudocode to use Wy to i=1
indicate outputs of the algorithm. + C'log ((tDe‘l + 1)@)

<1+ C+/Glog((tDe ! + 1)G)

Proof. Following the notation of Algorithm 1, let w; be the

And now put all these calculations together to prove the
ouputs of the unconstrained algorithm .4, and define R[1 7]

Theorem.
to be the regret of .A. Then we have
T T H
Z@tﬂ% —) < Z(Quwt — W) .
=1 =1 5. Main Result

I
B

17—
A In this section we prove our main result by showing how to
(Gt we — Z gt, —(Wr—i — Wr—it+1)) P y £

apply Theorem 3 to build a strongly-adaptive algorithm. Our
approach uses the geometric covering intervals suggested
Z G by (Daniely et al., 2015). Let N be the smallest integer
Pt such that 7' < 2V, Note that N = O(log(T)). For each

i = 0,1,..., N, we maintain a set of disjoint intervals
Next, we show that (j;,w;) > (s, ;). There are two S;, such that | J, . s, 1= [1,T]. The set S; consists of all
cases, either (gy, w;) > (g, ;) or not. In the former case, intervals of length 2¢ starting at a multiple of 2°. Notice that

||P1H

~
Il
—

= R'['Ll‘7T] (’LZ}T) + PT mtax

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

S; contains at most O(7'/2°) intervals. Also, observe that
any given index ¢ is contained within at most one interval in
each S;. We write S = | J, . Si

The key property of these intervals is the following, proved
in Lemma 5 of (Daniely et al., 2015):

Proposition 5. Let [a, b] be any interval contained in [1, T).
Then [a,b] can be written as a disjoint union of at most
O(logy (b — a)) intervals such that each interval is in some
S; and no S; contributes more than 2 intervals to the disjoint
union.

Using this Proposition, we build our algorithm in stages.
Specifically, we will construct a sequence of algorithms
An, An_1,...,. A1 such that Ay is the algorithm provided
by Theorem 4, and A; is an algorithm that obtains the
desired regret guarantees. Formally, we have the following
Theorem:

Theorem 6. Let T be the time required to project to sets of
the form V; as defined in Algorithm 3. Then there exists an
algorithm that runs in O(dlog(T)T) time per round such
that the dynamic regret Ry (W) over any interval I is:

O | (D + Pp)log (ngtHQ) 1+ gl
tel tel

Moreover, the same algorithm achieves non-dynamic regret:
Ry (1) < O [D(1og*(T) + /[T]Tog(T))|

where |I| is the length of the interval I. Finally, the
same algorithm also achieves non-dynamic regret bounding

Ry 1y (w) by:

T
O |1og(T) + [l | D llgel? log

t=1

T
ol Y ngtnz)
t=1

Proof. Our first goal is to build an algorithm such that for
any interval J € S, we have the slightly better regret bound:

(D + Py) <log (T +TY ||gt||2>)

teJ

R;(W) <O

[1+ S llgel?) log <T+TZ ||gt||2>

teJ teJ

Suppose we have this result. Then recall that any inverval [
can be written as a disjoint union of O(log(7)) intervals in
S. Further, the regret over the entire interval [is obtained by
summing the regret obtained on each interval in the disjoint
union. Then applying the Cauchy-Schwarz inequality yields
the first statement of the Theorem. For the second statement,

notice that since ||g;|| < 1, we must also have for any
interval J € S,

Ry(W) < O[(D+ Py) (log (T1J]) + /7 TIog (TTJ]))|

Given any interval I, we write [as the disjoint union of
intervals specified by Proposition 5 and sum the regret over
the intervals, just as we did to obtain the first statement.
However, now that we have abandoned dependence on ||g;||,
we can bound the sum more efficiently than with Cauchy-
Schwarz. Specifically, since no S; contributes more than 4
intervals to the disjoint union, the total regret is bounded by:

1+log, (I)

o4 >

(D + Pp) <10g (T2%) + 4/ 2k log (T2k))
k=1

which yields the desired expression. Therefore, it suffices
to design an algorithm that achieves (4) for any J € S.

Our construction builds a sequence of algorithms
An, ..., A; in such a way that A; will satisfy (4) for any
interval J in S; for j > 4. Thus A; will satisfy the regret
bound for any J € S. To start, we set Ay to be the algo-
rithm posited by Theorem 4, with each V; set to be W and
1 = 1. Now we build A4; from A, inductively. Observe
that every interval in .S; either disjoint from or completely
contained within any interval in S; for j > ¢. Therefore
we apply the construction of Theorem 3 to A;_; with the
intervals in S; and € = 1 to obtain 4;. Theorem 3 then
implies the bound (4), which we have seen implies the first
two claims of the Theorem. Further, since by Theorem 4,
A obtains the bound:

T T
Ry () < O | [[io]ly| > lgel|? log <|1D||Z”gt“2)
t=1 t=1

and since N = log(T'), Theorem 3 also implies that A,
satisfies the last claim of the Theorem as well. O

6. Optimal Dynamic Regret

The bound of Theorem 6 achieves regret linear in the path-
length of the comparator P;, but our goal is to obtain
O(\/Pr). This is the optimal rate, as shown by (Zhang et al.,
2018a). In this section, we show that in fact a strongly-
adaptive guarantee that is linear in P actually implies a
strongly-adaptive guarantee that depends instead on /Pr:

Theorem 7. The algorithm described by Theorem 6 also
achieves for any interval:

Ri(w) <0 | P+ D+ ¢D<PI)Y lgilP

tel

Further, we have Pr < \/DPy|I|.

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

Proof. First, we show that it is possible to break the interval
I up into disjoint subintervals [= J; U - - - U Jg such that
for each ¢, Py, < 2D, and K < #. We do this by
explicitly building these subintervals via an iterative greedy
construction. Let I = [a,b]. Our intervals will satisfy
Ji = [ti—1,t;] where a = tg < t; < - < tg = b.
Let J; = [a,t1] where ¢; is the smallest index such that
Py, > D. This implies P, ;, —1) < D, and so therefore
Pj, < 2D since the diameter of W is D. Now, given ¢;_1,
let ; be the smallest index such that Py, , ;,) > D, and set
Ji = [ti—1,t;]. Then again we will have P;, < 2D. If no
such ¢; exists, set i = K and t; = b. By this construction,
Pj, < 2D for all ¢ (including ¢ = K, for which P;, <
D). Further, we have that P;, > D for all + < K and
Zfil P;, < Py. Therefore:

K
P>y P, >(K-1)D
=1

Pr+D
D

Therefore we have a set of intervals J; satisfiying the desired
properties.

> K

Now, on each of these intervals J;, we have the regret bound

RJL<‘7V) < 0 (D + PJi) 1+ Z ||gt||2
teJ;
OD 1+ gl
ted;

So we sum over all 7 and use Cauchy-Schwarz:

K
Ri) = 37 Ry (W)

<0 D\/K2+KZ||gt||2

tel

T
<O Pr+D+,|D(Pr+D)Y g
t=1

where in the last line we used K < %. Finally, observe
that P; < D|I| to obtain P; < \/DPy|I|. O

This optimal dependence on the path-length Pr was previ-
ous achieved by (Zhang et al., 2018a). Their algorithm only
achieves this regret for the entire interval [1, T'], while we
obtain it for any sub-interval. Both our algorithm and that
of (Zhang et al., 2018a) require O(log(7")) time per update.
However, we note that our proof of Theorem 7 is rather gen-
eral, and we believe that in fact the same technique may be

used to show that all known strongly-adaptive algorithms to-
date also achieve the optimal dynamic regret. Interestingly,
however, our Theorem 7 is not a generic reduction showing
that all strongly-adaptive algorithms must also achieve op-
timal dynamic regret. Athough (Zhang et al., 2018b) show
many interesting reductions between strongly-adaptive algo-
rithms and various other restricted formulations of dynamic
regret, to the best of our knowledge the question of whether
strongly-adaptive algorithms must optimally adapt to the
path-length is still unanswered.

7. Conclusion

We have introduced a new algorithm that combines several
desirable notions of adaptivity. First, our algorithm obtains
regret

Ry(w) <O [l

T
> llgell? (5)
t=1

which is the optimal adaptivity to the norm of w and the
gradients g;. Intuitively, this is the same bound that would
be obtained by an optimally tuned online gradient descent,
but we do not require any manual tuning.

Secondly, our algorithm obtains strongly-adaptive regret:
for any interval [a, b], we have regret

b
> lgel?
t=a

where D is the diameter of 1. The only other algorithm
we are aware of that achieves strong—ada%tivity while also
obtaining a bound that depends on _,_, ||g:]|? is that
of (Zhang et al., 2019b), which incurs an extra factor of
O(log(T')) in the run-time due to running an instance of
Metagrad (van Erven & Koolen, 2016) or Maler (Wang
et al., 2019) as a subroutine.

Finally, our algorithm obtains optimal dynamic regret over
any interval:

b

T
> lgwe —iby) <O |\ [(D2+DP) > g2

t=a t=1

where P = Zi:i ||y — wiy1]]. In this case, we believe
that our analysis can actually show that a// known strongly-
adaptive algorithms actually achieve optimal dependence
on the path length P.

We believe our techniques exhibit a qualitative difference
from prior approaches: instead of building our algorithm by
using a sleeping-expert meta-algorithm to combine many
base algorithms, we show a way to iteratively build up an

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

algorithm with the desired regret bound. One might be able
to view this new approach as in some sense bundling the
meta-algorithm’s operation into each of the individual base
algorithms. We feel that our approach has tangible benefits:
for example, it is not obvious how to use any prior sleeping-
experts-based algorithm to maintain (5) while also obtaining
strong-adaptivity.

Several intriguing open questions remain. First, can we
replace the dependencies on D in the strongly-adaptive
and dynamic regret bounds with some dependence on ||w||
instead? Second, our regret bounds depend on log(T"), even
when the interval [a, b] in question is much smaller than
T. Is it possible to have a bound that depends only on
log(b — a)? Finally, is it possible to improve the O(log(T"))
runtime per update currently required by all known strongly-
adaptive algorithms?

References

Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A.
Optimal strategies and minimax lower bounds for online
convex games. In Proceedings of the nineteenth annual
conference on computational learning theory, 2008.

Cutkosky, A. Combining online learning guarantees. In Pro-
ceedings of the Thirty-Second Conference on Learning
Theory, pp. 895-913, 2019.

Cutkosky, A. and Orabona, F. Black-box reductions for
parameter-free online learning in banach spaces. In Con-
ference On Learning Theory, pp. 1493-1529, 2018.

Cutkosky, A. and Sarlos, T. Matrix-free preconditioning in
online learning. In International Conference on Machine
Learning, pp. 1455-1464, 2019.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. Strongly
adaptive online learning. In International Conference on
Machine Learning, pp. 1405-1411, 2015.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
In Conference on Learning Theory (COLT), 2010.

Foster, D. J., Rakhlin, A., and Sridharan, K. Online learn-
ing: Sufficient statistics and the burkholder method. In
Conference on Learning Theory (COLT), 2018.

Gyorgy, A. and Szepesvari, C. Shifting regret, mirror de-
scent, and matrices. In International Conference on Ma-
chine Learning, pp. 2943-2951, 2016.

Gyorgy, A., Linder, T., and Lugosi, G. Efficient tracking of
large classes of experts. IEEE Transactions on Informa-
tion Theory, 58(11):6709-6725, 2012.

Hazan, E., Rakhlin, A., and Bartlett, P. L. Adaptive online
gradient descent. In Advances in Neural Information
Processing Systems, pp. 65-72, 2008.

Herbster, M. and Warmuth, M. K. Tracking the best expert.
Machine learning, 32(2):151-178, 1998.

Jun, K.-S., Orabona, F., Wright, S., and Willett, R. Improved
strongly adaptive online learning using coin betting. In
Artificial Intelligence and Statistics, pp. 943-951, 2017.

Kempka, M., Kotlowski, W., and Warmuth, M. K. Adaptive
scale-invariant online algorithms for learning linear mod-
els. In International Conference on Machine Learning,

pp. 3321-3330, 2019.

Mcmahan, B. and Streeter, M. No-regret algorithms for
unconstrained online convex optimization. In Advances
in neural information processing systems, pp. 2402-2410,
2012.

McMahan, H. B. and Streeter, M. Adaptive bound optimiza-
tion for online convex optimization. In Proceedings of
the 23rd Annual Conference on Learning Theory (COLT),
2010.

Mhammedi, Z. and Koolen, W. M. Lipschitz and
comparator-norm adaptivity in online learning. Confer-
ence on Learning Theory, 2020.

Orabona, F. Simultaneous model selection and optimiza-
tion through parameter-free stochastic learning. In Ad-
vances in Neural Information Processing Systems, pp.
1116-1124, 2014.

Orabona, F. and Pél, D. Coin betting and parameter-free
online learning. In Lee, D. D., Sugiyama, M., Luxburg,
U. V,, Guyon, 1., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 29, pp. 577-585.
Curran Associates, Inc., 2016.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning,
4(2):107-194, 2011.

van der Hoeven, D. User-specified local differential privacy
in unconstrained adaptive online learning. In Advances
in Neural Information Processing Systems, pp. 14080-
14089, 2019.

van Erven, T. and Koolen, W. M. Metagrad: Multiple
learning rates in online learning. In Lee, D. D., Sugiyama,
M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 29,
pp. 3666-3674. Curran Associates, Inc., 2016.

Wang, G., Lu, S., and Zhang, L. Adaptivity and optimality:
A universal algorithm for online convex optimization.
arXiv preprint arXiv:1905.05917, 2019.

Parameter-free, Dynamic, and Strongly-Adaptive Online Learning

Zhang, L., Lu, S., and Zhou, Z.-H. Adaptive online learn-
ing in dynamic environments. In Advances in Neural
Information Processing Systems, pp. 1323—-1333, 2018a.

Zhang, L., Yang, T., Zhou, Z.-H., et al. Dynamic regret of
strongly adaptive methods. In International Conference
on Machine Learning, pp. 5877-5886, 2018b.

Zhang, L., Liu, T.-Y., and Zhou, Z.-H. Adaptive regret of
convex and smooth functions. In International Confer-
ence on Machine Learning, pp. 7414-7423, 2019a.

Zhang, L., Wang, G., Tu, W.-W., and Zhou, Z.-H. Dual
adaptivity: A universal algorithm for minimizing the
adaptive regret of convex functions. arXiv preprint
arXiv:1906.10851, 2019b.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning (ICML-
03), pp- 928-936, 2003.

