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Abstract
Identifying algorithms that flexibly and efficiently
discover temporally-extended multi-phase plans
is an essential step for the advancement of
robotics and model-based reinforcement learn-
ing. The core problem of long-range planning
is finding an efficient way to search through the
tree of possible action sequences. Existing non-
learned planning solutions from the Task and
Motion Planning (TAMP) literature rely on the
existence of logical descriptions for the effects
and preconditions for actions. This constraint al-
lows TAMP methods to efficiently reduce the tree
search problem but limits their ability to general-
ize to unseen and complex physical environments.
In contrast, deep reinforcement learning (DRL)
methods use flexible neural-network-based func-
tion approximators to discover policies that gen-
eralize naturally to unseen circumstances. How-
ever, DRL methods struggle to handle the very
sparse reward landscapes inherent to long-range
multi-step planning situations. Here, we propose
the Curious Sample Planner (CSP), which fuses
elements of TAMP and DRL by combining a
curiosity-guided sampling strategy with imitation
learning to accelerate planning. We show that
CSP can efficiently discover interesting and com-
plex temporally-extended plans for solving a wide
range of physically realistic 3D tasks. In contrast,
standard planning and learning methods often fail
to solve these tasks at all or do so only with a
huge and highly variable number of training sam-
ples. We explore the use of a variety of curiosity
metrics with CSP and analyze the types of solu-
tions that CSP discovers. Finally, we show that
CSP supports task transfer so that the exploration
policies learned during experience with one task
can help improve efficiency on related tasks.
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1. Introduction
Many complex behaviors such as cleaning a kitchen, or-
ganizing a drawer, or cooking a meal require plans that
are a combination of low-level geometric manipulation and
high-level action sequencing. Boiling water requires se-
quencing high-level actions such as fetching a pot, pouring
water into the pot, and turning on the stove. In turn, each
of these high-level steps consists of many low-level task-
specific geometric action primitives. For instance, grabbing
a pot requires intricate motor manipulation and physical
considerations such as friction, force, etc. The process of
combining low-level geometric decisions and high-level
action sequences is often referred to as multi-step planning.

While high-level task planning and low-level geometric
planning are difficult problems on their own, integrating
them presents unique challenges that add further complexity.
Task and Motion Planning (TAMP) is a powerful approach
to the problem which constructs plans in logical terms that
execute a sequence of macro-actions that are composed of
geometric motion plans (Fikes & Nilsson, 1971; Dantam
et al., 2016). While TAMP has been successful at generat-
ing temporally-extended multi-step plans that conform to
geometric constraints, it requires actions to have defined
preconditions and effects that modify the logical description
of the world state. This is an unreasonable assumption for
complex physical tasks because real-world effects and pre-
conditions are often unknown or difficult to describe with
logical predicates. These assumptions limit the flexibility
and robustness of the TAMP approach. In addition, TAMP is
computationally costly because it requires geometric motion
planning for each macro-action sample.

In contrast, deep reinforcement learning (DRL) (Arulku-
maran et al., 2017) methods have shown success at learning
flexible policies for a variety of complex tasks in unstruc-
tured domains (Mnih et al., 2015; Lillicrap et al., 2015;
Silver et al., 2016; Hessel et al., 2017; Vinyals et al., 2019).
Central to the problem of reinforcement learning is the issue
of exploration (Thrun, 1992; Kakade, 2003), whereby how
an agent chooses to navigate its environment and acquire
feedback signals has strong implications on the sample-
efficiency of learning. Indeed, recent work in DRL has been
plagued by large sample complexity stemming, in large part,
from the challenge of exploration in sparse reward environ-
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ments (Osband et al., 2016; Pathak et al., 2017; Riedmiller
et al., 2018b; Choi et al., 2019; Jaderberg et al., 2016). Thus,
sparse-reward tasks coupled with long-horizon planning
becomes prohibitively difficult as highly-specific actions se-
quences must be executed prior to observing any nontrivial
feedback. As such, developing flexible multi-step planning
algorithms that operate under such constraints is an open
challenge.

In this paper, we combine aspects of TAMP and DRL to
achieve progress toward efficient and flexible long-horizon
planning. We introduce the Curious Sample Planner (CSP),
which uses curiosity (Schmidhuber, 2010; Pathak et al.,
2017) to bias the search toward novel points in the state
space. Our method combines the flexibility and transfer-
ability of DRL with the temporally-extended, multi-step
planning of TAMP. We illustrate the power of CSP in a
variety of qualitatively distinct problems in multi-step plan-
ning for which logical descriptions of action effects would
be difficult to construct, including the building of complex
structures and the discovery of simple machines for achiev-
ing challenging physical goals. We show CSP dramatically
improves sample complexity compared to standard planning
algorithms and DRL baselines which are, in most cases,
unable to find a solution at all. We compare a variety of
distinct curiosity metrics for use with CSP and demonstrate
that dynamics-based curiosity performs well on tasks which
require many dynamic object interactions while state-based
curiosity performs better for structure-building tasks. Fi-
nally, we show that CSP can transfer between related but
qualitatively distinct tasks, utilizing knowledge from one
task to speed the solution of another.

2. Related Work
A classical approach to planning is that of sample-based
geometric motion planners. Rapidly Exploring Random
Trees (RRT) and Probabilistic Road Maps (PRM) combine
goal-directed sampling with off-target sampling to balance
exploration of the state space with exploitation of knowl-
edge about the goal configuration (Lavalle, 1998; Kavraki
et al., 1996). While these algorithms can work even for high
dimensional configuration spaces, they are computationally
intractable for tasks with the complex constraints that often
exist in real world settings (Kingston et al., 2018). For a
robotic manipulator, grasping an object has a necessary con-
dition that the agent’s manipulator is in a position to grasp
that object. These constraint barriers in the configuration
space render the goal-directed component of motion plan-
ning ineffective and necessitate a random exploration the
entire configuration space. So while sample-based geomet-
ric motion planners are effective at simple tasks, they fail
for temporally extended multi-step tasks with intricate con-
straints. We use sample-based geometric motion planners

as a part of our solution to the multi-step planning problem.

More recently, Task and Motion Planning has shown suc-
cess in developing temporally extended multi-step plans
under both fully known and partially observed environment
dynamics. A number of TAMP algorithms (Kaelbling &
Lozano-Pérez, 2013; Gravot et al., 2005; Hertle et al., 2012;
Srivastava et al., 2014) have solved tasks such as block stack-
ing, object packing, table setting, and much more. TAMP
algorithms generally iterate between a motion planning step
using (e.g.) RRT or PRM, and a symbolic planning step
using algorithms such as Fast Downward Planning (Helmert,
2006) or Fast Forward Planning (Hoffmann & Nebel, 2001).

However, a major roadblock for TAMP is that for each sep-
arate robot and environment, logical predicates describing
the effects and preconditions of macro-actions must be man-
ually derived. This limits the flexibility of any one TAMP
implementation, since the predicates describing one setup
are incompatible with those from another. In fact, direct per-
formance comparison between existing TAMP algorithms is
itself difficult for this reason, as highly variable environment
and action specifications render any two TAMP solutions un-
runnable in each other’s domain without substantial work.
This inflexibility is the raison d’etre of our work, but is also
the reason we also cannot directly compare our solution
to any specific TAMP implementation. Here, we take in-
spiration from TAMP by using geometric motion planners
as subprocedures, but dramatically increase flexibility by
using learning to intelligently sample generic macro-actions,
avoiding the need for situation-specific predefined logical
descriptions.

Other methods have been proposed to increase the efficiency
and flexibility of Task and Motion Planning. Supervised
learning of the preconditions and effects of certain macro-
actions removes the need for manual specification, but re-
quires constructing task-specific training datasets (Kroemer
& Sukhatme, 2016; Wang et al., 2018). Other work has
focused on factoring the planning problem into submani-
folds with analytic constraints in order to reduce the size of
the search space. (Garrett et al., 2018; Vega-Brown & Roy,
2018). TAMP can be accelerated by generating a sampling
distribution around the goal trajectory using GANs (Kim
et al., 2018) or by using reinforcement learning to learn
search heuristics through expert examples or previously
solved problem instances (Chitnis et al., 2016; Kim et al.,
2019). In this work, we also introduce an algorithm that can
utilize information gained from previous problem instances
to speed up planning and generalize to related tasks. Instead
of supervising on expert examples or task-specific training
sets, we use self-supervision signal, allowing the agent to
discover novel multi-step plans de novo.

Because multi-step long-range planning is a sparse reward
environment, our use of reinforcement learning relies on the
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idea of intrinsic motivation (Baldassarre & Mirolli, 2013;
Benureau & Oudeyer, 2015; Singh et al., 2005; Kulkarni
et al., 2016; Bellemare et al., 2016; Tang et al., 2017; Jader-
berg et al., 2016) to augment the environment reward signal
with additional feedback. Empirically, intrinsic motivation
has been shown to dramatically accelerate agent learning
in such sparse-reward tasks (Burda et al., 2019). More
recent work (Jaderberg et al., 2016; Pathak et al., 2017;
Achiam & Sastry, 2017; Haber et al., 2018) has gone on
to leverage curiosity-based intrinsic motivation (from now
on referred to as curiosity) to provide additional learning
feedback in a self-supervised manner or to encourage coop-
eration in multi-agent systems (Chitnis et al., 2020). Other
reinforcement learning approaches have encouraged explo-
ration through self-curricularization by progressively set-
ting increasingly difficult subgoals (Laversanne-Finot et al.,
2018) or by retroactively assigning goal states to prior ex-
perience (Andrychowicz et al., 2017). Our CSP approach
utilizes DRL augmented by a curiosity signal in order to
accelerate the classic tree-search-style planning methods
commonly found in the TAMP literature, without inherit-
ing the prerequisite of specifying action preconditions and
effects.

Through our experiments, we study three distinct measures
of curiosity (forward dynamics (Pathak et al., 2017), random
network distillation (Choi et al., 2019), & state estimation
(Mitash et al., 2017)) and examine their efficacy in synthe-
sizing plans for a number of simulated robotics tasks with
varying levels of difficulty.

Finally, much work has been done on building artificial
robotic or simulated agents capable of exploring their envi-
ronment, using tools, and solving physically realistic tasks
(Toussaint et al., 2019; Nair et al., 2018; Deisenroth et al.,
2011; Li et al., 2019; Riedmiller et al., 2018a). However, the
algorithmic solutions used solve these tasks either involve
manual specification of action effects and preconditions,
tailored reward structures, curriculum learning, or expert
demonstrations. To our knowledge, our work is the first ex-
ample where such usages emerge from a flexible, generically
applicable algorithm.

3. Mathematical Description
3.1. Problem Description

We begin by introducing the classic Markov Decision Pro-
cess (MDP) formalism (Bellman, 1957; Puterman, 1994)
denoted byM = 〈S,A,R, T , γ〉, where S is a (potentially
infinite) set of states, A is a (potentially infinite) set of ac-
tions,R : S×A → R is a reward function, T : S×A → S
is a deterministic transition function, and γ ∈ [0, 1) is a dis-
count factor.

For the purposes of this work, we will augment the above

(a) Action Selection
   Networks

(d) Curiosity Module

(b) Motion Planning

Reward Value

Sample expansion
nodes

(e) Tree Expansion

(c) Forward
Dynamics

Novelty Signal

Figure 1. a. The action selection networks select actions that max-
imize curiosity. b. Parameterized macro-actions are converted to
motion primitives. c. The forward dynamics module predicts the
effects of executing those motor primitives in a particular state.
d. The curiosity module represents the current world state and
outputs one of the curiosity metrics (see section 4.3). e. The search
tree is expanded.

MDP definition in two ways. First, the action space is
replaced by a set of macro-actionsM which, when selected,
will be converted into an appropriate sequence of low-level
actions in A using geometric motion planning and inverse
kinematics. Second, we will assume that all tasks have an
associated goal space G ⊂ S where each g ∈ G can be
viewed as a satisfactory terminal state, obviating the need
for a reward functionR. Thus, we can concretely express
an agent’s goal as synthesizing a plan from some initial start
state s0 to navigate to any goal state in G.

3.2. Curious Sample Planner

Below, we describe the Curious Sample Planner. We first
describe the CSP’s system architecture, including its con-
stituent neural networks and geometric planning module.
We then describe the curious tree-search algorithm by which
CSP uses these modules to construct multi-step plans.

System Architecture: CSP is comprised of four main
modules (Fig. 1). The action selection networks include
an actor-network πθ : S → M and a critic-network
Vφ : S → R (Fig. 1a), which learn to select macro-actions
and choose parameters of that macro-action given a particu-
lar state. The action selection networks have two primary
functions: maximizing curiosity in action selection and
avoiding infeasible macro-actions. The networks are trained
using actor-critic reinforcement learning (namely, Proximal
Policy Optimization (PPO) (Schulman et al., 2017)) where
πθ has learnable parameters θ and Vφ has learnable parame-
ters φ. The networks select feasible actions which maximize
the novelty signal, leading to actions which result in novel
configurations or dynamics. The actor network outputs a
continuous (real-valued) vector which is translated into a
macro-action with both discrete and continuous parameters.
The forward dynamics module f : S × A → S (Fig. 1c)
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takes a state and an action primitive, simulates forward a
fixed time τ , and returns the resulting state. This forward
dynamics module is used by a geometric planning module
(Fig. 1b) to convert macro-actions inM into feasible se-
quences of motor primitives in A. Finally, the curiosity
module is a neural network Hβ (H stands for heuristic, Fig.
1d) that takes states as inputs and returns a curiosity score,
with learnable parameters β. The exact input and output of
the curiosity module is dependent on the type of curiosity
being used (see §4.3).

Algorithm 1 The CSP algorithm.
Input: Initial state s0,Goal set G, dynamics f
Output: Path{(s0, a0, s1), ..., (sn−1, an−1, sn)} where

sn ∈ G, f(si, ai) = si+1

T = ({s0}, ∅)
Randomly Initialize πθ, Vφ, Hβ

Initialize P(s0) = 1
while V ∩G = ∅ do

S ← batch sample ∼ P(V)
M ← πθ(S)
A = motion planning using f for each m ∈M
S′ ← f(S,A)
L ← novelty metric
L(A = ∅) = 0
Train Hβ to minimize L(A 6= ∅)
Update πθ, Vφ to maximize L
V ← S′ ∪ V
Add each (Si, S

′
i) to E

P = softmax(novelty metric for each v ∈ V)
end
return Path in T from s0 to sg ∈ V ∩G

CSP Algorithm: At its core, CSP is an algorithm for
efficiently building a search tree over the state space using
parameterized macro-actions (see Algorithm 1). The algo-
rithm starts by initializing a tree T = (V, E) in which the
vertices are points in the continuous state space, edges are
macro-actions with defined parameters, and paths are se-
quences of macro-actions which are guaranteed to transition
between states at each end of the path under the dynamics
model. The tree starts with a single vertex s0 which is the
start state of the multi-step planning problem. The algo-
rithm also initializes a probability distribution over the tree
vertices such that P (s0) = 1. A batch of size B states are
then sampled from P and passed into πθ resulting in a set
of state/macro-action pairings.

The next step of the algorithm is to convert the selected
macro-actions into primitive action sequences using a com-
bination of inverse kinematics and geometric motion plan-
ning. We use RRT-Connect (Kuffner & LaValle, 2000) for
motion planning and the recursive Newton Euler algorithm

(Luh et al., 1980) for inverse kinematics. The exact rou-
tine for converting macro-actions to primitives is specific to
the macro-action. In some cases it is infeasible to convert
macro-actions to motor primitives. (For example, it is infea-
sible to pick up an object that is out of the robot’s reach.) In
such cases, the planning module returns an empty sequence
of primitives. These feasibility conditions are not explic-
itly represented as logical preconditions, but are discovered
from failed attempts at inverse kinematics or motion plan-
ning. Over time, the action selection network learns to focus
only on feasible macro-actions. The resulting sequence of
action primitives are passed into the black-box dynamics
module to get a corresponding batch of future states.

In order to determine which states and actions should be
further explored, the algorithm creates a curiosity score for
each of the selected macro-actions. Passing the batch of
states and future states through the curiosity module will
give a prediction loss, or novelty score. A subset of the new
states with high novelty scores in the batch are then added as
vertices in the search tree and the probability distribution P
is adjusted to give more weight to states with high novelty
scores. Although it is not strictly necessary for CSP to
function, for increased computational efficiency we discard
vertices with low probability (typically the bottom 90%
of the distribution), as they are extremely unlikely to be
sampled. After scores are calculated, the input states that
have infeasible macro-actions are given a curiosity score
of zero, strongly disincentivizing infeasible macro-action
selection. The curiosity module is trained from the losses
generated by the batch and the novelty score is used as the
reward for the training of the action selection networks. This
process repeats until the algorithm reaches a state in the goal
subset or is exogenously terminated.

3.3. Neural Network Settings and Curiosity Metrics

Throughout our experiments, the action selection networks
πθ and Vφ are three-layer networks with 64 hidden units
each, using the tanh activation function.

There is a wide range of potential curiosity and novelty
metrics, and the optimal metric may be task-dependent. For
this reason, we explored a range of such metrics from the
recent literature, including: State Estimation (SE) (Mitash
et al., 2017), Forward Dynamics (FD) (Burda et al., 2019),
and Random Network Distillation (RND) (Choi et al., 2019).
The neural network architecture of the curiosity module
naturally needed to vary as a function of which metric was
chosen. For SE, the curiosity module accepted images of
the scene generated from multiple perspectives, in the form
of 84×84× (3 ·np) pixel arrays (where np is the number of
perspectives taken), while the architecture was a five-layer
convolutional neural network with 3 convolution layers and
two fully connected layers. For both FD and RND the
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architecture consisted of a four-layer MLP with 128 units
in each layer. For FD, the inputs were the concatenated
vector of system states and actions, while for RND the input
simply consisted of the state vector. For fair comparison,
the number of trainable parameters in the curiosity modules
was approximately equal across curiosity variants.

4. Experiments
4.1. Setup

Our experiments focus on a mounted robot arm with seven
bounded revolute joints resulting in a seven dimensional con-
figuration space, with fully-extended length r. The larger
state-space S also includes (in addition to the robot joint
angles) the total description of the positions and orienta-
tions of the dynamic and static objects, as well as their
velocities, masses, and shapes, together with any (possibly
dynamic) state-space constraints such as links or joints that
may (permanently or temporarily) exist between objects in
the environment.

Our robot’s action primitives A consist of (1) a 7-
dimensional continuous rotation space composed by linearly
interpolating between θ1 and θ2 where θ1, θ2 are 7-vectors
corresponding to bounds on each rotational degree of free-
dom, and (2) the ability to add a link constraint between any
two objects in the environment, as long as the objects are
touching and the robot arm is sufficiently close to both. We
use Bullet (Coumans, 2015), a flexible physics simulation
library, to execute robot actions in simulation. The envi-
ronment and motion planning primitives were adapted from
the pybullet-planning library (Garrett, 2018). The robot
has access to a PickPlace macro-action which takes a
target object, a goal position, and a goal orientation as input,
and moves the target block to the goal position and ori-
entation. The robot also has access to AddConstraint
macro which takes two target objects as input, moves them
into position for linking, and performs the link; and a corre-
sponding RemoveConstraint that breaks the link if the
objects are connected. While this setup is fairly typical of
robotics applications, recall that our CSP algorithm makes
no assumptions about the effects of actions on objects in
the environment, and so our method could be applied to
more complicated environments containing soft-body ob-
jects, cloths, and multiple robotic manipulators.

The robot must use its actions and macro-actions to achieve
a goal, for example, moving a dynamic object Di outside
the reachable radius r of the robot would be defined by
G = {s ∈ S|Dix

2 + Diy
2 > r2}. Though this type of

goal definition is very simple and natural, finding a solution
to such a task require complex strategic planning — e.g.
perhaps requiring the discovery and construction of a simple
machine, such as a ramp that could be used to slide the block

(c) Bookshelf (d) Launch-Block(a) Stack (b) Push-Away

Objects randomly placed, 
blue target in reach ...

Blocks start randomly ... Two rods randomly placed, 
book on shelf out of reach ...

Target on seesaw, rope tied, 
blocks out of bucket ...

... and end up stacked into a 
single tower.

... target ends up pushed 
out of arm’s range.

... book ends up knocked 
o� the shelf.

... target ends up launched 
o� seesaw

Figure 2. Visualizations each of the four task categories used to test
CSP. Top Row: representative initial state for each task. Bottom
Row: representative final state for each task. The Block-Stack
task requires the robot to find a way to cause one block to remain
stably at a high z-position without touching the arm, necessitating
the building of a tower. The Push-Away task requires the robot
to push the small (blue) block beyond the reach of the robot arm,
which, depending on the circumstance might require the robot to
build a ramp. The Bookshelf tasks requires the robot to knock
a book off a shelf which is further away from the robot that it
can reach, necessitating that the robot discover how to build a
simple tool from the provided blue rods. The Launch-Block task
requires the robot to launch the small red block off the far end of
the seesaw, but it can only do so by putting all five of the other
blocks as counterweight into the red bucket and detaching the
pulley rope. Tasks are described in more detail in Section 4.2.

out of the robot’s reach (see section 4.2).

Finally, in this work, we assume an oracle dynamics model
f(s, a) = T (s, a) and provide the robot with direct access
to the underlying Bullet physics simulator. We leave the
task of removing this assumption and employing a learned,
approximate dynamics model (for instance, that model pro-
posed in Mrowca et al. (2018)) to future work.

4.2. Tasks

Each of the four task types below are extremely easy to
specify in the non-restrictive goal semantics accepted by
CSP, but often require complex multi-step planning to
solve, and would be extremely statistically improbable to
be solved through random exploration. From a DRL point
of view, such tasks correspond to extremely sparse reward
landscapes. They also involve complex and fairly precise
continuous motor manipulation of both rigid and non-rigid
objects, using sequences of macro-actions whose precon-
ditions would be very challenging to specify using logical
predicates. The task set also affords some natural opportuni-
ties for cross-task transfer (e.g. between tower-building in
Block-Stack and ramp building for Push-Away).

Block-Stack: In this task, the robot is provided with a set
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of K cubic blocks of size h, and the robot’s goal is to cause
at least one block to stably remain in position at z-position
of greater than (K − 1) ∗ h, without being in contact with
the robot arm, for at least two seconds. Of course, the only
feasible way for the robot to solve this problem is to stack
the K blocks in a stable tower, but the robot is not provided
with any reward at intermediate unsolved conditions. Block
stacking is a commonly used task for evaluating planning
algorithms because it requires detailed motor control and
has a goal that is sparse in the state space.

Push-Away: In this task, the robot is provided with several
large cubic blocks, a flat elongated block, and one additional
smaller “target” object that can be of variable shape (e.g.
a cube or a sphere) and material (with e.g. high or low
coefficient of friction). The objective is to somehow push
the target object outside the directly reachable radius of the
robotic arm. Depending on the situation, the solution to
the task can be very simple or quite complex. For example,
if the target object is spherical with low friction, the robot
could solve the task simply by dropping it against one of the
larger blocks, causing it to roll away. However, if the target
object is cubic with high friction, it may be necessary for the
robot to discover how to construct and use a simple machine
such as a ramp — e.g. with the large blocks stacked up and
the elongated block placed at one end of the stack as an
inclined plane down which the small object can slide.

Bookshelf: In this task, the environment contains a book-
shelf with a single book on it. The robot is also provided
with two elongated rectangular-prism rods initial placed at
random (reachable) locations in the environment. The goal
is to knock the book off the bookshelf. However, the book
and bookshelf are not only outside the reachable radius of
the arm, but they are further than the combined length of
the arm and a single rod. However, the robot can solve
the task by (e.g.) combining the two rods in an end-to-end
configuration using the link macro-action, and then using
the combined object to dislodge the book.

Launch-Block: In this task, the environment contains a pre-
built rope-and-pulley with one end of the rope connected
to an anchor block on the floor and the other attached to
a bucket that is suspended in mid-air. A seesaw balances
evenly below the bucket, with a target block on the far end
of the seesaw. The goal is to launch this target block into
the air, above the seesaw surface. The robot could solve
this task by (e.g.) gathering all blocks into the bucket and
untying the anchor knot so that the bucket will descend onto
the near end of the seesaw. However, due to the masses
of the blocks and the friction in the seesaw, this can only
happen when all five blocks are used.

4.3. Quantitative Results

For each task, we tested CSP in comparison to a variety of
baseline approaches. Each baseline comparison is given the
same input/output structure and access to the same macro-
actions. Simple random exploration was tested by assigning
a uniform curiosity score to each state and selecting macro-
actions from a uniform distribution (CSP-No Curiosity). We
compared CSP to RRT (Lavalle, 1998), a commonly used
single-query algorithm used for standard geometric motion
planning. We also tested against a vanilla implementation
of PPO (Schulman et al., 2017), using the same architecture
as the curious action selector shown in Figure 1, but without
the tree expansion and sampling module. Additionally, We
tested a non-planning based but still curiosity-driven DRL
model, using the PPO algorithm with the RND curiosity
signal (PPO-RND). Finally, we tested HER (Andrychowicz
et al., 2017), a modification of deep deterministic policy gra-
dient (Lillicrap et al., 2016) which alters the reward function
to incentivize exploration in sparse-reward environments.
All metrics and baselines are compared by measuring the
number of macro-action samples needed to reach the goal
over six different problem instances on five distinct tasks.
Implementation details can be found in the supplement.

Overall, we found that CSP was dramatically more effec-
tive than the baselines at solving all four task types (Fig.
3). The control algorithms (including the CSP-No Curios-
ity baseline) were sometimes able to discover solution in
the simplest cases (e.g. the 3-Block task). However, they
were substantially more variable in terms of the number of
samples needed; and they largely failed to achieve solutions
in more complex cases within a 107-step maximum sam-
ple limit. The failure of the random and vanilla PPO/A2C
baseliness is not surprising: the tasks we chose here are
representative of the kind of long-range planning problems
that typically are extremely difficult for standard DRL ap-
proaches. The more sophisticated curiosity driven PPO-
RND algorithm was able to make headway in a few of the
more complex circumstances, but was nonetheless substan-
tially less powerful than the CSP variants.1. We ran many
additional actor critic and curiosity metric combinations
and discussed the results in the supplement. Comparing be-

1RL algorithms are often designed with a multi-episodic en-
vironment in mind, in which the external controller repeatedly
resets the system to a known state (e.g. in a video game level
after the time limit has elapsed). Resetting can often help learning
algorithms that would otherwise fail, since it rescues them from
unrecoverable states. In our case, such an unrecoverable state
arises when objects needed to complete the task are prematurely
pushed outside the available radius of the robot arm. The CSP
algorithm is easily able to handle this circumstance, because it
can expand from previous explored nodes in the state space. To
give the baseline algorithms the best chance of working, we thus
tested them with random trial resetting, characterized by a reset
with probability 1e-4 after each macro-action.
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Figure 3. Solution speed for all tested algorithm variants across the
five tested tasks. Within each group of 9 bars, the left-most bars
represent baselines, while the right-most are the CSP models, in-
cluding the control No-Curiosity control and several CSP variants
with different curiosity metrics (see text for details). The y-axis is
on a log scale because the differences between CSP and non-CSP
solutions is so great that more subtle differences between various
curiosity-metric variants of CSP would otherwise be too small to
see. Each bar is computed as the mean of six independent trial
runs, and error bars represent the standard error of the mean across
trials. We set a maximum number of samples (107) in order to
ensure termination; in many case the baseline algorithms failed to
terminate with a successful solution on any trial.

tween curiosity metrics, we found that, while there is some
task dependence, Random Network Distillation serves as
a good general-purpose curiosity metric achieving the best
performance on four of the five tasks (see figure 3). We
also performed an ablation on the action selection networks
(CSP-RND No AC) to see how beneficial they were to the
planning process over random action selection. We found
that in all tasks except Bookshelf, CSP performed slightly
better with the action selection networks. While not vital
for initial planning, they are key for transfer (see sec. 4.5).

4.4. Qualitative Results

We are able to qualitatively compare the exploration patterns
of different planning algorithms by examining the graphs
generated during the planning process (Fig. 4a). Intrigu-
ingly, the topology of the graph structure CSP discovers
correspond naturally to qualitatively distinct sub-tasks mak-
ing up the overall plan.

In the process of planning, CSP discovers interesting so-
lutions to complex problems, discovering the construction
and use of tools and simple machines. Solution paths for
each of the tasks are shown in Figure 4b, and video illus-
trating some representative solutions can be found here:
https://youtu.be/7DSW8Dy9ADQ

Sometimes CSP finds solutions that were unexpected and
qualitatively different those imagined by the authors. As an

Random

RRT

CSP

5-Stack

Push-Away

Bookshelf

Launch-Block

1-Stack 2-Stack 3-Stack 4-Stack 5-Stack

(b) Example Solution Paths

(a) 5-Stack Exploration Graphs

Figure 4. a. Search graphs for the 5-Stack task for CSP, Random
(CSP-No Curiosity), and RRT planning algorithms. These ex-
ample search graphs demonstrate how CSP utilizes the novelty
score to oversample unseen and interesting configurations such as
stacked blocks, leading to faster solution convergence. b. Exam-
ple solution trajectories found by CSP for three of the tasks with
annotations to explain each of the steps in the trajectory.

example, we initially developed the PUSH-AWAY task with
a spherical ball as a target object, hoping CSP would build a
ramp and roll the ball out of the reachability zone. However,
CSP instead found a simple solution consisting of dropping
the ball directly next to another object in order to get enough
horizontal velocity to roll out of the reachability zone. In an
attempt to avoid this rather trivial solution, we then switched
out the ball for a block with a high coefficient of friction.
Now, instead of always building a ramp, CSP sometimes
made use of its link macro-action to fix the block to one
end of the plank and orient it so that the block was held
outside the reachability zone. Once the link macro-action
was disabled, ramp-building behavior robustly emerged.

4.5. Task Transfer

A central aspect of human intelligence is the ability to
improve at solving problems over time and to use knowl-
edge gained from solving one problem to more efficiently
solve related problems. For this reason, we were curious
whether CSP could transfer knowledge between problem
instances with different initial conditions, and between dif-
ferent but related problems. We evaluated transfer both the
within-task and between-task using 3-STACK, 5-STACK,
and PUSH-AWAY tasks. We selected these tasks because
they all share a common essential skill: stacking blocks.
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Figure 5. Inter-task and between-task transfer efficiency measured
by the number of samples needed to reach the goal, for each of
several transfer policies (only curiosity module, only action selec-
tion module, and full network transfer). The CSP-RND variant is
used for all cases. Within each group of bars for a given task, the
difference between blue bar (No Transfer) and other bars repre-
sents transfer gain (note that the y-axis is on a logarithmic scale).
Each condition was run 6 times and error bars represent standard
error of the mean over runs.

We tested transfer from each learnable component of the
system individually, to identify which components of the
system can be effectively reused between problems, includ-
ing (i) the baseline “no transfer” condition, where neither
the curiosity module nor the action selection networks are
transferred from another problem instance; (ii) condition
where just the curiosity module or action selection networks
were transferred; and (iii) a full transfer condition where
both the action selection networks and the curiosity module
are transferred between tasks.

Results (Fig. 5) show that transferring the curiosity module
alone slightly improves planning ability between instances
of the same task, but has a minimal effect and can even
be detrimental in the case of between-task transfer. On
the other hand, transferring the action selection networks
leads to a large increase in efficiency in all tasks except
for 3-STACK. (The 3-STACK task is likely unaffected by
transfer because it is solved so quickly that the networks
have little time to train.) Full transfer results in transfer
performance improvements similar to that of transferring the
action selection network alone. Gains arose for qualitatively
identifiable reasons e.g. once CSP learned to solve the
stacking problem, it tries stacking macro-actions much more
frequently as an initial guess, which is naturally useful for
solving the Push-Away task.

5. Conclusion
In this work, we introduce the CSP algorithm, a fusion of
classical task-planning and deep RL approaches that is ca-
pable of flexible long-range multi-step planning in sparse
reward settings. CSP consists of two learnable components
which aim to maximize curiosity in action selection and
state exploration. The first component is the action selector
networks which reduces sampling of infeasible or uninterest-

ing effects in favor of macro-actions and parameters which
lead to interesting and unseen effects. The second compo-
nent is a curiosity module which guides exploration of the
state tree toward novel state configurations by increasing
the probability that those nodes will be expanded. We show
that the addition of these components not only speeds up
planning when compared to random action selection and
reinforcement learning baselines but also has the ability to
make otherwise intractable problems solvable. We also sys-
tematically examine the effect of different forms of curiosity
on task performance, finding RND is the most effective
overall. Finally, we look at the transferability of solutions
to new instances of the same general problem and to related
but different problems, showing that networks trained to se-
lect actions states which result in interesting configurations
perform better than those which are randomly initialized.

Despite its initial successes, CSP has a number of key lim-
itations that will need to be addressed in future work. As
a pure planning algorithm, CSP does not attempt to solve
a directed learning problem over the course of many trials;
when very large numbers of trials are available for train-
ing, it is plausible that Deep RL approaches would begin to
catch up with and eventually exceed CSP performance. A
very natural next step will be to combine CSP with a cross-
trial learning algorithm to obtain the best of both worlds.
It will also be key to show that CSP is able to function
effectively when only a non-deterministic and noisy future
prediction module is available, rather than the unrealistic
perfect black-box predictor used in this work. It will be
especially important to determine if CSP is compatible with
a learned future predictor, and of interest to determine if
CSP-generated plans could help accelerate the learning of
such a predictor simultaneously while CSP modules are
themselves learned. Another key direction for future work
will be to apply a CSP-like procedure to the discovery of
macro-actions themselves (Barto et al., 2004; Machado et al.,
2017), resulting in a hierarchical multi-timescale procedure
in which more and more complex plans become routinized
as macro-actions. The abilities of an agent executing CSP
are limited by the macro-actions available to it, and discov-
ery of macro-actions as policies similar to (Riedmiller et al.,
2018a) will increase the system’s flexibility. It may also be
informative to evaluate the effectiveness of CSP on larger
open-world physically realistic environments with multi-
modal sensory input and partial observability (Gan et al.,
2020; Xia et al., 2019; Manolis Savva* et al., 2019). Finally,
it will be of interest to compare the behavior sequences
generated by CSP to data from experiments measuring pat-
terns of play and discovery in both human children and
adults (Gopnik et al., 2009; Begus et al., 2014), as both the
similarities and differences between human decision making
and exploration and algorithmic outputs will help inform
the development of improved flexible and efficient planning
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algorithms.
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