Appendices

A. Curiosity Metrics
A.1. State Estimation Curiosity

The objective of the state estimation curiosity module is to
estimate the underlying state of the world through a set of
visual observations. State configurations that are visually
distinct from previously seen configurations will lead to
high losses. The curiosity module and loss function are
defined as follows.

Hg Im—= S
2
L; = [[Hg(Im;) — sill;

Where I'm is the space of 84 x 84 x 3 - n, matrices con-
taining n, images captured from various perspectives in
the scene, s € S denotes the state, and ¢ is an index into
the batch. In our experiments, we used a single top-down
perspective (n, = 1).

A.2. Forward Dynamics Curiosity

The objective of the forward dynamics curiosity module
is to estimate future states given current states and actions.
Given deterministic physics, actions modify states determin-
istically. Therefore, it is theoretically possible to estimate
a future state from an action and the current state. Rare or
unpredictable object-object interaction will yield the highest
loss in dynamics prediction and therefore will be sought
out by the curiosity module. The curiosity module and loss
function are described as follows.

Hﬁ:S—>S
f:SxA—=S

L; = ||Hg(s:) — f(si, a3

Where f is the deterministic dynamics model which maps a
state and action at ¢ to a state at time ¢ 4+ 7 for some fixed 7.

. Correspondence to: Aidan Curtis <curtisa@mit.edu>.
Proceedings of the 37" International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

A.3. Random Network Distillation Curiosity

Random Network Distillation (RND) is a recently proposed
method for obtaining state-space coverage. This is achieved
by training a model to fit some fixed random transformation
of the input data. The RND curiosity module achieves low
loss when it matches the transformation. This results in high
curiosity module loss for unseen states.

Hg,q)g S =S
Li=|Hps(si) — D(s:)ll5

Where @ is the fixed mapping that is initialized with ran-
dom parameters. Among other mappings including random
linear and non-linear mappings with uniformly and gaus-
sian distributed weights, we found that the best performing
mapping was a random permutation of the state vector.

B. Network Structures and Hyperparameters
B.1. Actor Critic Policy and Value Networks

The structure of the policy network is a multilayer percep-
tron model with three layers. The input size is the dimen-
sionality of the state space and the output size is equivalent
to the dimensionality of the action space. Action space
and state space dimensionality are described in more detail
below. The hidden layers each have 64 hidden units with
tanh activation functions. The the value network has an
equivalent architecture but with an output size of one.

For PPO and A2C training, we used the same hyperparame-
ters during action selection network training and baseline
experimentation. For PPO we used a batch size of 128 with
1024 samples collected per update, v = 0.9, Ir = Te — 4,
€ = 0.2. We also selected value and entropy coefficients of
0.5 and 0.0 respectively and restricted the magnitude of the
gradient to 0.5. For each batch, we did 4 PPO epoch updates.
For A2C, we used the same learning rate and coefficients as
PPO.

B.2. State Estimation Convolution Network

The state estimation network takes in visual input from
perspectives in the scene and outputs an estimated state. We
achieved this image to state mapping using a convolutional
neural network with three convolutional layers and two fully

Flexible and Efficient Long-Range Planning Through Curious Exploration

connected layers, all with Re LU nonlinearities. Because we
used a single perspective for all of our experiments, the input
size is 84 x 84 x 3 and the output size is the dimensionality
of the state space. The convolutional layers have kernel
sizes of 8, 4, 3 and strides of 4, 2, 1. The fully connected
layers each have 128 hidden units.

B.3. Forward Dynamics Network

The forward dynamics network maps sy, a; to sy .. This is
achieved using a multilayer perceptron model with 3 layers,
64 hidden units per layer and tanh activation functions. The
input size is the sum of the action and state dimensionality
and the output size is the dimensionality of the state.

B.4. RND Network

The RND network maps states to transformed states. The
size we used for the transformed state is equivalent to the
size of the state. Therefore, the input and output sizes
are both equivalent to the dimensionality of the state. The
architecture consisted of a three layer multilayer perceptron
model with tanh activation functions and 64 hidden units
for each hidden layer.

B.5. Universal Curiosity Module Hyperparameters

For training the curiosity networks, we used an Adam op-
timizer with a learning rate of 5 x 107°, a batch size of
128, and 1024 samples per update. We also found that per-
formance was higher when we used an adaptive number of
samples per update. The number of samples is increased
until the loss is below a threshold after training. This im-
proves CSP by giving the curiosity network time to train to
baseline before adding nodes to the tree.

C. Task Specific State Space and Action Space
C.1. Stack State

This set of tasks consists of k cubes. Each cube has it’s
own SE(3) configuration parameterized by three positional
degrees of freedom and three euclidean rotational degrees
of freedom. When the linking macro-action is enabled, the
state also contains indicator values for each pairwise object
combination.

C.2. Push-Away State

This task contains two larger cubes, one smaller cube, and
one elongated, flat rectangular prism. Again, the dimen-
sionality of the state space is S E/(3) for each object along
with pairwise indicators when the linking macro-action is
enabled.

C.3. Bookshelf State

This task contains two rods elongated rectangular prism rods
and a rectangular prism book, each with a SF(3) configura-
tion space and pairwise linking. Linking is always enabled
for this task because it is required to complete it.

C.4. Launch-Block State

The state space for this task contains five small cubes, one
larger cube that sits at the end of the seesaw, and the angle of
the seesaw itself. Each of the cubes has an SE(3) configura-
tion space and the seesaw has a bounded real configuration
with a single degree of freedom.

C.5. Transfer States

When comparing between tasks, the action spaces and state
spaces need matching dimensionality to ensure the networks
could be substituted. We achieved this by making sure each
problem instance had an equivalent number of objects, even
if it was unnecessary to use all objects to complete the task.
For the transfer results stated in this paper, this equated to
using five objects for each task.

C.6. Action Spaces

When both linking and pick-place macro-actions are en-
abled, the action space needs to contain information for
choosing which object to move (k total), the goal pose of
the object (dof), which of the (]2“) object pairs to link or
unlink , and which macro-action to select (linking or pick-
place). Therefore, the dimensionality of the action space is
(g) + (dof + 1) - k + 2. The macro-action, link, and ob-
ject discrete variables are chosen by performing an argmax
over the respective section of the action space. If a link
macroaction is selected between two objects that are already
linked, this is considered an unlink action and the constraint
between the two objects is removed. If a link is chosen be-
tween two objects which aren’t in contact, then the action is
considered to be infeasible. For implementation simplicity,
we use k2 variables for the linking indicator rather than (’2“)
and ignore any redundant pairs.

D. Baselines
D.1. Statistical Analysis

In addition to the CSP variants, we compared the perfor-
mance of CSP to a number of deep reinforcement learning
and motion planning baselines. The implementation of these
baselines is explained in detail below.

Flexible and Efficient Long-Range Planning Through Curious Exploration

3-Stack p values 5-Stack p values
0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 0 1 2

Push-Away p values
3 4

Bookshelf p values Launch-Block p values
5 6 7 8 o 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

107

©® w o u &8 w N = o

o

-2 RBEY 10
2 10~ [URUY 10~

= RN 10-

-2 LY 10

5-Stack t statistics
o 1 2 3 4 5 6 7 8 0 1 2

Push-Away t statistics
3 4 5 6 7 8 o 1 2 3

Bookshelf t statistics Launch-Block t statistics
4 5 6 7 8 0 1 2 3 4 5 6 7 8

223 357 504

257 372 253

259 322 4.00

Figure 1. Results from statistical t-test between each pairwise combination of baseline algorithms on each task.
are Vanilla PPO, RND-PPO , RRT, HER, CSP-No Curiosity, CSP-RND No AC, CSP-FD, CSP-SE, CSP-RND.

greater than 102 and 102 is used for all values less than 102,

D.2. RRT

The overall objective of RRT is to explore the configuration
space by sampling a feasible configuration from some distri-
bution over the configuration space, selecting the node that
is closest to that configuration in the search tree, executing
an action primitive from that node, and adding the resulting
node to the search tree (Lavalle, 1998). Because the problem
setup is such that the effects of individual macro-actions are
unknown, direct analytic control is impossible. Thus, the
action is selected randomly from a uniform distribution over
the space of parameterized macro-actions.

D.3. Vanilla DRL

We used vanilla implementations of PPO (Schulman et al.,
2017) and A2C (Mnih et al., 2016) using the same hyper-
parameters described in Section B.1. A major shortcoming
when using these algorithms for planning is that they are
unable to revert to previously explored states and thus will
often get stuck with one or multiple of the objects in the
scene becoming unreachable. Therefore, we implemented a
probabilistic resetting policy such that the environment re-
sets to the initial problem state with probability 1e-4. While
training, the environment was also reset to the starting state
when a goal state was reached. The agent received a reward
of 1 after reaching the goal state and a reward of 0 otherwise.
The quantitative results reported were the number of steps
taken by the trained policy in six unseen initial configura-
tions after 5eb steps of training. The primary reason for
the failure of vanilla DRL baselines was that the reward
is far too sparse in each of the problems to generalize to
unseen configurations. In many of the problems, the DRL

100 100 100 100 10? 490 490 490 490 4.90

443 443 443 443 443 500 500 500 500 500 FUE

100 100 10 FURETRRTN 0.72 0.73

PN 0.55

100 10? 0 107 100 107 107

The algorithms, in order,
102 is used for all values

algorithms failed to find even a single positive example for
which it received reward.

In order to validate that our actor-critic implementation was
functioning correctly, we tested it on the simpler 2-Stack
problem in which the reward was not too sparse for policy
learning. The 2-stack problem was solved by our actor
critic implementation but the sparse-reward 3-stack problem
could not be solved (see Fig 2).

D.4. Curious DRL

One potential method for overcoming the sparse reward
problem in DRL is to “’densify” the reward space by adding
an intrinsic reward that incentivizes environmental explo-
ration (Choi et al., 2019). In order to test this, we mod-
ified the vanilla PPO implementation to use the sum of
extrinsic reward (R.) and RND world model loss trained
alongside the actor-critic networks (R;) as the total reward
(R; aR. + (1 — a)R;) for the DRL agent. We ex-
periment with several values of the alpha hyperparameter
(o =0.0,0.1,0.5,0.9,0.99, 1.0), with vanilla PPO being a
special case where o = 1, and found no clear benefit over
vanilla training in the quantitative results (see Fig 2).

D.5. HER

We used the DDPG implementation of hindsight experience
replay (Andrychowicz et al., 2017) which modifies the ex-
perience replay buffer to be evenly split between no-reward
trajectories and pseudo-reward trajectories. The pseudo-
reward trajectories are generated from no-reward trajecto-
ries by giving a reward for whatever state was reached at a

Flexible and Efficient Long-Range Planning Through Curious Exploration

RND-PPO Two Stack

RND-PPO Three Stack

Accuracy (%)

0 01 02 03 04 05 0 01 02 03 04 05
Num Steps (millions) Num Steps (millions)

(¥ =1 (Vanilla) =099 =09 =05 =01 =00

Figure 2. Reward curves during PPO training for (a) 2-Stack and
(b) 3-Stack tasks using different intrinsic/extrinsic reward weight-
ing a. These results demonstrate that our actor-critic DRL imple-
mentation is correct and functioning in environments where the
reward it not sparse, but fails to learn in sparse-reward environ-
ments even when the reward includes intrinsic curiosity.

WM Update AC Update Action
Vanilla PPO N/A 271+£30 094+0.1
RND-PPO 187+ 17 251+44 0940.1
RRT N/A N/A 44+ 13
CSP-None N/A N/A 1.1+04
8 CSP-RND 172+ 6 243+18 1.1+0.2
CSP-FD 161 + 15 224+36 1.04+0.2
CSP-SE 249 £ 10 219 £ 21 1.24+0.2

Table 1. Time takes for batch updates and action selection in each
of the baseline algorithms (In milliseconds). All testing was done
on the same device with . CSP-SE is significantly slower when run
on a CPU.

random point on the no-reward trajectory. Our implemen-
tation follows the DDPG architecture and hyperparameters
used in the HER paper.

E. Runtime Complexity

In this section, we empirically analyze the complexity of
CSP compared to other baselines using two metrics: batch
update speed and action selection speed. While these are
not the only time-consuming components of the planning
process (e.g. environment simulation speed, geometric mo-
tion planning, graph data structure bookkeeping), they are
the only algorithm-dependent components. All experiments
were run on a 48 CPU machine using a single NVIDIA
TITAN X GPU.

F. Code

All of the code for this project can be found here:
https://github.com/neuroailab/CuriousSamplePlanner

References

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P,
and Zaremba, W. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/
abs/1707.01495.

Choi, J., Guo, Y., Moczulski, M., Oh, J., Wu, N., Norouzi,
M., and Lee, H. Contingency-aware exploration in
reinforcement learning. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyxGB2AcY7.

Lavalle, S. M. Rapidly-exploring random trees: A new tool
for path planning. 1998.

Mnih, V., Badia, A. P, Mirza, M., Graves, A., Lilli-
crap, T. P, Harley, T., Silver, D., and Kavukcuoglu, K.
Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783, 2016. URL http://arxiv.
org/abs/1602.01783.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://openreview.net/forum?id=HyxGB2AcY7
https://openreview.net/forum?id=HyxGB2AcY7
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

