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Abstract 
The evaluation of robustness against adversarial 
manipulation of neural networks-based classifers 
is mainly tested with empirical attacks as methods 
for the exact computation, even when available, 
do not scale to large networks. We propose in 
this paper a new white-box adversarial attack wrt 
the lp-norms for p ∈ {1, 2, ∞} aiming at fnding 
the minimal perturbation necessary to change the 
class of a given input. It has an intuitive geomet-
ric meaning, yields quickly high quality results, 
minimizes the size of the perturbation (so that it 
returns the robust accuracy at every threshold with 
a single run). It performs better or similar to state-
of-the-art attacks which are partially specialized 
to one lp-norm, and is robust to the phenomenon 
of gradient masking. 

1. Introduction 

The fnding of the vulnerability of neural networks-based 
classifers to adversarial examples, that is small perturba-
tions of the input able to modify the decision of the models, 
started a fast development of a variety of attack algorithms. 
The high effectiveness of adversarial attacks reveals the 
fragility of these networks which questions their safe and 
reliable use in the real world, especially in safety critical 
applications. Many defenses have been proposed to fx this 
issue (Gu & Rigazio, 2015; Zheng et al., 2016; Papernot 
et al., 2016; Huang et al., 2016; Bastani et al., 2016; Madry 
et al., 2018), but with limited success, as new more pow-
erful attacks showed (Carlini & Wagner, 2017b; Athalye 
et al., 2018; Mosbach et al., 2018). In order to trust the 
decision of a model, it is necessary to evaluate the exact 
adversarial robustness. Although this is possible for ReLU 
networks (Katz et al., 2017; Tjeng et al., 2019) these tech-
niques do not scale to commonly used large networks. Thus, 
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the robustness is evaluated approximating the solution of 
the minimal adversarial perturbation problem through ad-
versarial attacks. 
One can distinguish attacks into black-box (Narodytska & 
Kasiviswanathan, 2016; Brendel et al., 2018; Su et al., 2019), 
where one is only allowed to query the classifer, and white-
box attacks, where one has full control over the network, 
according to the attack model used to create adversarial 
examples (typically some lp-norm, but others have become 
popular as well, e.g. (Brown et al., 2017; Engstrom et al., 
2017; Wong et al., 2019)), whether they aim at the minimal 
adversarial perturbation (Carlini & Wagner, 2017a; Chen 
et al., 2018; Croce et al., 2019) or rather any perturbation 
below a threshold (Kurakin et al., 2017; Madry et al., 2018; 
Zheng et al., 2019), if they have lower (Moosavi-Dezfooli 
et al., 2016; Modas et al., 2019) or higher (Carlini & Wagner, 
2017a; Croce et al., 2019) computational cost. Moreover, it 
is clear that due to the non-convexity of the problem there 
exists no universally best attack (apart from the exact meth-
ods), since this depends on runtime constraints, networks 
architecture, dataset, etc. However, our goal is to have 
an attack which performs well under a broad spectrum of 
conditions with minimal amount of hyperparameter tuning. 

In this paper we propose a new white-box attack scheme 
which performs comparably or better than established at-
tacks and has the following features: frst, it aims at adver-
sarial samples with minimal distance to the attacked point, 
measured wrt the lp-norms with p ∈ {1, 2, ∞}. Compared 
to the popular PGD (projected gradient descent)-attack of 
(Madry et al., 2018) this has the clear advantage that our 
method does not need to be restarted for every threshold � 
if one wants to evaluate the success rate of the attack with 
perturbations constrained to be in {δ ∈ Rd | kδk ≤ �}. p 
Thus it is particularly suitable to get a complete picture on 
the robustness of a classifer with low computational cost. 
Second, it achieves fast good quality in terms of average 
distortion or robust accuracy. At the same time we show 
that increasing the number of restarts keeps improving the 
results and makes it competitive to or stronger than the 
strongest available attacks. Third, although it comes with a 
few parameters, these generalize well across datasets, archi-
tectures and norms considered, so that we have an almost 
off-the-shelf method. Most importantly, unlike PGD and 
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other methods, there is no step size parameter, which poten-
tially has to be carefully adapted to every new network, and 
we show that it is scaling invariant. Both properties lead to 
the fact that it is robust to gradient masking which can be a 
problem for PGD (Tramèr & Boneh, 2019). 

2. FAB: a Fast Adaptive Boundary Attack 

We frst introduce minimal adversarial perturbations, then 
we recall the defnition and properties of the projection wrt 
the lp-norms of a point on the intersection of a hyperplane 
and box constraints, as they are an essential part of our 
attack. Finally, we present our FAB-attack algorithm to 
generate minimally distorted adversarial examples. 

2.1. Minimal adversarial examples 

Let f : Rd → RK be a classifer which assigns every 
input x ∈ Rd (with d the dimension of the input space) 
to one of the K classes according to arg max fr(x). In 

r=1,...,K 

many scenarios the input of f has to satisfy a specifc set 
of constraints C, e.g. images are represented as elements 
of [0, 1]d . Then, given a point x ∈ Rd with true class c, we 
defne the minimal adversarial perturbation for x wrt the 
lp-norm as 

δmin,p = arg min kδk ,p 
δ∈Rd 

(1)
s.th. max fl(x + δ) ≥ fc(x + δ), x + δ ∈ C. 

l 6=c 

The optimization problem (1) is non-convex and NP-hard 
for non-trivial classifers (Katz et al., 2017) and, although for 
some classes of networks it can be formulated as a mixed-
integer program (Tjeng et al., 2019), the computational 
cost of solving it is prohibitive for large, normally trained 
networks. Thus, δmin,p is usually approximated by an attack 
algorithm, which can be seen as a heuristic to solve (1). We 
will see in the experiments that current attacks sometimes 
drastically overestimate kδmin,pk and thus the robustness p
of the networks. 

2.2. Projection on a hyperplane with box constraints 

Let w ∈ Rd and b ∈ R be the normal vector and the offset 
defning the hyperplane π : hw, xi + b = 0. Let x ∈ Rd , 
we denote by the box-constrained projection wrt the lp -
norm of x on π (projection onto the intersection of the box 
C = {z ∈ Rd : li ≤ zi ≤ ui} and the hyperplane π) the 
following minimization problem: 

∗ z = arg min kz − xk (2)p 
z∈Rd 

s.th. hw, zi + b = 0, li ≤ zi ≤ ui, i = 1, ... , d, 

where li, ui ∈ R are lower and upper bounds on each com-
ponent of z. For p ≥ 1 the optimization problem (2) is 

convex. (Hein & Andriushchenko, 2017) proved that for 
p ∈ {1, 2, ∞} the solution can be obtained in O(d log d) 
time, that is the complexity of sorting a vector of d elements, 
as well as determining that there exists no feasible point. 

Since this projection is part of our iterative scheme, we need 
to handle specifcally the case of (2) being infeasible. In this 
case, defning ρ = sign(hw, xi + b), we instead compute 
0z = arg min ρ · (hw, zi + b), whose solution is 

li ≤zi≤ui ⎧ ⎪li if ρwi > 0,⎨ 
0 zi = ui if ρwi < 0, for i = 1, ... , d. (3)⎪⎩ 

xi if wi = 0 

Assuming that the point x satisfes the box constraints (as it 
holds in our algorithm), this is equivalent to identifying the 
corner of the d-dimensional box, defned by the component-
wise constraints on z, closest to the hyperplane π. Note that 
if (2) is infeasible then the objective function of (3) stays 
positive and the points x and z are strictly contained in the 
same of the two halfspaces divided by π. Finally, we defne 
the projection operator � ∗ z if (2) is feasible 

proj : (x, π, C) 7−→ (4)p 0z else 

which yields the point as close as possible to π without 
violating the box constraints. 

2.3. FAB-attack 

We introduce now our algorithm to produce minimally 
distorted adversarial examples, wrt any lp-norm for p ∈ 
{1, 2, ∞}, for a given point xorig initially correctly classi-
fed by f as class c. The high-level idea is that, frst, we use 

(i)the linearization of the classifer at the current iterate x 
to compute the box-constrained projections of x(i) respec-
tively xorig onto the approximated decision hyperplane and, 
second, we take a convex combinations of these projections 
depending on the distance of x(i) and xorig to the decision 
hyperplane. Finally, we perform an extrapolation step. We 
explain below the geometric motivation behind these steps. 
The attack closest in spirit is DeepFool (Moosavi-Dezfooli 
et al., 2016) which is known to be very fast but suffers from 
low quality. DeepFool just tries to fnd the decision bound-
ary quickly but has no incentive to provide a solution close 
to xorig. Our scheme resolves this main problem and, to-
gether with the exact projection we use, leads to a principled 
way to track the decision boundary (the surface where the 
decision of f changes) close to xorig. 

If f was a linear classifer then the closest point to x(i) 

on the decision hyperplane could be found in closed form. 
However neural networks are highly non-linear (although 
ReLU networks, i.e. neural networks which use ReLU as 
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activation function, are piecewise affne functions and thus 
locally a linearization of the network is an exact description 
of the classifer). Let l 6= c, then the decision boundary 
between classes l and c can be locally approximated using a 
frst order Taylor expansion at x(i) by the hyperplane 

(i))πl(z) : fl(x
(i)) − fc(x D E (5)

(i)) −rfc 
(i)+ rfl(x (x(i)), z − x = 0. 

Moreover the lp-distance dp(x(i), πl) of x(i) to πl is given, 
1assuming 1 + = 1, by p q 

|fl(x(i)) − fc(x(i))|
dp(x

(i), πl) = . (6) 
rfl(x(i)) −rfc(x(i)) 

q 

Note that if dp(x(i), πl) = 0 then x(i) belongs to the true de-
cision boundary. Moreover, if the local linear approximation 
of the network is correct then the class s with the decision 
hyperplane closest to the point x(i) can be computed as 

|fl(x(i)) − fc(x(i))|
s = arg min . (7)

(x(i))l 6=c rfl(x(i)) −rfc q 

Thus, given that the approximation holds in some large 
enough neighborhood, the projection proj (x(i), πs, C) ofp 

x(i) onto πs lies on the decision boundary (unless (2) is 
infeasible). 

(i+1)Biased gradient step: The iterative algorithm x = 
proj (x(i), πs, C) would be similar to DeepFool except that p 
our projection operator is exact whereas they project onto 
the hyperplane and then clip to [0, 1]d . This scheme is 
not biased towards the original target point xorig, thus it 
goes typically further than necessary to fnd a point on the 
decision boundary as basically the algorithm does not aim 
at the minimal adversarial perturbation. Then we consider 
additionally proj (xorig, πs, C) and use instead the iterative p 

step, with x(0) = xorig and α ∈ [0, 1], defned as 

(i+1)x = (1 − α) projp(x
(i), πs, C) + α projp(xorig, πs, C), 

(8) 

which biases the step towards xorig (see Figure 1). Note that 
this is a convex combination of two points on πs and in C 
and thus also x(i+1) lies on πs and is contained in C. 

As we wish a scheme with minimal amount of parameters, 
our goal is an automatic selection of α based on the available 
geometric quantities. Let 

δ(i) (i)= proj (x(i), πs, C) − x ,p 

δ
(i) 

= proj (xorig, πs, C) − xorig.orig p 

Figure 1. Visualization of FAB-attack scheme: Left, case η = 1, 
right, η > 1 (extrapolation). In blue we show projp(x

(i), πs, C), 
the iterate one would get without any bias towards xorig, in green 
the effect of the bias we introduce and in red the actual iterate 
x(i+1) of FAB-attack in (10). FAB-attack stays closer to xorig 

compared to the unbiased gradient step with projp(x
(i), πs, C). 

(i)
δ(i)Note that and δ are the distances of x(i) and 

p orig 
p 

xorig to πs (inside C). We propose to use for the parameter 
α the relative magnitude of these two distances, that is ⎧ ⎫ ⎪ ⎪⎨ δ(i) ⎬ 

p
α = min , αmax ∈ [0, 1]. (9)⎪ δ(i) (i) ⎪⎩ + δ ⎭ 

p orig 
p 

The motivation for doing so is that if x(i) is close to the 
decision boundary then we should stay close to this point 
(note that πs is the approximation of f computed at x(i) and 
thus it is valid in a small neighborhood of x(i), whereas xorig 
is farther away). On the other hand we want to have the 
bias towards xorig in order not to go too far away from xorig. 
This is why α depends on the distances of x(i) and xorig to 
πs but we limit it from above with αmax. Finally, we use a 
small extrapolation step as we noted empirically, similarly 
to (Moosavi-Dezfooli et al., 2016), that this helps to cross 
faster the decision boundary and get an adversarial sample. 
This leads to the fnal scheme: � ��� � �
(i+1) (i) (i)

x = projC (1 − α) x + ηδ(i) + α xorig + ηδorig , 

(10) 

where α is chosen as in (9), η ≥ 1 and projC is the projec-
tion onto the box which can be done by clipping. In Figure 
1 we visualize the scheme: in black one can see the hyper-

(i)plane πs and the vectors δorig and δ(i), in blue the step not 
biased towards xorig, while in red the biased step of FAB-
attack, see (10). The green vector shows the bias towards 
the original point we introduce. On the left of Figure 1 we 
use η = 1, while on the right we use extrapolation η > 1. 

Interpretation of projp(xorig, πs, C): The projection of 
the target point xorig onto the intersection of πs and C is 

arg min kz − xorigk s.th. hw, zi + b = 0, li ≤ zi ≤ ui,p 
z∈Rd 
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Note that replacing z by x(i) + δ we can rewrite this as 

arg min x(i) + δ − xorig 
δ∈Rd D E 

p 

s.th. w, x(i) + δ + b = 0, li ≤ xi + δi ≤ ui. 

This can be interpreted as the minimization of the distance 
of the next iterate x(i) + δ to the target point xorig so that 
x(i) + δ lies on the intersection of the (approximate) deci-
sion hyperplane and the box C. This point of view on the 
projection projp(xorig, πs, C) again justifes using a convex 
combination of the two projections in our scheme in (10). 

Backward step: The described scheme fnds in a few iter-
ations adversarial perturbations. However, we are interested 
in minimizing their norms. Thus, once we have a new point 
(i+1)x , we check whether it is assigned by f to a class 

different from c. In this case, we apply 

(i+1)x = (1 − β)xorig + βx(i+1), β ∈ (0, 1), (11) 

that is we go back towards xorig on the segment 
(i+1)[x , xorig], effectively starting again the algorithm at a 

point which is close to the decision boundary. In this way, 
due to the bias of the method towards xorig we successively 
fnd adversarial perturbations of smaller norm, meaning that 
the algorithm tracks the decision boundary while getting 
closer to xorig. We fx β = 0.9 in all experiments. 

Final search: Our scheme fnds points close to the deci-
sion boundary but often they are slightly off as the linear 
approximation is not exact and we apply the extrapolation 
step with η > 1. Thus, after fnishing Niter iterations of our 
algorithmic scheme, we perform a last, fast step to further 
improve the quality of the adversarial examples. Let xout 
be the closest point to xorig classifed differently from c, 
say s 6= c, found with the iterative scheme. It holds that 
fs(xout) − fc(xout) > 0 and fs(xorig) − fc(xorig) < 0. This 

∗ means that, assuming f continuous, there exists a point x 
on the segment [xout, xorig] such that fs(x ∗) − fc(x ∗) = 0 
and kx ∗ − xorigk < kxout − xorigk . If f is linear 

p p 

(fs(xout) − fc(xout)) (xout − xorig)∗ x = xout − . 
fs(xout) − fc(xout) + fs(xorig) − fc(xorig) 

(12) 
Since f is non-linear, we compute iteratively for a few steps 

(fs(xout) − fc(xout)) (xout − xorig) 
xtemp = xout − ,

fs(xout) − fc(xout) + fs(xorig) − fc(xorig) 
(13) 

each time replacing in (13) xout with xtemp if fs(xtemp) − 
fc(xtemp) > 0 or xorig with xtemp if instead fs(xtemp) − 
fc(xtemp) < 0. With this kind of modifed binary search one 
can fnd a better adversarial sample with the cost of a few 
forward passes (which is fxed to 3 in all experiments). 

Algorithm 1 FAB-attack 
Input : xorig original point, c original class, 

Nrestarts, Niter, αmax, β, η, �, p 
Output :xout adversarial example 
u ← +∞ 

for j = 1, ... , Nrestarts do 
if j = 1 then x(0) ← xorig; 
else x(0) ← randomly sampled s.th. x(0) − xorig = 

p 
min{u,�}/2; 

for i = 0, ... , Niter − 1 do 
(i) (i)|fl(x )−fc(x )|s ← arg min krfl(x(i))−rfc(x(i))kl 6=c q 

δ(i) ← proj (x(i), πs, C)p 
(i)
δorig ← proj (xorig, πs, C)p 
compute α as in Equation (9)� � � 
x(i+1) ← projC (1 − α) x(i) + ηδ(i) � 

(i)
+ α(xorig + ηδorig) 

if x(i+1) is not classifed as c then 
if x(i+1) − xorig < u then 

p 
(i+1)xout ← x 

u ← x(i+1) − xorig p 

end 
x(i+1) ← (1 − β)xorig + βx(i+1) 

end 
end 

end 
perform 3 steps of fnal search on xout as in (13) 

Random restarts: So far all the steps are deterministic. 
To improve the results, we introduce the option of random 
restarts, that is x(0) is randomly sampled in the proximity 
of xorig instead of being xorig itself. Most attacks beneft 
from random restarts, e.g. (Madry et al., 2018; Zheng et al., 
2019), especially dealing with models trained for robustness 
(Mosbach et al., 2018), as it allows a wider exploration of 
the input space. We choose to sample from the lp-sphere 
centered in the original point with radius half the lp-norm of 
the current best adversarial perturbation (or a given thresh-
old if no adversarial example has been found yet). 

Computational cost: Our attack, in Algorithm 1, con-
sists of two main operations: the computation of f and 
its gradients and solving the projection (2). We perform, 
for each iteration, a forward and a backward pass of the 
network in the gradient step and a forward pass in the back-
ward step. The projection can be effciently implemented 
to run in batches on the GPU and its complexity depends 
only on the input dimension. Thus, except for shallow mod-
els, its cost is much smaller than the passes through the 
network. We can approximate the computational cost of 
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Figure 2. Ablation study to DeepFool for l∞-attacks. The 
curves show the robust accuracy as a function of the threshold 
� under different attacks on the l∞-AT model on MNIST (lower 
values mean stronger attacks). The introduction of the convex 
combination (αmax = 0.1, no backward step) already improves 
over DeepFool. If one uses the backward step, the case αmax = 0 
(which can be seen as an improved iterative DF) is worse than 
αmax = 0.1 with the same number of restarts. 

our algorithm by the total number of calls of the classifer 
Niter × Nrestarts × (2 × forward passes +1 × backward pass) 
Per restart one has to add the three forward passes for the 
fnal search. 

2.4. Scale Invariance of FAB-attack 

For a given classifer f , the decisions and thus adversarial 
samples do not change if we rescale the classifer g = αf 
for α > 0 or shift its logits as h = f + β for β ∈ R. The 
following proposition states that FAB-attack is invariant 
under both rescaling and shifting (proof in supplement). 

Proposition 2.1 Let f : Rd → RK be a classifer. Then for 
any α > 0 and β ∈ R the output xout of Algorithm 1 for 
the classifer f is the same as of the classifers g = αf and 
h = f + β. 

We note that the cross-entropy loss CE(x, y, f) = PKfy (x)/− log(e fj (x)) used as objective in the normal j=1 e 
PGD attack and its gradient wrt x PK fj (x)rxfj (x)j=1 e 
rxCE(x, y, f) = −rxfy(x) + PK fj (x) 

j=1 e 

are not invariant under rescaling. Moreover, we observe 
that the gradient vanishes for αf if fy(x) > fj (x) for 
j 6= y (correctly classifed point) as α → ∞. Due to 
fnite precision the gradient becomes zero for fnite α and 
it is obvious that in this case PGD gets stuck. Due to the 
rescaling invariance FAB-attack is not affected by gradient 
masking due to this phenomenon as it uses the gradient 
of the differences of the logits and not the gradient of the 

cross-entropy loss. The latter one runs much earlier into 
numerical problems when one upscales the classifer due to 
the exponential function. In the experiments (see below) we 
show that PGD can catastrophically fail due to a “wrong” 
scaling whereas FAB-attack is unaffected. 

2.5. Comparison to DeepFool 

The idea of exploiting the frst order local approximation of 
the decision boundary is not novel but the basis of one of 
the frst white-box adversarial attacks, DeepFool (DF) from 
(Moosavi-Dezfooli et al., 2016). While DF and our FAB-
attack share the strategy of using a linear approximation of 
the classifer and projecting on the decision hyperplanes, we 
want to point out many key differences: frst, DF does not 
solve the projection (2) but its simpler version without box 
constraints, clipping afterwards. Second, their gradient step 
does not have any bias towards the original point, that is 
equivalent to α = 0 in (10). Third, DF does not have any 
backward step, fnal search or restart, as it stops as soon as 
a misclassifed point is found (its goal is to provide quickly 
an adversarial perturbation of average quality). 
We perform an ablation study of the differences to DF in Fig-
ure 2, where we show robust accuracy as a function of the 
threshold � (lower is better). We present the results of Deep-
Fool (blue) and FAB-attack with the following variations: 
αmax = 0.1 and no backward step (magenta), αmax = 0 
(that is no bias in the gradient step) and no restarts (light 
green), αmax = 0.1 and no restarts (orange), αmax = 0 and 
100 restarts (dark green) and αmax = 0.1 and 100 restarts, 
that is FAB-attack, (red). We can see how every addition 
we make to the original scheme of DeepFool contributes to 
the signifcantly improved performance of FAB-attack when 
compared to the original DeepFool. 

3. Experiments 

Models: We run experiments on MNIST, CIFAR-10 
(Krizhevsky et al., 2014) and Restricted ImageNet (Tsipras 
et al., 2019). For each dataset we consider a normally 
trained model (plain) and two adversarially trained ones 
as in (Madry et al., 2018) wrt the l∞-norm (l∞-AT) and the 
l2-norm (l2-AT) (see supplementary material for details). 

Attacks: We compare the performance of FAB-attack1 to 
those of attacks representing the state-of-the-art in each 
norm: DeepFool (DF) (Moosavi-Dezfooli et al., 2016), 
Carlini-Wagner l2-attack (CW) (Carlini & Wagner, 2017a), 
Linear Region l2-Attack (LRA) (Croce et al., 2019), Pro-
jected Gradient Descent on the cross-entropy function 
(PGD) (Kurakin et al., 2017; Madry et al., 2018; Tramèr & 
Boneh, 2019), Distributionally Adversarial Attack (DAA) 
(Zheng et al., 2019), SparseFool (SF) (Modas et al., 2019), 

1https://github.com/fra31/fab-attack 
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MNIST - l∞-attack: 

MNIST - l2-attack: 

MNIST - l1-attack: 

Figure 3. Evolution of robust accuracy across iterations for different step sizes for PGD wrt l1, l2, l∞ for three different models on MNIST. 
In red we highlight the step size we used for each norm in the experiments. Notice that it performs on average the best. Here we evaluate 
on MNIST - the supplementary material contains also CIFAR-10 and other thresholds. 

Elastic-net Attack (EAD) (Chen et al., 2018). We use DF 
from (Rauber et al., 2017), CW and EAD as in (Papernot 
et al., 2017), DAA and LRA with the code from the original 
papers, while we reimplemented SF and PGD. For MNIST 
and CIFAR-10 we used DAA with 50 restarts, PGD and 
FAB with 100 restarts. For Restricted ImageNet, we used 
DAA, PGD and FAB with 10 restarts (for l1 we used 5 
restarts, since the methods beneft from more iterations). 
Moreover, we could not use LRA since it hardly scales to 
models of such scale and CW and EAD for compatibility 
issues between the implementations of attacks and mod-
els. See the supplementary material for more details e.g. 
regarding number of iterations and hyperparameters of all 
attacks. In particular, we provide a detailed analysis of the 
dependency of PGD on the step size. Indeed the optimal 
choice of the step size is quite important for PGD. In order 
to select the optimal step size for PGD for each norm, we 
performed a grid search on the step size parameter in �/t for 
t ∈ {1, 2, 4, 10, 25, 75} for different models and thresholds, 
and took the values working best on average, see Figure 3 
for an illustration (similar plots for other datasets and thresh-
olds are presented in the supplements). As a result we use 
for PGD wrt l∞ step size �/10 and the direction is the sign of 
the gradient of the cross entropy loss, for PGD wrt l2 we do 

a step in the direction of the l2-normalized gradient with step 
size �/4, for PGD wrt l1 we use the gradient step suggested 
in (Tramèr & Boneh, 2019) (with sparsity levels of 1% for 
MNIST and 10% for CIFAR-10 and Restricted ImageNet) 
with step size �/2. For FAB-attack we use always β = 0.9 
and on MNIST and CIFAR-10: αmax = 0.1, η = 1.05 and 
on Restricted ImageNet: αmax = 0.05, η = 1.3. These 
parameters are the same for all norms. 

Evaluation metrics: The robust accuracy for a thresh-
old � is the classifcation accuracy (in percentage) when an 
adversary is allowed to change every test input with per-
turbations of lp-norm smaller than � in order to change the 
decision. Thus stronger attacks produce lower robust accu-
racies. For each model and dataset we fx fve thresholds at 
which we compute the robust accuracy for each attack (we 
choose the thresholds so that the robust accuracy covers the 
range between clean accuracy and 0). We evaluate the at-
tacks by the following statistics: i) avg. rob. accuracy: the 
mean of the robust accuracies achieved by the attack over 
all models and thresholds (lower is better), ii) # best: how 
many times the attack achieves the lowest robust accuracy 
(it is the most effective), iii) avg. difference to best: for 
each model/threshold we compute the difference between 
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Table 1. Performance summary of all attacks on MNIST and CIFAR-10 (aggregated). We report, for each norm, "avg. rob. acc.", the 
mean of robust accuracies across all models and datasets (lower is better), "# best", number of times the attack is the best one, "avg. diff. 
to best" and "max diff. to best", the mean and maximum difference of the robust accuracy of the attack to the robust accuracy of the 
best attack for each model/threshold (on the frst 1000 points for l∞ and l1, 500 for l2, of the test sets). The numbers after the name of 
the attacks indicate the number of restarts. In total we have 5 thresholds × 6 models = 30 cases for each of the 3 norms. *Note that for 
FAB-10 (i.e. with 10 restarts) the "# best" is computed excluding the results of FAB-100. 

statistics on MNIST + CIFAR-10 

l∞-norm DF DAA-50 PGD-100 FAB-10 FAB-100 
avg. rob. acc. 58.81 60.67 46.07 46.18 45.47 
# best 0 8 12 13* 17 
avg. diff. to best 14.58 16.45 1.85 1.96 1.25 
max diff. to best 78.10 49.00 10.70 20.30 17.10 

l2-norm CW DF LRA PGD-100 FAB-10 FAB-100 
avg. rob. acc. 45.09 56.10 36.97 44.94 36.41 35.57 
# best 4 1 9 11 19* 23 
avg. diff. to best 9.65 20.67 1.54 9.51 0.98 0.13 
max diff. to best 65.40 91.40 13.60 64.80 8.40 1.60 

l1-norm SF EAD PGD-100 FAB-10 FAB-100 
avg. rob. acc. 64.47 35.79 49.51 33.26 29.46 
# best 0 13 0 10* 17 
avg. diff. to best 35.31 6.63 20.35 4.10 0.30 
max diff. to best 95.90 58.40 74.00 21.80 1.60 

Table 2. As in Table 1 statistics of the performance of different attacks on Restricted ImageNet (on the frst 500 points of the validation 
set). In total we consider 5 thresholds × 3 models = 15 cases for each of the 3 norms. 

statistics on Restricted ImageNet 

l∞-norm l2-norm l1-norm 
DF DAA- PGD- FAB- DF PGD- FAB- SF PGD- FAB-

10 10 10 10 10 5 5 
avg. rob. acc. 35.61 38.44 26.91 27.83 45.69 31.75 33.24 71.31 40.64 38.12 
# best 0 1 13 3 0 14 1 0 3 12 
avg. diff. best 8.75 11.57 0.04 0.96 13.99 0.04 1.53 33.52 2.85 0.33 
max diff. best 14.60 37.20 0.40 2.00 25.40 0.60 3.40 59.00 6.20 2.40 

the robust accuracy of the attack and the best one across all 
the attacks, then we average over all models/thresholds, iv) 
max difference to best: as "avg. difference to best", but 
with the maximum difference instead of the average one. In 
the supplement we report additionally the average lp-norm 
of the adversarial perturbations given by the attacks. 

Results: We report the complete results in the supple-
mentary material, while we summarize them in Table 1 
(MNIST and CIFAR-10 aggregated, as we used the same 
attacks) and Table 2 (Restricted ImageNet). Our FAB-attack 
achieves the best results in all statistics for every norm 
(with the only exception of "max diff. to best" in l∞) on 
MNIST+CIFAR-10. In particular, while on l∞ the "avg. 
robust accuracy" of PGD is not far from that of FAB, the 
gap is large when considering l2 and l1 (in the appendix we 
provide the aggregate statistics without the result on l∞-AT 
MNIST, showing that FAB is still the best attack even if 

one leaves out this failure case of PGD). Interestingly, the 
second best attack in terms of average robust accuracy, is 
different for every norm (PGD for l∞, LRA for l2, EAD 
for l1), which implies that FAB outperforms algorithms 
specialized in the individual norms. 
We also report the results of FAB-10, that is our attack with 
only 10 restarts, to show that FAB yields high quality results 
already with a low budget in terms of time/computational 
cost. In fact, FAB-10 has "avg. robust accuracy" better 
than or very close to that of the strongest versions of the 
other attacks (see below for a runtime analysis, where one 
observes that FAB-10 is the fastest attack when excluding 
the signifcantly worse DF and SF attacks). On Restricted 
ImageNet, FAB-attack gets the best results in all statistics 
for l1, while for l∞ and l2 PGD performs on average better, 
but the difference in "avg. robust accuracy" is small. 
In general, both average and maximum difference to best 
of FAB-attack are small for all the datasets and norms, 
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implying that it does not suffer from severe failures, which 
makes it an effcient, high quality technique to evaluate 
the robustness of classifers for all lp-norms. Finally, 
we show in the supplementary material that FAB-attack 
outperforms or matches the competitors in 16 out of 
18 cases when comparing the average lp-norms of the 
generated adversarial perturbations. 

Table 3. We attack the ResNet-110 in (Pang et al., 2020) on CIFAR-
10 at � = 8/255. The performance of the PGD attack on the cross 
entropy loss (CE) heavily depends on both scale of the classifer 
and the step size. In contrast, the scaling invariant FAB-attack 
works well even on the original (unscaled) model. 

attack step size robust accuracy 
PGD-CE �/10 90.2% 
PGD-CE �/2 90.2% 
PGD-CE rescaled �/10 12.9% 
PGD-CE rescaled �/2 2.5% 
FAB - 0.3% 

Resistance to gradient masking: It has been argued 
(Tramèr & Boneh, 2019) that models trained with frst-order 
methods to be resistant wrt l∞-attacks on MNIST (adv. 
training) give a false sense of robustness in l1 and l2 due to 
gradient masking. This means that standard gradient-based 
methods like PGD have problems to fnd adversarial exam-
ples while they still exist. In contrast, FAB does not suffer 
from gradient masking. In Table 8 (supplement) we see that 
it is extremely effective also wrt l1 and l2 on the l∞-robust 
model, outperforming by a large margin the competitors. 
The reason is that FAB is not dependent on the norm of 
the gradient but just its direction matters for the defnition 
of the hyperplane in (5). While we believe that resistance 
to gradient masking is a key property of a solid attack, we 
recompute the statistics of Table 1 excluding l1 and l2 at-
tacks on the l∞-AT model on MNIST (see supplements). 
FAB still achieves in most of the cases the best aggregated 
statistics, implying that our attack is effective whether or 
not the attacked classifer tends to "mask" the gradient. 
We have shown in Section 2.4 that FAB-attack is invariant 
under rescaling of the classifer. We provide an example 
why this is a desirable property of an adversarial attack. We 
consider the defense proposed in (Pang et al., 2020), in par-
ticular their ResNet-110 (without adversarial training) for 
CIFAR-10. In Table 5 in (Pang et al., 2020) it is claimed that 
this model has a robust accuracy of 31.4% for 8/255 obtained 
by a PGD attack on their new loss function. They say that 
a standard PGD attack on the cross-entropy loss performs 
much worse. We test the performance of PGD on the cross-
entropy loss, both using the original classifer and the same 
scaled down by a factor of 106 . Moreover, we use the de-
fault step size �/10 together with �/2. The results are reported 
in Table 3. We can see that PGD on the original model 
yields more than 90% robust accuracy which confrms the 

statement in (Pang et al., 2020) about the cross-entropy loss 
being unsuitable for this case. However, PGD applied to 
the rescaled classifer reduces robust accuracy below 13%. 
The better step size �/2 decreases it to 2.5% which shows 
that tuning the stepsize is important for PGD. At the same 
time, FAB achieves a robust accuracy of 0.3% without any 
need of parameter tuning or rescaling of the classifer. This 
exemplifes the beneft of the scaling invariance of FAB. 
Moreover, as a side result this shows that the new loss alone 
in (Pang et al., 2020) is an ineffective defense. 

Runtime comparison: DF and SF are much faster than 
the other attacks as their primary goal is to fnd as fast as 
possible adversarial examples, without emphasis on mini-
mizing their norms, while LRA is rather expensive as noted 
in the original paper. PGD needs a forward and a backward 
pass of the network per iteration whereas FAB requires three 
passes for each iteration. Thus PGD is given 1.5 times more 
iterations than FAB, so that overall they have same budget 
of forward/backward passes (and thus runtime). Below we 
report the runtimes (for 1000 points on MNIST and CIFAR-
10, 50 on R-ImageNet) for the attacks as used in the experi-
ments (if not specifed otherwise, it includes all the restarts). 
For PGD and DAA this is the time for evaluating the ro-
bust accuracy at 5 thresholds, while for the other methods a 
single run is suffcient to compute the robust accuracy for 
all fve thresholds. MNIST: DAA 11736s, PGD 3825s for 
l∞/l2 and 14106s for l1, CW 944s, EAD 606s, FAB-10 161s, 
FAB-100 1613s. CIFAR-10: DAA 11625s, PGD 31900s 
for l∞/l2 and 70110s for l1, CW 3691s, EAD 3398s, FAB-
10 1209s, FAB-100 12093s. R-ImageNet: DAA 6890s, 
PGD 4738s for l∞/l2 and 24158s for l1, FAB 2268s for 
l∞/l2 and 3146s for l1 (note that for l1 different numbers of 
restarts/iterations are used on R-ImageNet). 
We note that for PGD the robust accuracy for the fve thresh-
olds can be computed faster by exploiting the fact that points 
which are non-robust for a thresholds � are also non-robust 
for thresholds larger than �. However, even when taking this 
into account FAB-10 would still be signifcantly faster than 
PGD-100 and has better quality on MNIST and CIFAR-
10. Moreover, when just considering a fxed number of 
thresholds, one can stop FAB-attack whenever it fnds an 
adversarial example for the smallest threshold which also 
leads to a speed-up. However, in real world applications 
a full picture of robustness as a continuous function of the 
threshold is the most interesting evaluation scenario. 

3.1. Additional results 

In the supplementary materials we show how the robust 
accuracy provided by either PGD or FAB-attack evolves 
over iterations, when only one start it used. In particular, we 
compare the two methods when the same number of passes, 
forward or backward, of the networks are used. One can 
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observe that a few steps are usually suffcient for FAB-attack 
to achieve good results, often faster than PGD, although 
there are cases where a higher number of iterations leads to 
signifcantly better robust accuracy. 

Finally, (Croce & Hein, 2020) use FAB-attack together with 
other white- and black-box attacks to evaluate the robustness 
of over 50 classifers trained with recently proposed adver-
sarial defenses wrt l∞ and l2 on different datasets. With 
fxed hyperparameters, FAB-attack yields the best results in 
most of the cases on CIFAR-10, CIFAR-100 and ImageNet 
in both norms, in particular compared to different variations 
of PGD (with and without a momentum term, with different 
step sizes and using various losses). This shows again that 
FAB-attack is very effective for testing the robustness of 
adversarial defenses. 

4. FAB-attack with a large number of classes 

The standard algorithm of FAB-attack requires to compute at 
each iteration the Jacobian matrix of the classifer f wrt the 
input x and then the closest approximated decision hyper-
plane. The Jacobian matrix has dimension K × d, recalling 
that K is the number of classes and d the input dimension. 
Although this can be in principle obtained with a single 
backward pass of the network, it becomes computationally 
expensive on datasets with many classes. Moreover, the 
memory consumption of FAB-attack increases with K. As 
a consequence, using FAB-attack in the normal formulation 
on datasets like ImageNet which has K = 1000 classes may 
be ineffcient. 

Then, we propose a targeted version of our attack which 
performs at each iteration the projection onto the linearized 
decision boundary between the original class and a fxed 
target class. This means that in (8) the hyperplane πs is 
not selected via (7) as the closest one to the current iterate 
but rather s ≡ t, with t the target class used. Note that 
in practice we do not constrain the fnal outcome of the 
algorithm to be assigned to class t, but any misclassifcation 
is suffcient to have a valid adversarial example. The target 
class t is selected as the second most likely one according 
to the score given by the model to the target point, and if k 
restarts are allowed one can use the classes with the k + 1 
highest scores as target (excluding the correct one c). In this 
way, only the gradient of ft − fc : Rd → R needs to be 
computed, which is a cheaper operation than getting the full 
Jacobian of f and with computational cost independent of 
the total number of classes. 

This targeted version of FAB-attack has been used in (Croce 
& Hein, 2020) considering the top-10 classes where it yields 
on CIFAR-10, CIFAR-100 and ImageNet almost always bet-
ter robust accuracy than normal FAB-attack, which instead 
is almost always better on MNIST. 

5. Conclusion 

In summary, our geometrically motivated FAB-attack out-
performs in terms of average quality the state-of-the-art 
attacks, already with a limited computational effort, and 
works for all lp-norms in p ∈ {1, 2, ∞} unlike most com-
petitors. Thanks to its scaling invariance and being step size 
free it is resistant to gradient masking and thus more reliable 
for assessing robustness than the standard PGD attack. 
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