
Learnable Group Transform For Time-Series

A. Group Transform: A Group Representation Approach
A.1. Background

For further details on the group theoretical aspects described in this section, the reader should refer to Vilenkin (1978).

Definition 1. A group is a set G with a multiplicative operation � that respects enclosure, identity element, inverse element,
and associativity.

The representation of the group determines its action on a function space and bridges the gap between group theory and
linear algebra, allowing to compute the transformation of a function following the rules induced by the specific group at
hand. The representation of a group can be thought as a far-reaching generalization of the exponential function property,
exp(x+ y) = exp(x) exp(y),∀x, y ∈ R (Baraniuk, 1993). In fact, it is defined as,

Definition 2. A linear continuous representation ρ of a group G on the linear space H is defined as

ρ : G→ GL(H), (1)

where GL(H) is the the group of linear map in H such that ∀g, g′ ∈ G

ρ(g � g′) = ρ(g)ρ(g′). (2)

For instance, let H be a vector space such as R3, the representation of the group is induced by 3× 3 matrices. In this case,
the operation on the right of (2) is a matrix multiplication, where each matrix depends on the group elements g and g′. This
concept extends to linear operators acting on functional spaces.

As such, multiple transformations of a function by different elements of the group is equal to the representation of the
combination of the group elements applied to the function.

This structure-preserving map defines the action of a group on elements of function spaces. Group transforms such as STFT
and CWT can be expressed in such a way by selecting a mother filter space and a group. The representation of the group in
the mother filter space provides an operator that takes as input an element of the group and acts on the filter to transform
it. A filter-bank can thus be created by iterating this process with different group elements. Therefore, the selected group
carries the characteristics of the filter-bank and consequently, the group transform and its time-frequency tiling. The building
blocks of the WT through representation theory is provided in Appendix A.2. Notice that further properties such as the
invariant measure of the group and the resolution of the identity can be develop using the representation of the group.

A.2. Example: The Wavelet Transform

As an introductory example, we consider the creation of a wavelet filter-bank utilizing transformation group. Let’s denote by
Gaff the affine group, the so called ”ax+ b” group, where the elements (λ, τ) ∈ R?+ × R, where R?+ = (0,+∞), where the
multiplicative operation of the group � is defined by

(λ, τ)� (λ′, τ ′) = (λλ′, τ + λτ ′) (3)

Let’s define by ρaff the representation of the affine group in L2(R), i.e., ρaff : Gaff → GL(L2(R)), such that ρaff is a
homomorphism as per Definition 2. Its action on square integrable function ψ is defined as

[ρaff(g)ψ] (t) =
1√
λ
ψ(
t− τ
λ

), t ∈ R, (4)

where (a, b) are respectively the dilation and translation parameters. The wavelet filter-bank is built by transforming a
mother filter, ψ by the representation ρaff for specific elements of the group. A visualization of this approach for a Morlet
wavelet filter can be seen in Figure (3). The wavelet transform of a signal si ∈ L2(R) is achieved by

W(si, ψ)(g(λ,τ)) =
〈
si, ρaff(g(λ,τ))ψ̄

〉
,∀g(λ,τ) ∈ Gaff, (5)

= (si ? ρaff(g(λ,0))ψ),∀g(λ,0) ∈ Gaff, (6)

where ψ̄(t) = ψ(−t), 〈., .〉 denotes the inner product, ? the convolution, and ρaff(g(λ,τ))ψ the action of the operator ρaff,
evaluated at the group element g(λ,τ), on the mother filter ψ as per (4). In practice, the filter-bank is generated by sampling
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a few elements of the group. For instance, in the case of the dyadic wavelet transform, the dilation parameters follow
a geometric progression of common ratio equals to 2. In general, the translation parameter is sampled according to the
scaling one (Daubechies, 1992). Notice that in the convolution expression (6), the translation parameter τ = 0, in fact the
convolution operator ? acts as the translation one. In the case where the translation parameter depends on the scaling one, a
specific stride is used to perform the discrete convolution.

Note that the STFT can be constructed similarly utilizing the Weyl-Heisenberg group (Feichtinger et al., 2009), whose
representation on L2(R) consists of frequency modulations and translations. More intricated group representations can be
built as in Torrésani (1991) where the combination of the affine group and Weyl-Heisenberg group is considered.

B. Architecture Details
B.1. Artificial Data

Group Transform + Complex Modulus + Log
Dense Layer (1 sigmoid)

After the Group Transform, a batch-normalization is applied.

B.2. Supervised Bird Detection

Group Transform + Complex Modulus + Log + Average-Pooling (stride:(1, 512) size:(1, 1024))
Conv2D. layer (16 filters 3× 3) and Max-Pooling (3× 3) and ReLU
Conv2D. layer (16 filters 3× 3) and Max-Pooling (3× 3) and ReLU
Conv2D. layer (16 filters 3× 1) and Max-Pooling (3× 1) and ReLU
Conv2D. layer (16 filters 3× 1) and Max-Pooling (3× 1) and ReLU

Dense layer (256) and ReLU
Dense layer (32) and ReLU

Dense layer (1 sigmoid)

At each layer a batch-normalization is applied and for the last three layers a 50% dropout is applied as in ((Grill & Schlüter,
2017)). The dimension of the input of the DNN presented is the same for the different benchmarks.

B.3. Haptics Data

Group Transform + Complex Modulus + Log + Average-Pooling (stride:(1, 64) size:(1, 128))
Dense Layer (5 softmax)

After the Group Transform, a batch-normalization is applied. For this dataset, we perform early stopping as in the
benchmarks, not providing any standard deviation.
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C. Additional Figures
C.1. Artificial Data

C.1.1. DATA

Figure 8. Artificial Dataset: (Top Left) Ascending Chirp, (Top Right) Descending Chirp, i.e. class 0, (Bottom Left) Ascending Chirp plus
Gaussian noise, (Bottom Right) Descending Chirp plus Gaussian noise, i.e., class 1. The samples contained in the training and testing set
are higher in frequency and close to the Nyquist frequency.
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C.1.2. GROUP TRANSFORM

Figure 9. Learnable Group Transform - Visualisation of an ascending chirp sample, where for each row (left) at the initialization and
(right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.



Learnable Group Transform For Time-Series

Figure 10. Learnable Group Transform - Visualisation of a descending chirp sample, where for each row (left) at the initialization and
(right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.
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C.2. Supervised Bird Detection

C.2.1. DATA

Figure 11. Bird Detection Dataset - Sample containing a bird song. The x-axis is the time and the y-axis the amplitude. The red boxes
are the locations of the bird song. Each data sample are normalized, centered and subsampled by two before experiment.

C.2.2. GROUP TRANSFORM

Figure 12. Learnable Group Transform - Visualisation of a sample containing a bird song, where for each row (left) at the initialization
and (right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT.
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Figure 13. Learnable Group Transform - Visualisation of a sample without a bird song, where for each row (left) at the initialization
and (right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT.

C.3. Haptics Data

C.3.1. DATA

Figure 14. Haptic Dataset - Sample of each class of the Haptic dataset.
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Each data is centered and normalized. For the experiments, the number of epochs is set to 1000 and we perform early-
stopping and obtain the testing accuracy at this specific epoch as in Khan & Yener (2018), the batch size was set to 64. In
order to avoid overfitting, we perform different asymmetric zeros-paddings on the training samples. For the testing samples,
we perform a symmetric zeros-padding (512 zeros on each side of the signals).

C.3.2. GROUP TRANSFORM

Figure 15. Learnable Group Transform - Visualisation of a sample belonging to class 1, where for each row (left) at the initialization
and (right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 16. Learnable Group Transform - Visualisation of sample belonging to class 2, where for each row (left) at the initialization and
(right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 17. Learnable Group Transform - Visualisation of sample belonging to class 3, where for each row (left) at the initialization and
(right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 18. Learnable Group Transform - Visualisation of a sample belonging to class 4, where for each row (left) at the initialization
and (right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 19. Learnable Group Transform - Visualisation of a sample belonging to class 5, where for each row (left) at the initialization
and (right) after learning. Each row displays a different setting: (from top to bottom): LGT, nLGT, cLGT, cnLGT.

D. Proofs
Proposition 2. ρinc is a group representation of Ginc on L2(R).
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D.1. Proof Representation Property

Proof. Let g, g′ ∈ Ginc, then

[ρinc(g
′ ~ g)ψ](t) = ψ((g′ ~ g)(t))

= ψ(g′(g(t)))

and,

[ρinc(g
′)ρinc(g)ψ](t) = [ρinc(g

′)ψ](g(t))

= ψ(g′(g(t)))

which verifies the homogeneity property. The linearity is implied by,

[ρinc(g)(κψ1 + ψ2)](t) = (κψ1 + ψ2)(g(t)) = κψ1(g(t)) + ψ2(g(t)),∀t ∈ R.

where ψ1, ψ2 ∈ L2(R) and κ ∈ R. It is in fact a Koopman operator (Korda & Mezić, 2018).

D.2. Proof Proposition 1

Proof. Let τ ∈ R and g, g′ ∈ Ginc,

W[ρinc(g
′)si, ψ](g, τ) =

〈
ρinc(g

′)si, ρinc(g)ψτ
〉

=
〈
si, ρinc(g

′)−1ρinc(g)ψτ
〉

=
〈
si, ρinc(g

′−1)ρinc(g)ψτ
〉

=
〈
si, ρinc(g

′−1 � g)ψτ
〉

= W[si, ψ](g′−1 � g, τ),

where ψτ (t) = ψτ (−t) denotes the filter ψ centered at position τ . Then, there is not guarantee that this can be extrapolated
to all τ ∈ R, i.e., in the convolution case, except in the affine case where the global transformation matches the iteration of a
local one.


