Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows

Rob Cornish! Anthony Caterini' George Deligiannidis ' > Arnaud Doucet !

Abstract

We show that normalising flows become patholog-
ical when used to model targets whose supports
have complicated topologies. In this scenario, we
prove that a flow must become arbitrarily numer-
ically noninvertible in order to approximate the
target closely. This result has implications for all
flow-based models, and especially residual flows
(ResFlows), which explicitly control the Lipschitz
constant of the bijection used. To address this, we
propose continuously indexed flows (CIFs), which
replace the single bijection used by normalising
flows with a continuously indexed family of bijec-
tions, and which can intuitively “clean up” mass
that would otherwise be misplaced by a single
bijection. We show theoretically that CIFs are
not subject to the same topological limitations as
normalising flows, and obtain better empirical per-
formance on a variety of models and benchmarks.

1 Introduction

Normalising flows (Rezende & Mohamed, 2015) have be-
come popular methods for density estimation (Dinh et al.,
2017; Papamakarios et al., 2017; Kingma & Dhariwal, 2018;
Chen et al., 2019). These methods model an unknown target
distribution P% on a data space X C R as the marginal of
X obtained by the generative process

X = f(Z), (D

where Py is a prior distribution on a space Z C R, and
f:+ X — Zis abijection. The use of a bijection means the
density of X can be computed analytically by the change-
of-variables formula, and the parameters of f can be learned
by maximum likelihood using i.i.d. samples from P%.

ZNPZ?

To be effective, a normalising flow model must specify
an expressive family of bijections with tractable Jacobians.
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Figure 1: Densities learned by a 10-layer ResFlow (left),
100-layer ResFlow (middle), and 10-layer CIF-ResFlow
(right) for two datasets (samples shown in black) that are
not homeomorphic to the Gaussian prior. The 10-layer
ResFlow visibly leaks mass outside of the support of the
target due to its small bi-Lipschitz constant. The larger
ResFlow improves on this, but still achieves smaller average
log probability than the CIF-ResFlow, as is apparent from
the greater homogeneity of the right-hand densities.

Affine coupling layers (Dinh et al., 2015; 2017), autore-
gressive maps (Germain et al., 2015; Papamakarios et al.,
2017), invertible linear transformations (Kingma & Dhari-
wal, 2018), ODE-based maps (Grathwohl et al., 2019), and
invertible ResNet blocks (Behrmann et al., 2019; Chen et al.,
2019) are all examples of such bijections that can be com-
posed to produce expressive flows. These models have
demonstrated significant promise in their ability to model
complex datasets and to synthesise realistic data.

In all these cases, f and f~! are both continuous. It fol-
lows that f is a homeomorphism, and therefore preserves
the topology of its domain (Runde, 2007, Definition 3.3.10).
As Dupont et al. (2019) and Dinh et al. (2019) mention, this
seems intuitively problematic when Pz and P are sup-
ported on domains with distinct topologies, which occurs
for example when the supports differ in their number of
connected components or “holes”, or when they are “knot-
ted” differently. This seems inevitable in practice, as Pz
is usually quite simple (e.g. a Gaussian) while P% is very
complicated (e.g. a distribution over images).

As our first contribution, we make precise the consequences
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of using a topologically misspecified prior. We confirm that
in this case it is indeed impossible to recover the target per-
fectly if f is a homeomorphism. Moreover, in Theorem 2.1
we prove that, in order to approximate such a target arbi-
trarily well, we must have BiLip f — oo, where BiLip f
denotes the bi-Lipschitz constant of f defined as the infi-
mum over M € [1, oo] such that

M7z =2 < If(2) = fEO < Mz =2 @)

forall z, 2" € Z. Theorem 2.1 applies essentially regardless
of the training objective, and has implications for the case
that Pz and P both have full support but are heavily con-
centrated on regions that are not homeomorphic. Since
BiLip f is a natural measure of the “invertibility” of f
(Behrmann et al., 2020), this result shows that the goal of
designing neural networks with well-conditioned inverses
is fundamentally at odds with the goal of designing neural
networks that can approximate complicated densities.

Theorem 2.1 also has immediate implications for residual
flows (ResFlows) (Behrmann et al., 2019; Chen et al., 2019),
which have recently achieved state-of-the-art performance
on several large-scale density estimation tasks. Unlike mod-
els based on triangular maps (Jaini et al., 2019), ResFlows
have the attractive feature that the structure of their Jaco-
bians is unconstrained, which may explain their greater
expressiveness. However, as part of the construction, the
bi-Lipschitz constant of f is bounded, and so these models
must be composed many times in order to achieve overall
the large bi-Lipschitz constant required for a complex P%.!

To address this problem we introduce continuously indexed
Sflows (CIFs), which generalise (1) by replacing the single bi-
jection f with an indexed family of bijections { F'(+; «) }ueuss
where the index set ¢/ is continuous. Intuitively, CIFs allow
mass that would be erroneously placed by a single bijection
to be rerouted into a more optimal location. We show that
CIFs can learn the support of a given P exactly regardless
of the topology of the prior, and without the bi-Lipschitz
constant of any F'(-; u) necessarily becoming infinite. CIFs
do not specify the form of F', and can be used in conjunction
with any standard normalising flow architecture directly.

Our use of a continuous index overcomes several limitations
associated with alternative approaches based on a discrete
index (Dinh et al., 2019; Duan, 2019), which suffer either
from a discontinuous loss landscape or an intractable com-
putational complexity. However, as a consequence, we
sacrifice the ability to compute the likelihood of our model
analytically. To address this, we propose a variational ap-
proximation that exploits the bijective structure of the model
and is suitable for training large-scale models in practice.
We empirically evaluate CIFs applied to ResFlows, neural

'Chen et al. (2019) report using 100-200 layers to learn even
simple 2D densities.

spline flows (NSFs) (Durkan et al., 2019), masked autore-
gressive flows (MAFs) (Papamakarios et al., 2017), and
RealNVPs (Dinh et al., 2017), obtaining improved perfor-
mance in all cases. We observe a particular benefit for
ResFlows: with a 10-layer CIF-ResFlow we surpass the
performance of a 100-layer baseline ResFlow and achieve
state-of-the-art results on several benchmark datasets.

2 Bi-Lipschitz Constraints on Pushforwards

Normalising flows fall into a larger class of density estima-
tors based on pushforwards. Given a prior measure Pz on
Z and a mapping f : Z — X, these models are defined as

PX ::f#PZ7

where the right-hand side denotes a distribution with
f#Pz(B) = Pz(f~'(B)) for Borel B C X. Normal-
ising flows take f to be bijective, which under sufficient
regularity yields a closed-form expression for the density?
of Px (Billingsley, 2008, Theorem 17.2).

Intuitively, the pushforward map f transports the mass al-
located by Py into X'-space, thereby defining Px based on
where each unit of mass ends up. This imposes a global
constraint on f if Px is to match perfectly a given target P%.
In particular, denote by supp Py the support of P;. While
the precise definition of the support involves topological
formalities (see Section B.1 in the Supplement), intuitively
this set defines the region of Z to which Py assigns mass.
It is then straightforward to show that Px = P% only if

supp P% = f(supp Pz), 3)
where A denotes the closure of A in X'.3

The constraint (3) is especially onerous for normalising
flows because of their bijectivity. In practice, f and f ! are
invariably both continuous, and so f is a homeomorphism.
Consequently, for these models (3) entails*

supp Px = supp P only if supp Pz = supp P, (4)

where A = B means that A and B are homeomorphic, i.c.
isomorphic as topological spaces (Runde, 2007, Definition
3.3.10). This means that supp Pz and supp Py must ex-
actly share all topological properties, including number of
connected components, number of “holes”, the way they
are “knotted”, etc., in order to learn the target perfectly.
Condition (4) therefore suggests that normalising flows are
not optimally suited to the task of learning complex real-
world densities, where such topological mismatch seems
inevitable.

>Throughout, by “density” we mean Lebesgue density. We will
write densities using lowercase, e.g. px for the measure Px.

3See Proposition B.3 in the Supplement for a proof.

*Note that f(supp Pz) = f(supp Pz) here since supp Py is
closed by Proposition B.2 in the Supplement.
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However, (4) only rules out the limiting case Px = P%.
In practice it is likely enough to have Px ~ P%, and it
is therefore relevant to consider the implications of a topo-
logically misspecified prior in this case also. Intuitively,
this seems to require f become almost nonbijective as Px
approaches P%, but it is not immediately clear what this
means, or whether this must occur for all models. Likewise,
in practice it might be reasonable to assume the density of
P% is everywhere strictly positive. In this case, even if Py
is concentrated on some very complicated set, the constraint
(4) would trivially be met if Pz is Gaussian, for example.
Nevertheless, it seems that infinitesimal regions of mass
should not significantly change the behaviour required of f,
and we would therefore like to extend (4) to apply here also.

The bi-Lipschitz constant (2) naturally quantifies the “in-
vertibility” of f. Behrmann et al. (2020) recently showed a
relationship between the bi-Lipschitz constant and the nu-
merical invertibility of f. If f is injective and differentiable,

BiLip f = max (SuplDf(Z)Hopa sup ||Df_1($)||op> :
2€Z z€f(Z)

where Dg(y) is the Jacobian of g at y and ||-||op is the
operator norm. A large bi-Lipschitz constant thus means f
or f~! “jumps” somewhere in its domain. More generally,
if f is not injective, then BiLip f = oo, while if BiLip f <
00, then f is a homeomorphism from Z to f(Z).>

The following theorem shows that if the supports of Pz and
P% are not homeomorphic, then the bi-Lipschitz constant
of f must grow arbitrarily large in order to approximate P5%.

D
Here — denotes weak convergence.

Theorem 2.1. Suppose Pz and P%; are probability mea-
sures on R and R* respectively, and that supp Py %
supp P%. Then for any sequence of measurable f, :

R%z — R we can have f,# Py z P% only if

lim BiLip f,, = co.

n—oo

Weak convergence is implied by the minimisation of all stan-
dard statistical divergences used to train generative models,
including the KL and Jensen-Shannon divergences and the
Wasserstein metric (Arjovsky et al., 2017, Theorem 2). Thus,
Theorem 2.1 states that these quantities can vanish only if
the bi-Lipschitz constant of the learned mapping becomes
arbitrarily large. Likewise, note that we do not assume
dz = dx so that this result also applies to injective flow
models (Kumar et al., 2019), as well as other pushforward-
based models such as GANs (Goodfellow et al., 2014).°

3See Section B.2 in the Supplement for proofs.
SHowever, the implications for GANs seem less problematic
since a GAN generator is not usually assumed to be bijective.

Theorem 2.1 also applies when supp Pz is almost not home-
omorphic to supp P%, as is made precise by the following
corollary. Here p denotes any metric for the weak topology;
see Chapter 6 of Villani (2008) for standard examples.

Corollary 2.2. Suppose Pz and P are probability mea-
sures on Rz and R respectively with supp Py 2
supp P%. Then there exists nonincreasing M : [0,00) —
[1, 00] with M (e) — oo as € — 0 such that, for any prob-
ability measure P% on R, we have BiLip f > M(e)
whenever p(P%, PY) < e and p(f#Pz, P%) < e.

In other words, if the target is close to a probability measure
with non-homeomorphic support to that of the prior (i.e.
p(P%, P%) is small), and if the model is a good approxi-
mation of the target (i.e. p(f# Pz, P%) is small), then the
Bi-Lipschitz constant of f must be large.

Proofs of these results are in Section B.3 of the Supplement.

2.1 Practical Implications

The results of this section indicate a limitation of existing
flow-based density models. This is most direct for residual
flows (ResFlows) (Behrmann et al., 2019; Chen et al., 2019),
which take f = fr o --- o f; with each layer of the form

fil@) =z +gz), Lipg<w<l (5

Here Lip denotes the Lipschitz constant, which is bounded
by a fixed constant x throughout training. The Lipschitz
constraint is enforced by spectral normalisation (Miyato
et al., 2018; Gouk et al., 2018) and ensures each f; is bi-
jective. However, it also follows (Behrmann et al., 2019,
Lemma 2) that

BiLip f < max(1 + &, (1 — )™ 1)* < oo, (6)

and Theorem 2.1 thus restricts how well a ResFlow can
approximate P% with non-homeomorphic support to Py.
Figure 1 illustrates this in practice for simple 2-D examples.

It is possible to relax (6) by taking x — 1. However, this
can have a detrimental effect on the variance of the Russian
roulette estimator (Kahn, 1955) used by Chen et al. (2019) to
compute the Jacobian, and in Section B.4 of the Supplement
we give a simple example in which the variance is in fact
infinite. Alternatively, we can also loosen the bound (6) by
taking L — oo, and Figure 1 shows that this does indeed
lead to better performance. However, greater depth means
greater computational cost. In the next section we describe
an alternative approach that allows relaxing the bi-Lipschitz
constraint of Theorem 2.1 without modifying either « or L,
and thus avoids these potential issues.

Unlike ResFlows, most normalising flows used in practice
have an unconstrained bi-Lipschitz constant (Behrmann
et al., 2020). As as result, Theorem 2.1 does not prevent
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these models from approximating non-homeomorphic tar-
gets arbitrarily well, and indeed several architectures have
been proposed that can in principle do so (Huang et al.,
2018; Jaini et al., 2019). Nevertheless, the constraint (4)
shows that these models still face an underlying limitation in
practice, and suggests we may improve performance more
generally by relaxing the requirement of bijectivity. We
verify empirically in Section 5 that, in addition to ResFlows,
our proposed method also yields benefits for flows without
an explicit bi-Lipschitz constraint.

Finally, Theorem 2.1 has implications for the numerical
stability of normalising flows. It was recently pointed out
by Behrmann et al. (2020) that, while having a well-defined
mathematical inverse, many common flows can become
numerically noninvertible over the course of training, lead-
ing to low-quality reconstructions and calling into question
the accuracy of density values output by the change-of-
variables formula. Behrmann et al. (2020) suggest explicitly
constraining BiLip f in order to avoid this problem. The-
orem 2.1 shows that this involves a fundamental tradeoff
against expressivity: if greater numerical stability is required
of our normalising flow, then we must necessarily reduce
the set of targets we can represent arbitrarily well.

3 Continuously Indexed Flows

In this section we propose continuously indexed flows (CIFs)
for relaxing the bijectivity of standard normalising flows.
We begin by defining the model we consider, and then detail
our suggested training and inference procedures. In the next
section we discuss advantages over related approaches.

3.1 Model Specification

CIFs are obtained by replacing the single bijection f used
by normalising flows with an indexed family {F(; u) } weu»
where U C R% is our index set and each F(-;u) : Z — X
is a bijection. We then define the model Px as the marginal
of X obtained from the following generative process:

Z ~ Pz, U~ Pygz(-12), X:=FZ;U).
Like (1), we assume a prior Pz on Z, but now also require
conditional distributions Pyr|z(-|z) on U for each z € Z.

We can increase the complexity of (7) by taking Py itself
to have the same form. This is directly analogous to the
standard practice of composing simple bijections to obtain
a richer class of normalising flows. In our context, stacking
L layers of (7) corresponds to the generative process

Zo~Pgzy, Uy~ Py, iz, (| Zea), Zo=F(Zea; Up), (8)

where ¢ € {1,...,L}. We then take Px to be the
marginal of X = Z;. We have found this construction

to improve significantly the expressiveness of our mod-
els and make extensive use of it in our experiments be-
low. Note that this corresponds to an instance of (7) where,
defining F*(-;uy,...,up) = Fy(-;up) o - o Fy(-uy),
we take Z = Zy, U = (Uy,...,Ur), Pyjz(dulz) =
[T, Puyze o (dwe| F¥(z3uq,. .. ,up)), and F = FX. We
use this to streamline some of the discussion below.

Previous works, most notably RAD (Dinh et al., 2019), have
considered related models with a discrete index set /. We
instead consider a continuous index. In particular, our U
will be an open subset of R%, with each Py z(+|z) having
a density pyjz(-|2). A continuous index confers various
advantages that we describe in Section 4. The choice also
requires a distinct approach to training and inference that
we describe in Section 3.2.

We require choices of py|z and F' for each layer of our
model. Straightforward possibilities are

F(zu)=f <e_s(") ©z-— t(u)) 9
puiz(12) = Normal(s(2), 5#())  (10)

for any bijection f (e.g. a ResFlow step) and appropriately
defined neural networks s, ¢, u”, and >P.7 Here the expo-
nential of a vector is meant elementwise, and © denotes ele-
mentwise multiplication. Note that (9) may be used with all
existing normalising flow implementations out-of-the-box.
These choices yielded strong empirical results despite their
simplicity, but more sophisticated alternatives are certainly
possible and may bring improvements in some applications.

3.2 Training and Inference
Heuristically,® (7) yields the joint “density”

pxu,z(T,u,2) = PZ(Z)PU|Z(U|Z) §(z — F(z;u)),

where p is the density of Py and ¢ is the Dirac delta. If F'is
sufficiently regular, we can marginalise out the dependence
on z by making the change of variable ' := F(z;u), which
means dz = | det DF~*(2/;u)| d2’.? This yields a proper
density for (X, U) by integrating over z’:

pxu(z,u) = pz(F(x;u))
X pU|Z(u|F_1(x;u)) | det DF_l(x;u)|. (11)

For an L-layered model, an extension of this argument also
gives the following joint density for each (Z;, Uy.¢):

Pz,,U1. (va uli@) =PZp_1,Uron (F[1<Z€; uf)? ul:ffl)

X DU, | Zo (ug|F[1(zg; up))| det DF[I(zg; ug)].  (12)

"Note this requires Z = X = R% andif = R%, i.e. these do-
mains are not strict subsets. We assume this in all our experiments.
$We make this rigorous in Section B.5 of the Supplement.

“Here DF(z; u) denotes the Jacobian with respect to z only.
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Taking X := Z;, as before we obtain px r/,., and hence a
density for Py via

px(x) = /pX,UM(l“,uLL) duy.r. (13)

Since U is continuous, this is not analytically tractable. To
facilitate likelihood-based training and inference, we make
use of a variational scheme that we describe now.

Assuming an L-layered model (8), we introduce an approxi-
mate posterior density gy, , |x =~ py,,,|x and consider the
evidence lower bound (ELBO) of log px (z):

pX,Ul;L(wﬂulzL)

. (14
QUl;LlX(ul:L|x) (14

L(z) =By ngy, , x(lz) [108

It is a standard result that £(z) < log px (x) with equality
if and only if gy, |x is the exact posterior py, , |x. This
allows learning an approximation to P% by maximising
iy L(x;) jointly in px y,,, and qu,.,|x, where we as-
sume a dataset of n i.i.d. samples z; ~ P%.

We now consider how to parametrise an effective g, |x-
Standard approaches to designing inference networks for
variational autoencoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014; Rezende & Mohamed, 2015; Kingma
et al., 2016), while mathematically valid, would not exploit
the conditional independencies induced by the bijective
structure of (8). We therefore propose a novel inference net-
work that is specifically targeted towards our model, which
we compare with existing VAE approaches in Section 4.3.
In particular, our gy, | x has the following form:

L
quy., |x (ui:p|@) - H quy| z, (el 2e), (15)
with z;, = =z and 2z, = Fefl (zo41;up41) for £ €
{1,...,L — 1}, and qy, |z, can be any parameterised condi-

tional density. We show in Section B.6 of the Supplement
that the posterior py,,, |x factors in the same way as (15),
so that we do not lose any generality. Observe also that this
scheme shares parameters between gy, |x and px v, in
a natural way, since the same Fy are used in both.

We assume each qp,|z, can be suitably reparametrised
(Kingma & Welling, 2014; Rezende et al., 2014) so that,
for some function H, and some density 7, that does not
depend on the parameters of gy, , |z, and px v, , we have
Hy(ee, z0) ~ qu,|z,(-|ze) when e, ~ ny. We can then ob-
tain unbiased estimates of £(z) using Algorithm 1, which
corresponds to a single-sample approximation to the expec-
tation in (14). It is straightforward to see that Algorithm 1
has O(L) complexity. Differentiating through this proce-
dure allows maximising ) ;" , £(x;) via stochastic gradient
descent. At test time, we can also estimate log px (x) di-
rectly using importance sampling as described by Rezende

et al. (2014, (40)). In particular, letting £V, ... £(™) de-
note the result of separate calls to ELBO(x), we have

m ™! LogSumExp(£W, ..., L)) = logpx (z) (16)

almost surely as m — oo.

Algorithm 1 Unbiased estimation of £(x)

function ELBO(x)
2L < X
A<« 0
for(=1L,...,1do
€~ e
u <+ Hy(e, z¢)
ze—1 — F; M (ze50)
A« A+logpy,|z, , (ulze-1)
+log |det DF, " (245 u)|
end for
return A + log pz, (20)
end function

—log qu, |z, (u|2¢)

In all our experiments we used

qU@\Zz(‘|ZE) = Normal(ﬂg(zi)vzg(zf)) o))

for appropriate neural networks yf and X7, which is im-
mediately reparameterisable as described e.g. by Kingma
& Welling (2014). We found this gave good enough per-
formance that we did not require alternatives such as IAF
(Kingma et al., 2016), but such options may also be useful.

Finally, Algorithm 1 requires an expression for
log | det DF,; " (2¢; us)|. For (9) this is

d
log ‘det Df ! (e“”f("f) © (ze + tg(ug))) ‘ + Z[S@(U@)]Z
i=1
where [z]; denotes the i™ dimension of z.

4 Comparison with Related Models

4.1 Comparison with Normalising Flows

‘We now compare CIFs with normalising flows, and in par-
ticular describe how CIFs relax the constraints of bijectivity
identified in Section 2.

4.1.1 ADVANTAGES

Observe that (7) generalises normalising flows: if F'(-;u)
does not depend on u, then we obtain (1). Moreover, training
with the ELBO in this case does not reduce performance
compared with training a flow directly, as the following
result shows. Here the components of our model Fy, p9U| 7

and q{’”  are parameterised by f € O, and for a given

choice of parameters 6 we will denote by P and £? the
corresponding distribution and ELBO (14) respectively.
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Proposition 4.1. Suppose there exists ¢ € O such that, for
some bijection f : Z — X, Fy(-;u) = f(-) foralluw € U.
Likewise, suppose pg‘ 5 and q(qj‘  are such that, for some

density r on U, pg‘z(-|z) = qi’,lx(~|x) =r(-)forallze Z
and x € X. If Bynpy [L0(2)] > Banpy [L7(2)], then

Dxv(P% || PY) < Dxu(Pk || f#Pz).

Simply stated, in the limit of infinite data, optimising the
ELBO will yield at least as performant a model (as mea-
sured by the KL) as any normalising flow our model family
can express. The proof is in Section B.7 of the Supplement.
In practice, our choices (9), (10), and (17) can easily re-
alise the conditions of Proposition 4.1 by zeroing out the
output weights of the neural networks (other than f) in-
volved. Thus, for a given f, we have reason to expect a
comparative or better performing model (as measured by
average log-likelihood) when trained as a CIF rather than as
a normalising flow.

We expect this will in fact lead to improved performance
because, intuitively, PU‘ z can reroute z that would other-
wise map outside of supp P%. To illustrate, fix f in (9)
and choose some z € Z. If f(z) € supp P%, then setting
F(z;u) = f(z) for all u € U as described above ensures
F(z;U) € supp Px when U ~ Py z(-|2). If conversely
f(2) & supp P%, then we still have F(z;U) € supp P%
almost surely if Py|z(-|z) is supported on {u € U :
F(z;u) € supp P%}. Of course, if f is too simple, then
Py z must heuristically become very complex in order to
obtain this behaviour. This would seem to make inference
harder, leading to a looser ELBO (14) and thus overall
worse performance after training. We therefore expect CIFs
to work well for f that, like the 10-layer ResFlow in Fig-
ure 1, can learn a close approximation to the support of
the target but “leak” some mass outside of it due to (4) or
Theorem 2.1. A CIF can then use P to “clean up” these
small extraneous regions of mass.

We provide empirical support for this argument in Section 5.
We also summarise our discussion above with the following
precise result. Here 0 A denotes the boundary of a set A.

Proposition 4.2. If P} (0supp Py) = 0 and (z,u) —
F(z;u) is jointly continuous with
F(supp Pz x U) 2 supp Py, (18)

then there exists Py z such that supp Px = supp Pk if
and only if, for all z € supp Py, there exists u € U with

F(z;u) € supp Px. (19)

The assumptions here are fairly minimal: the boundary
condition ensures P% is not pathological, and if (18) does
not hold, then Dy, (P% || Px) = oo for every Py z."°

19See Proposition B.1 and Proposition B.3 in the Supplement.

Additionally, the following result gives a sufficient condition
under which it is possible to learn the target exactly.

Proposition 4.3. If F(z;-) : U — X is surjective for each
z € Z, then there exists PU|Z such that Px = P%.

See Section B.8 of the Supplement for proofs. These results
do not require supp Pz = supp P%, thereby showing CIFs
relax the constraint (4) for standard normalising flows.

Of course, in practice, our parameterisation (9) does not
necessarily ensure that F' will satisfy these conditions, and
our parameterisation (10) may not be expressive enough to
instantiate the Py 7 that is required. However, these results
show that CIFs provide at least a mechanism for correcting
a topologically misspecified prior. When F' and Py z are
sufficiently expressive, we can expect that they will learn to
approximate these conditions over the course of training if
doing so produces a better density estimate. We therefore
anticipate CIFs will improve performance for ResFlows,
where Theorem 2.1 applies, and may have benefits more
generally, since all flows are ultimately constrained by (4).

4.1.2 DISADVANTAGES

On the other hand, CIFs introduce additional overhead com-
pared with regular normalising flows. It therefore remains to
show we obtain better performance on a fixed computational
budget, which requires using a smaller model. Empirically
this holds for the models and datasets we consider in Sec-
tion 5, but there are likely cases where it does not, particu-
larly if the topologies of the target and prior are similar.

Likewise, CIFs sacrifice the exactness of normalising flows.
We do not see this as a significant problem for the task of
density estimation, since the importance sampling estimator
(16) means that at test time we can obtain arbitrary accuracy
by taking m to be large. However, the lack of a closed-
form density does limit the use of CIFs in some downstream
tasks. In particular, CIFs cannot immediately be plugged
in to a variational approximation in the manner of Rezende
& Mohamed (2015), since this requires exact likelihoods.
However, it may be possible to use CIFs in the context of
an extended-space variational framework along the lines of
Agakov & Barber (2004), and we leave this for future work.

4.2 Comparison with Discretely Indexed Models

Similar models to CIFs have been proposed that use a dis-
crete index space. In the context of Bayesian inference,
Duan (2019) proposes a single-layer (L = 1) model consist-
ing of (7) withtd = {1,..., I} and F(-;4) = f; for separate
normalising flows fi,..., fr. A special case of this frame-
work is given by deep Gaussian mixture models (Van den
Oord & Schrauwen, 2014; van den Oord & Dambre, 2015),
which corresponds to using invertible linear transformations
for each f;. In this case, (13) becomes a summation that can
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Normalising flow VAE CIF

Figure 2: Comparison of related generative models. Circular
nodes are random and diamond nodes are deterministic.
CIFs generalise both normalising flows and VAEs as shown.

be computed analytically. However, this quickly becomes
intractable as L grows larger, since the cost to compute this
is seen to be ©(IL). Unlike for a continuous w, this cannot
easily be reduced to O(L) using a variational approximation
as in Section 3.2, since a discrete gy x is not amenable to
the reparameterisation trick. In addition, the use of separate
bijections also means that the number of parameters of the
model grows as I increases. In contrast, a continuous index
allows a natural mechanism for sharing parameters across
different F'(-; ) as in (9).

Prior to Duan (2019), Dinh et al. (2019) proposed RAD
as a means to mitigate the ©(I%) cost of naively stacking
discrete layers. RAD partitions X into I disjoint subsets
By, ..., By and defines bijections f; : Z — B; for each i.
The model is then taken to be the marginal of X in

Z ~ Pg, UNPU\Z('|Z)5 X::fU(Z)v

where each Pyz(-|z) is a discrete distribution on
{1,...,I}. Note that this is not an instance of our model
(7), since we require each F'(-; u) to be surjective onto X.
The use of partitioning means that (13) is a summation with
only a single term, which reduces the cost for L layers to
©(L). However, partitioning also makes px discontinuous.
This leads to a very difficult optimisation problem and Dinh
et al. (2019) only report results for simple 2-D densities. Ad-
ditionally, partitioning requires ad-hoc architectural changes
to existing normalising flows, and does not directly address
the increasing parameter cost as I grows large.

4.3 Comparison with Variational Autoencoders

CIFs also generalise a broad family of variational autoen-
coders (VAEs) (Kingma & Welling, 2014; Rezende et al.,
2014). Recall that VAEs take

px(z) = /PU(U)PXW(CL’\U) du (20)

for some choices of densities pyy and p X‘U.“ For instance,
a mean-field Gaussian observation density has

px|u(-|u) = Normal (t(u), diag (es(“))) )

where t, s : Y — X, and diag(v) denotes the matrix with
diagonal v € R? and zeros elsewhere. If Py is a standard
Gaussian, if each Pz (-|z) has independent density py,
and if F' is (9) with f the identity, then it follows that (7)
has marginal density (20) (modulo the signs of s and t).12

More generally, every VAE model (20) with each px i/ (+|u)
strictly positive corresponds to an instance of (7) where
U is sampled independently of Z. To see this, let pz be
any strictly positive density on Z, and let each F'(-; u) be
the Knothe-Rosenblatt coupling (Villani, 2008) of pz and
px|u(-|u). By construction each F(-;u) is invertible and
gives F(Z;u) ~ px|u(-|u) when Z ~ pz. As aresult, (7)
again yields X with a marginal density defined by (20). Con-
sequently, CIFs generalise the VAE framework by adding an
additional edge in the graphical model as shown in Figure 2.

On the other hand, CIFs differ from VAEs in the way they
are composed. Whereas CIFs stack by taking p to be a
CIF, VAEs are typically stacked by taking py to be a VAE
(Rezende et al., 2014; Kingma et al., 2014; Burda et al.,
2016; Sgnderby et al., 2016). This has implications for the
design of the inference network gy, |x. In particular, a
hierarchical VAE obtained in this way is Markovian, so that

L

pUlzL\X(fLﬁ ui.L) = pUL\X(uL|33) H Pu,\u,_4 (welue—1)
=1

where L is the number of layers. This directly allows speci-
fying qy,,, |x to be of the same form without any loss of gen-
erality (Kingma et al., 2014; Burda et al., 2016; Sgnderby
et al., 2016). Conversely, CIFs do not factor in this way,
which motivates our alternative approach in Section 3.2.

Note finally that CIFs should not be conflated with the large
class of methods that use normalising flows to improve the
inference procedure in VAEs (Rezende & Mohamed, 2015;
Kingma et al., 2016; van den Berg et al., 2018). These
approaches are orthogonal to ours and indeed may be useful
for improving our own inference procedure by replacing
(17) with a more expressive model.

4.4 Other Related Work

Additional related methods have been proposed. Within a
classification context, Dupont et al. (2019) identify topolog-
ical problems related to ODE-based mappings (Chen et al.,

"Note that this notation is nonstandard for VAEs in order to
align with the rest of the paper. Here our U corresponds to z as
used by Kingma & Welling (2014).

2Here Z corresponds to € as used by Kingma & Welling (2014).
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2018), which like normalising flows are homeomorphisms
and hence preserve the topology of their input. To avoid this,
Dupont et al. (2019) propose augmenting the data by ap-
pending auxiliary dimensions and learning a new mapping
on this space. In contrast, CIFs may be understood as aug-
menting not the data but instead the model by considering a
family of individual bijections on the original space.

In addition, Ho et al. (2019) use a variational scheme to
improve on the standard dequantisation method proposed
by Theis et al. (2016) for modelling image datasets with nor-
malising flows. This approach is potentially complementary
to CIFs, but we do not make use of it in our experiments.

5 Experiments

We evaluated the performance of CIFs on several problems
of varying difficulty, including synthetic 2-D data, several
tabular datasets, and three image datasets. In all cases we
took Z = X = R? with d the dimension of the dataset.
We used the stacked architecture (8) with the prior Pz, a
Gaussian. At each layer, I had form (9) with f a primitive
flow step from a baseline architecture (e.g. a single residual
block for ResFlow). Each py; 7z and gy x had form (10) and
(17) respectively. We provide an overview of our results
for the tabular and image datasets here. Full experimental
details, including additional 2-D figures along the lines of

Figure 1, are in Section C of the Supplement. See github.

com/jrmcornish/cif for our code.

5.1 Tabular Datasets

We tested the performance of CIFs on the tabular datasets
used by Papamakarios et al. (2017). For each dataset,
we trained 10 and 100-layer baseline fully connected Res-
Flows, and corresponding 10-layer CIF-ResFlows. The
CIF-ResFlows had roughly 1.5-4.5% more parameters (de-
pending on the dimension of the dataset) than the otherwise
identical 10-layer ResFlows, and roughly 10% of the pa-
rameters of the 100-layer ResFlows. Table 1 reports the
average log-probability of the test set that we obtained for
each model. Observe that in all cases CIF-ResFlows signifi-
cantly outperform both baseline models. Moreover, for all
but GAS, the CIF-ResFlows achieve state-of-the-art perfor-
mance based on the results reported by Durkan et al. (2019,
Table 1). This is particularly noticeable for POWER and
BSDS300, where CIF-ResFlow improves on the best results
of Durkan et al. (2019) by 0.94 and 2.77 nats respectively.

We additionally tried using masked autoregressive flows
(MAFs) (Papamakarios et al., 2017) and neural spline flows
(NSFs) (Durkan et al., 2019) for f. In each case, we closely
match the experimental settings of the baselines and aug-
ment using CIFs, controlling for the number of parameters
used by the CIF extensions. Table 1 reports the average

log-probability across the test set for each experiment. Here,
CIF-NSF-1 is a CIF with the same number of parameters as
the baseline, and CIF-NSF-2 is a model using a baseline con-
figuration for f (but having more parameters overall). We
see that CIF-MAFs consistently outperform MAFs across
datasets; CIF-NSFs do not improve upon NSFs as dramat-
ically, although we still notice improvements and would
expect to improve further with more hyperparameter tuning.
Lastly it is important to notice that MAFs and NSFs do
not restrict the Lipschitz constant of f. These results show
that CIFs can yield benefits for normalising flows even if
Theorem 2.1 is not directly a limitation.

Finally, for ablation purposes we tried taking f to be the
identity. We obtained consistently worse performance than
for CIF-ResFlows and CIF-MAF in this case, which aligns
with our conjecture in Section 4.1.1 that a performant CIF
requires an expressive base flow f. Details and results are
given in Section C.1.4 of the Supplement.

5.2 Image Datasets

We also considered CIFs applied to the MNIST (LeCun,
1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky & Hinton, 2009) datasets. Following our tab-
ular experiments, we trained a multi-scale convolutional
ResFlow and a corresponding CIF-ResFlow, as well as a
larger baseline ResFlow to account for the additional param-
eters and depth introduced by our method. Note that these
models were significantly smaller than those used by Chen
et al. (2019): e.g. for CIFAR10, the ResFlow used by Chen
et al. (2019) had 25M parameters, while our two baseline
ResFlows and our CIF-ResFlow had 2.4M, 6.2M, and 5.6M
parameters respectively. We likewise considered RealNVPs
with the same multi-scale convolutional architecture used
by Dinh et al. (2017) for their CIFAR-10 experiments. For
these runs we trained baseline RealNVPs, corresponding
CIF-RealN'VPs, and larger baseline RealNVPs with more
depth and parameters.

The results are given in Table 2 and Table 3. Observe CIFs
outperformed the baseline models for all datasets, which
shows that our approach can scale to high dimensions. For
the CIF-ResFlows, we also obtained better performance than
Chen et al. (2019) on MNIST and better performance than
Glow (Kingma & Dhariwal, 2018) on CIFARI10, despite
using a much smaller model. Samples from all models are
shown in Section C.2 of the Supplement.

6 Conclusion and Future Work

The constraint (4) shows that normalising flows are unable
to exactly model targets whose topology differs from that

30Only one seed was used per run due to computational limita-
tions. However, the results were not cherry-picked.
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Table 1: Mean =+ standard error (over 3 seeds) of average test set log-likelihood (in nats). Higher is better. Best performing
runs for each group are shown in bold. A x indicates state-of-the-art performance according to Durkan et al. (2019, Table 1).

POWER GAS HEPMASS MINIBOONE BSDS300

RESFLoOw (L = 10) —2.734+£0.03 4.16 £0.08 —20.68 £0.02 —14.24+0.10 123.51 £ 0.09
RESFLOW (L = 100) 0.48 £+ 0.00 10.57 £0.17 —16.67 £ 0.05 —11.16 £ 0.04 148.05 £ 0.61
CIF-RESFLow (L =10) 1.60+0.21* 12.124+0.10 -13.74+0.03* —-8.10+0.04* 160.50+ 0.08"
MAF 0.19 £0.02 9.23 £0.07 —18.33 £0.10 —10.98 £ 0.03 156.13 £ 0.00
CIF-MAF 0.48 +0.01 12.02+0.10 -16.63 +0.09 —-9.93 +£0.04 156.67 = 0.02
NSF 0.69 4+ 0.00 13.01 £ 0.02 —14.30 £0.05 —10.68 £ 0.06 157.59 £+ 0.02
CIF-NSF-1 0.68 = 0.01 12.94 £ 0.01 —13.83 +0.10 —-9.93 +£0.06 157.60 = 0.02
CIF-NSF-2 0.69 4+ 0.00 13.08 £+ 0.00 —14.18 £0.09 —10.80 4+ 0.01 157.56 £ 0.02

Table 2: Average test bits per dimension.'? Lower is better.

MNIST CIFAR-10
RESFLOW (SMALL) 1.074 3.474
RESFLOW (BIG) 1.018 3.422
CIF-RESFLOW 0.922 3.334

Table 3: Mean =+ standard error of average test set bits per
dimension over 3 random seeds. Lower is better.

FASHION-MNIST CIFAR-10
REALNVP (SMALL)  2.944 4 0.003 3.565 £ 0.001
REALNVP (BIG) 2.946 4+ 0.002 3.554 + 0.001
CIF-REALNVP 2.823 +£0.003 3.477 £0.019

of the prior. Moreover, in order to approximate such targets
closely, Theorem 2.1 shows that the bi-Lipschitz constant
of a flow must become arbitrarily large. To address these
problems, we have proposed CIFs, which can “clean up”
regions of mass that are placed outside the support of the
target by a standard flow. CIFs perform well in practice and
outperform baseline flows on several benchmark datasets.

While we have focussed on the use of CIFs for density
estimation in this paper, it would also be interesting to apply
CIFs in other contexts where normalising flows have been
used successfully. As CIFs do not have an analytically
available density, this would likely require the modification
of existing numerical frameworks, but the expressiveness
benefits provided by CIFs might make this additional effort
worthwhile. We leave this direction for future work.
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