
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows:
Supplementary Material

A Guide to Notation

(an) A sequence of elements a1, a2, . . .
a(n) = Θ(b(n)) a(n) differs from b(n) by at most a constant factor as n→∞
u� v The elementwise product of tensors u and v
LogSumExp(a1, . . . , am) log (

∑m
i=1 exp(ai))

ev , where v ∈ Rd (ev1 , . . . , evd)
‖v‖ The norm of a vector v ∈ Rd (our results are agnostic to the specific choice of ‖·‖)
‖A‖op The operator norm of a matrix A ∈ Rd1×d2 induced by ‖·‖
Id The d× d identity matrix
detA The determinant of a square matrix A
Df(z) The Jacobian matrix of a function f evaluated at z
DF (z;u) The Jacobian matrix of a function DF (·;u) (i.e. with u fixed) evaluated at z
Lip f The Lipschitz constant of a function f
BiLip f The bi-Lipschitz constant of a function f
A ∼= B The topological spaces A and B are homeomorphic
B The topological closure of a set B
int(B) The interior of a set B
∂B The boundary of a set B
suppµ The support of a measure µ
f#µ The pushforward of a measure µ by a function f
µn

D→ µ Weak convergence of the measures µn to µ

B Proofs

B.1 Preliminaries

We require some basic results that we include here for completeness. We will make use of standard definitions and results
from topology and real analysis. A complete background to these topics can be found in Dudley (2002).

B.1.1 SUPPORTS OF MEASURES

Recall that for a Borel measure µ on a topological space Z , the support of µ, denoted suppµ, is the set of all z ∈ Z such
that µ(Nz) > 0 for every open set Nz containing z.

The following is an immediate consequence:

Proposition B.1. Suppose µ and ν are Borel measures with µ absolutely continuous with respect to ν. Then

suppµ ⊆ supp ν.

Proof. Suppose z 6∈ supp ν. Then there exists an open set Nz containing z such that ν(Nz) = 0. By absolute continuity,
we have also that µ(Nz) = 0 and hence z 6∈ suppµ.

In general the converse need not hold. For example, the Dirac measure on 0 has support contained within the Lebesgue
measure on R (which has full support), but is not absolutely continuous with respect to it.
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The following characterisation is useful:

Proposition B.2. For any Borel measure µ,

(suppµ)c =
⋃

A open:
µ(A)=0

A, (B.1)

and hence suppµ is closed.

Proof. This follows directly from the definitions, since z 6∈ suppµ if and only if there exists open Nz with z ∈ Nz and
µ(Nz) = 0, which is just another way of saying that z is contained in the right-hand side of (B.1). It follows that (suppµ)c

is open, and hence suppµ is closed.

We mainly care about how the support of a measure is transformed by a pushforward function. The following proposition
characterises what occurs in this case.

Proposition B.3. Suppose Z and X are topological spaces. If µ is a Borel measure on Z such that µ((suppµ)c) = 0, and
if f : Z → X is continuous, then

supp f#µ = f(suppµ).

Proof. Suppose x 6∈ f(suppµ). Then x must have an open neighbourhood Nx such that

Nx ∩ f(suppµ) = ∅.

This implies

f−1(Nx) ∩ suppµ ⊆ f−1(Nx) ∩ f−1(f(suppµ))

= f−1(Nx ∩ f(suppµ))

= f−1(∅)
= ∅.

We then have
f#µ(Nx) = µ(f−1(Nx)) = µ(f−1(Nx) ∩ suppµ) = 0,

where the second equality follows since we assumed µ((suppµ)c) = 0, and hence x 6∈ supp f#µ. Consequently

supp f#µ ⊆ f(suppµ).

In the other direction, suppose x ∈ f(suppµ), so that x = f(z) for some z ∈ suppµ. Given an open neighbourhood Nx it
then follows from continuity that f−1(Nx) is an open neighbourhood of z, and so

f#µ(Nx) = µ(f−1(Nx)) > 0

since z ∈ suppµ. This entails supp f#µ ⊇ f(suppµ), which means

supp f#µ = supp f#µ ⊇ f(suppµ)

by Proposition B.2.

Note that in general we need not have supp f#µ = f(suppµ). For example, if µ is Gaussian and f = arctan, then

f(suppµ) = (−1, 1) 6= [−1, 1] = supp f#µ.

Likewise, in general we do require the assumption µ((suppµ)c) = 0. This is because there exist examples of nontrivial
Borel measures µ such that suppµ = ∅. Taking f ≡ x0 to be any constant x0 ∈ X (in which case f is certainly continuous)
then gives

f(suppµ) = ∅ 6= {x0} = supp f#µ.

However, for our purposes, the following proposition shows that this is not a restriction.
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Proposition B.4. Suppose µ is a Borel measure on a separable metric space Z . Then

µ((suppµ)c) = 0.

Proof. Throughout the proof, for each z and r > 0, we will denote by B(z, r) an open ball of radius r centered at z.
Likewise, for each z 6∈ suppµ, let

r?(z) := sup{r > 0 | µ(B(z, r)) = 0}.

Observe that r? is well-defined (but possibly infinite) since z 6∈ suppµ means there must exist some r > 0 such that
µ(B(z, r)) = 0.

We first show that µ(B(z, r?(z))) = 0 for all z 6∈ suppµ. To this end, fix z and choose a sequence rm ↑ r?(z) with
rm < r?(z). We then have

B(z, r?(z)) =

∞⋃
m=1

B(z, rm),

and so
µ(B(z, r?(z))) = lim

m→∞
µ(B(z, rm)) = 0

by continuity of measure.

Now, by separability, we can choose a countable sequence (zk) ⊆ (suppµ)c such that {zk} = (suppµ)c. We show that

(suppµ)c =

∞⋃
k=1

B(zk, r
?(zk)),

from which the result follows by countable subadditivity. It is clear from (B.1) that the left-hand side is a superset of the
right. In the other direction, let z ∈ (suppµ)c. By construction of (zk), there exists a subsequence (zk′) such that zk′ → z.
For all k′ large enough we then have zk′ ∈ B(z, r?(z)/2) and hence

B(zk′ , r
?(z)/2) ⊆ B(z, r?(z))

by triangle inequality. It follows that for such k′ we have

µ(B(zk′ , r
?(z)/2)) ≤ µ(B(z, r?(z))) = 0,

and so r?(zk′) ≥ r?(z)/2 since r?(zk′) is the supremum. But then we have

z ∈ B(zk′ , r
?(z)/2) ⊆ B(zk′ , r

?(zk′)),

so that

z ∈
∞⋃
k=1

B(zk, r
?(zk))

and we are done.

B.2 Lipschitz and Bi-Lipschitz Functions

We assume that Z ⊆ RdZ , X ⊆ RdX , and f : Z → X . Recall that the Lipschitz constant of f , denoted Lip f , is defined as
the infimum over M ∈ [0,∞] such that

‖f(z)− f(z′)‖ ≤M‖z − z′‖

for all z, z′ ∈ Z . Likewise the bi-Lipschitz constant BiLip f is defined as the infimum over M ∈ [1,∞] such that

M−1‖z − z′‖ ≤ ‖f(z)− f(z′)‖ ≤M‖z − z′‖

for all z, z′ ∈ Z . We prove some basic properties that follow from this definition.

Proposition B.5. BiLip f <∞ if and only if f is injective and max(Lip f,Lip f−1) <∞, where f−1 : f(Z)→ Z . For
all injective f , we then have BiLip f = max(Lip f,Lip f−1).
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Proof. For the first statement, suppose BiLip f <∞. It is immediate that BiLip f ≥ Lip f . To see that f is injective, note
that for z 6= z′ we have

‖f(z)− f(z′)‖ ≥ (BiLip f)−1‖z − z′‖ > 0

and so f(z) 6= f(z′). On the other hand, for x, x′ ∈ f(Z), we have

(BiLip f)−1‖f−1(x)− f−1(x′)‖ ≤ ‖f(f−1(x))− f(f−1(x′))‖ = ‖x− x′‖,

which gives that BiLip f ≥ Lip f−1. Altogether we have

max(Lip f,Lip f−1) ≤ BiLip f <∞, (B.2)

which gives the forward direction.

Next suppose f is injective and that
M := max(Lip f,Lip f−1) <∞.

For z, z′ ∈ Z , we certainly have
‖f(z)− f(z′)‖ ≤M‖z − z′‖.

Likewise, since f(z), f(z′) ∈ f(Z),

‖z − z′‖ = ‖f−1(f(z))− f−1(f(z′))‖ ≤M‖f(z)− f(z′)‖,

so that
M−1‖z − z′‖ ≤ ‖f(z)− f(z′)‖

because injectivity of f means that M > 0. From this it follows that

BiLip f ≤M <∞, (B.3)

which gives the reverse direction, proving the first statement.

For the second statement, suppose f is injective. Then if BiLip f <∞, (B.2) and (B.3) together give

BiLip f = max(Lip f,Lip f−1).

On the other hand, if BiLip f =∞ then max(Lip f,Lip f−1) =∞ since we would otherwise obtain a contradiction by the
first statement of the proposition. This completes the proof.

It follows directly that if BiLip f < ∞, then f is a homeomorphism from Z to f(Z).14 Moreover, in this case f maps
closed sets to closed sets, as the following result shows:
Proposition B.6. If BiLip f <∞ and Z is closed in RdZ , then f(Z) is closed in RdX .

Proof. It is a straightforward consequence of Proposition B.5 that if (xn) ⊆ f(Z) is Cauchy, then (f−1(xn)) is Cauchy.
Consequently (f−1(xn)) converges to some z∞ ∈ Z , since Z is a closed subset of a complete space and therefore complete.
But then

‖xn − f(z∞)‖ = ‖f(f−1(xn))− f(z∞)‖
≤M‖f−1(xn)− z∞‖
→ 0

as n→∞. Consequently f(Z) is complete, and so f(Z) is closed as desired since the ambient space RdX is complete.

The Lipschitz constant can be computed from the operator norm ‖·‖op of the Jacobian of f . Recall that ‖·‖op is defined as
for a matrix A ∈ RdX×dZ as

‖A‖op := sup
v∈RdZ :
‖v‖=1

‖Av‖

where we think of elements of RdZ as column vectors.
14Note however that the converse is not true in general: for example, exp is a homeomorphism from R to (0,∞), but BiLip exp =∞.
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Proposition B.7. If Z = RdZ , X = RdX , and f is everywhere differentiable, then

Lip f = sup
z∈Z
‖Df(z)‖op.

Proof. If v ∈ Z with ‖v‖ = 1, then

‖[Df(z)]v‖ = lim
t→0

‖f(z + tv)− f(z)‖
|t|

≤ lim
t→0

(Lip f)‖(z + tv)− z‖
|t|

= Lip f.

It follows directly that
‖Df(z)‖op ≤ Lip f.

On the other hand, suppose Lip f > M . Then there exists z, z′ ∈ Z such that

‖f(z)− f(z′)‖ > M‖z − z′‖.

Since f is differentiable, so too is the map ϕ : [0, 1]→ X defined by

ϕ(t) := f(tz + (1− t)z′).

By Theorem 5.19 of Rudin (1964), there exists t0 ∈ (0, 1) such that the derivative ϕ′ satisfies

‖ϕ′(t0)‖ ≥ ‖f(z′)− f(z)‖ > M‖z − z′‖.

But, letting z0 := t0z + (1− t0)z′, observe that

ϕ′(t0) = lim
t→0

f(z0 + t(z − z′))− f(z0)

t

= [Df(z0)](z − z′),

where we think of z, z′ as column vectors. As such,

‖Df(z0)‖op‖z − z′‖ ≥ ‖[Df(z0)](z − z′)‖
= ‖ϕ′(t0)‖
> M‖z − z′‖

and so
sup
z∈Z
‖Df(z)‖op > M.

Since M was arbitrary this means that
Lip f ≤ sup

z∈Z
‖Df(z)‖op

which gives the result.

Proposition B.5 and Proposition B.7 then immediately entail the following:

Corollary B.8. Suppose Z = RdZ and X = RdX . If f is injective, and if f and f−1 : f(Z) → Z are everywhere
differentiable, then

BiLip f = max

(
sup
z∈Z
‖Df(z)‖op, sup

x∈f(Z)
‖Df−1(x)‖op

)
.
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B.2.1 ARZELÀ-ASCOLI

Our proof of Theorem 2.1 makes use of the Arzelà-Ascoli theorem. This is a standard and foundational result in analysis,
but we include a statement here for completeness. To this end, suppose we have a sequence of functions fn : Z ⊆ RdX →
X ⊆ RdX . We say that (fn) is pointwise bounded if, for all z ∈ Z ,

sup
n
‖fn(z)‖ <∞.

Likewise, (fn) is uniformly equicontinuous if for every ε > 0 there exists δ > 0 such that, for all n,

‖fn(z)− fn(z′)‖ < ε

whenever ‖z − z′‖ < δ.

Theorem B.9 (Arzelà-Ascoli). If a sequence of functions fn : Z ⊆ RdZ → X ⊆ RdX is pointwise bounded and uniformly
equicontinuous, then there exists a subsequence of (fn) that converges uniformly on every compact subset of Z .

Proof. The case d = 1 is proven for example by Rudin (2006, Theorem 11.28). This can be extended to the case d > 1 by a
standard argument. In particular, write

fn =: (fn,1, . . . , fn,d),

where fn,i : Z → R. Then extract a subsequence (fn1
) of (fn) such that fn,1 converges uniformly on every compact subset

of Z . Then extract a subsequence of (fn1
) such that the same holds for fn,2, and so on. The result is a subsequence (fn′)

such that each fn′,i converges uniformly on compact subsets of Z , from which the same holds for fn′ also by the triangle
inequality.

B.3 Pushforward Maps Require Unbounded Bi-Lipschitz Constants

Theorem 2.1. Suppose PZ and P ?X are probability measures on RdZ and RdX respectively, and that suppPZ 6∼= suppP ?X .

Then for any sequence of measurable fn : RdZ → RdX , we can have fn#PZ
D→ P ?X only if

lim
n→∞

BiLip fn =∞.

Proof. We suppose that fn#PZ
D→ P ?X and prove the contrapositive. That is, without loss of generality (pass to a

subsequence if necessary) we assume

M := sup
n

BiLip fn <∞, (B.4)

and prove that suppPZ ∼= suppP ?X .

We first show that (fn) is pointwise bounded. To this end, observe that Prokhorov’s theorem (Dudley, 2002, Proposition
9.3.4) means that PZ is tight and that the sequence (fn#PZ) is uniformly tight. As such, there exists compact K ⊆ RdZ
such that PZ(K) > 0, and compact K ′ ⊆ RdX such that

inf
n
fn#PZ(K ′) > 1− PZ(K).

For each n, we must then have some zn ∈ K such that fn(zn) ∈ K ′; otherwise K ′ ⊆ fn(K)c and so

fn#PZ(K ′) ≤ fn#PZ(fn(K)c)

= 1− fn#PZ(fn(K))

= 1− PZ(f−1n (fn(K)))

= 1− PZ(K)
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since fn is injective by Proposition B.5. But for any fixed z ∈ RdZ , this entails

sup
n
‖fn(z)‖ ≤ sup

n
‖fn(zn)‖+ ‖fn(z)− fn(zn)‖

≤ sup
x∈K′
‖x‖+ sup

z∈K
M‖z − zn‖

≤ sup
x∈K′
‖x‖+ 2M sup

z∈K
‖z‖

<∞

since K and K ′ are compact.

Next, observe that (B.4) easily means (fn) is uniformly equicontinuous. In particular, for ε > 0, choosing δ := ε/M gives

‖fn(z)− fn(z′)‖ ≤M‖z − z′‖ < ε

for all n whenever ‖z − z′‖ < δ

Theorem B.9 now entails the existence of a subsequence (fn′) that converges uniformly on every compact subset of RdZ . In
particular, (fn′) converges pointwise to a limit that we denote by f∞. Moreover, f∞ is bi-Lipschitz. To see this, recall that
for all n′ and z, z′ ∈ RdZ we have

1

M
‖z − z′‖ ≤ ‖fn′(z)− fn′(z′)‖ ≤M‖z − z′‖,

by our assumption (B.4). Taking n′ →∞ shows that BiLip f∞ ≤M <∞.

We also have that
fn′#PZ

D→ f∞#PZ . (B.5)

This follows from the Portmanteau theorem (Dudley, 2002, Theorem 11.3.3). In particular, suppose h is a bounded Lipschitz
function, and let Br ⊆ RdZ denote a ball of radius r > 0 at the origin. Then∣∣∣∣∫ h(x) fn′#PZ(dx)−

∫
h(x) f∞#PZ(dx)

∣∣∣∣ =

∣∣∣∣∫ h(fn′(z))− h(f∞(z))PZ(dz)

∣∣∣∣
≤
∫
Br

|h(fn′(z))− h(f∞(z))|PZ(dz)

+

∫
Bc

r

|h(fn′(z))|+ |h(f∞(z))|PZ(dz)

≤ PZ(Br)(Liph) sup
z∈Br

‖fn(z)− f∞(z)‖+ 2PZ(Bcr) sup
z∈RdZ

|h(z)| .

Hence

lim sup
n′→∞

∣∣∣∣∫ h(x) fn′#PZ(dx)−
∫
h(x)f∞#PZ(dx)

∣∣∣∣ ≤ 2PZ(Bcr) sup
z∈RdZ

|h(z)|

by the uniform convergence of fn′ to f∞ on compact subsets, and since Liph <∞. Taking r →∞, the right-hand side
vanishes since h is bounded, and we obtain (B.5).

We are now ready to complete the proof. Since f∞ is bi-Lipschitz, Proposition B.5 means that f∞ is a homeomorphism
from RdZ to f∞(RdZ ). This certainly gives

suppPZ ∼= f∞(suppPZ).

But now Proposition B.6 means
f∞(suppPZ) = f∞(suppPZ)

where the closure is taken in RdX . However, from (B.5) we have

P ?X = f∞#PZ ,
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which by Proposition B.3 means that

suppP ?X = supp f∞#PZ = f∞(suppPZ).

Consequently
suppP ?X = f∞(suppPZ) ∼= suppPZ

as desired.

The following corollary extends the above result to the case where suppP ?X may be homeomorphic to suppPZ , but P ?X
is very close to a probability measure with non-homeomorphic support to PZ . Here ρ denotes any metric for the weak
topology. In other words, ρ must be a metric on the space of distributions that satisfies ρ(Pn, P ) → 0 as n → ∞ if and
only if Pn

D→ P . The Lévy-Prokhorov and bounded Lipschitz metrics provide standard examples of such ρ (Villani, 2008,
Definition 3.3.10).

Corollary 2.2. Suppose PZ and P 0
X are probability measures on RdZ and RdX respectively with suppPZ 6∼= suppP 0

X .
Then there exists nonincreasing M : [0,∞)→ [1,∞] with M(ε)→∞ as ε→ 0 such that, for any probability measure P ?X
on RdX , we have BiLip f ≥M(ε) whenever ρ(P ?X , P

0
X) ≤ ε and ρ(f#PZ , P

?
X) ≤ ε.

Proof. Define M : [0,∞)→ [1,∞] by

M(ε) := inf
{

BiLip f | f : RdZ → RdX , ρ(f#PZ , P
0
X) ≤ 2ε

}
,

with M(ε) :=∞ if the infimum is taken over the empty set. Certainly M is nonincreasing. If we have both ρ(P ?X , P
0
X) ≤ ε

and ρ(f#PZ , P
?
X) ≤ ε, then the triangle inequality gives

ρ(f#PZ , P
0
X) ≤ ρ(f#PZ , P

?
X) + ρ(P ?X , P

0
X) ≤ 2ε

and so BiLip f ≥ M(ε) since the right-hand side is an infimum. It remains only to show that M(ε)→∞ as ε→ 0. For
contradiction, suppose there exists εn → 0 such that supnM(εn) < ∞. From the definition of M , this means that for
each n there exists fn : RdZ → RdX such that ρ(fn#PZ , P

0
X) ≤ 2εn and BiLip fn ≤M(εn) + 1. It follows directly that

ρ(fn#PZ , P
0
X) → 0 as n → ∞, which in turn means fn#PZ

D→ P 0
X since ρ is a metric for the weak topology. At the

same time we have
sup
n

BiLip fn ≤ sup
n
M(εn) + 1 <∞,

which contradicts Theorem 2.1, since we assumed suppPZ 6∼= suppP 0
X .

B.4 Variance of the Russian Roulette Estimator

In this section we briefly review the Russian roulette estimator used in Chen et al. (2019), and then discuss some scenarios
in which we expect the variance of this estimator to increase unboundedly.

B.4.1 RUSSIAN ROULETTE ESTIMATOR

Residual Flows (ResFlows, (Chen et al., 2019)), building off of Invertible Residual Networks (iResNets, (Behrmann et al.,
2019)), model the data by repeatedly stacking bijections of the form f−1` (x) = x + g`(x), where Lip g` =: κ < 1, as
mentioned in (5). The change-of-variable formula for one layer of flow reads as, for x ∈ Rd,

log pX(x) = log pZ(f−1` (x)) + tr

 ∞∑
j=1

(−1)j+1

j
Dg`(x)j

 . (B.6)

To deal with this infinite series, iResNets truncate after a fixed number of terms – this provides a biased estimate of the
log-likelihood of a point x under the model. ResFlows rely on an alternative method of estimating (B.6), first using a
Russian roulette procedure to rewrite the series as follows:

∞∑
j=1

(−1)j+1

j
tr
(
Dg`(x)j

)
= EN

 N∑
j=1

(−1)j+1

j

tr
(
Dg`(x)j

)
pj

 =: S(x),
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where N ∼ Geom(p) is a geometric random variable, and pk := P(N ≥ k). Then, taking a single sample N ∼ Geom(p),
an unbiased estimator of S is given as SN , where Sn is defined for any n ∈ N and x ∈ R as

Sn(x) :=

N∑
j=1

(−1)j+1

j

tr
(
Dg`(x)j

)
pj

(B.7)

for any x ∈ Rd. We will study the variance of SN in this section.15

First, however, define the quantity αj(x) for j ∈ N, x ∈ Rd as

αj(x) :=
(−1)j+1

j
tr
(
Dg(x)j

)
, (B.8)

where we now drop the dependence of g on `. Then, S(x) =
∑∞
j=1 αj(x), and SN (x) =

∑N
j=1 αj(x)/pj .

B.4.2 WHAT MIGHT HAPPEN WHEN κ→ 1?

We begin with an informal discussion on the variance of SN as κ→ 1. First of all we know that, as κ→ 1, the mapping
f−1 gets arbitrarily close to a non-invertible mapping: consider e.g. g(x) = −κx, then f−1 = (1− κ)Id→ 0 as κ→ 1.
This near non-invertibility has implications for the speed of convergence of both S(x) and its gradient,16 as noted in these
two results from Behrmann et al. (2019):

1. Theorem 3:
∣∣∣∑n

j=1 αj(x)− log det (I + Dg(x))
∣∣∣ ≤ −d(log(1− κ) +

∑n
j=1

κj

j

)
,

2. Theorem 4: ‖∇θ (αj(x)− log det (I + Dg(x)))‖∞ = O (κn).

We can see that both bounds become very loose as κ → 1, implying we cannot guarantee the fast convergence of either
series. It then follows that we cannot invoke the results from Rhee & Glynn (2015) and Beatson & Adams (2019) to argue
that the variance of the Russian roulette estimator SN will be small. Indeed, in the next section, we will look at a specific
example where this variance becomes infinite.

B.4.3 A SPECIFIC EXAMPLE OF INFINITE VARIANCE

Now consider the case where d = 1. We will show that when κ2 > 1 − p, there is a set of x having positive Lebesgue
measure such that SN (x) from (B.7) has infinite variance.

We note that here we have tr
(
Dg(x)j

)
= (g′(x))j for any j ∈ N. We can thus rewrite αj from (B.8) as

αj(x) :=
(−1)j+1

j
(g′(x))j . (B.9)

Also recall that N ∼ Geom(p) and pj := P(N ≥ j) for all j ∈ N.

Proposition B.10. For any x ∈ R and random variable N satisfying suppN = N, SN (x) has finite expectation if κ < 1.

Proof. Refer to Lyne et al. (2015, Proposition A.1).

Proposition B.11. Under the same conditions as Proposition B.10,

VarSN (x) ≥ lim
n→∞

2
n∑
j=1

αj(x)Sj−1(x)− E[SN (x)]2.

15Chen et al. (2019) additionally approximate tr
(
Dg`(x)

j
)

by the Hutchinson’s trace estimator vTDg`(x)jv for v ∼ N (0, I). Since
v is independent of N , their estimator has strictly higher variance than (B.7).

16With respect to the flow parameters θ



Continuously Indexed Flows

Proof. This proof is taken from Lyne et al. (2015, Proposition A.2); we mostly rewrite the proof but adapt it to our specific
setting and notation. Note that we will drop the dependence of Sj and αj on x throughout the proof.

We know from Proposition B.10 that E[SN (x)] is finite. Thus we will simply lower-bound E[SN (x)2].

We will first use induction to show the following holds for any n ∈ N:

n∑
j=1

S2
j (pj − pj+1) = α2

1 +

n∑
j=2

α2
j

pj
+ 2

n∑
j=2

αjSj−1 − S2
npn+1. (B.10)

The base case is

S2
1(p1 − p2) =

α2
1

p21
p1 − S2

1p2 = α2
1 − S2

1p2

since p1 = 1. Now, assume (B.10) holds for some m ∈ N. Then, for n = m+ 1,

m+1∑
j=1

S2
j (pj − pj+1) =

m∑
j=1

S2
j (pj − pj+1) + S2

m+1(pm+1 − pm+2)

= α2
1 +

m∑
j=2

α2
j

pj
+ 2

m∑
j=2

αjSj−1 − S2
mpm+1 (B.11)

+ S2
m+1(pm+1 − pm+2)

by the inductive hypothesis. We also have

pm+1(S2
m − S2

m+1) = pm+1(Sm − Sm+1)(Sm + Sm+1)

= pm+1
αm+1

pm+1

(
2Sm +

αm+1

pm+1

)
=
α2
m+1

pm+1
+ 2αm+1Sm.

Substituting this result into (B.11) completes the induction and proves (B.10) for all n ∈ N.

Now, by Jensen’s inequality,

S2
n =

 n∑
j=1

pj
αj

pj

pj

2

≤
∑n
j=1

α2
j

pj∑n
j=1 pj

.

This implies

pn+1S
2
n ≤ pnS2

n ≤
pn∑n
j=1 pj

n∑
j=1

α2
j

pj
≤

n∑
j=1

α2
j

pj

since (pn) is a positive sequence.
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This finally implies the following lower bound for any n ∈ N:

n∑
j=1

S2
jP(N = j) =

n∑
j=1

S2
j (pj − pj+1)

= α2
1 +

n∑
j=2

α2
j

pj
+ 2

n∑
j=2

αjSj−1 − S2
npn+1

≥ α2
1 +

n∑
j=2

α2
j

pj
+ 2

n∑
j=2

αjSj−1 −
n∑
j=1

α2
j

pj

= α2
1(1− p−11 ) + 2

n∑
j=2

αjSj−1

= 2

n∑
j=2

αjSj−1,

where the final line follows because p1 = 1.

Since E[S2
N ] = limn→∞

∑n
j=1 S

2
jP(N = j), the proof is complete.

We are about ready to prove the main result but require one more auxiliary result first.

Proposition B.12. Suppose |b| > 1. Then,

lim
n→∞

n

bn

n−1∑
j=1

bj

j
=

1

b− 1
.

Proof. We will first show that the limit exists, and then show that it equals (b− 1)−1. Let

cn =
n

bn

n−1∑
j=1

bj

j
.

We can rewrite this as follows:

cn =

n−1∑
j=1

n

bn−jj
=

n−1∑
j=1

n

bj(n− j)
=

n−1∑
j=1

1

bj
+

n−1∑
j=1

j

bj(n− j)
.

Since b > 1, the first sum is a convergent geometric series as n→∞. We can decompose the second sum into its positive
and negative terms:

n−1∑
j=1

j

bj(n− j)
=

n−1∑
j≥1:bj>0

j

bj(n− j)
+

n−1∑
j≥1:bj<0

j

bj(n− j)
≡ 1©n + 2©n.

We can see, for all n ∈ N,

1©n ≥ −
n−1∑
j=1

j

|b|j(n− j)
and 2©n ≤

n−1∑
j=1

j

|b|j(n− j)
.

Furthermore, for all j ∈ {1, . . . , n− 1}, we have
j

n− j
≤ j.

Now notice that the series
∑∞
j=1

j
|b|j converges by the ratio test:

lim
j→∞

∣∣∣∣∣
j+1
|b|j+1

j
|b|j

∣∣∣∣∣ = lim
j→∞

j + 1

j|b|
=

1

|b|
< 1.
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This implies the existence of limn→∞
∑n−1
j=1

j
|b|j(n−j) . Since the sequence ( 1©n) (resp. ( 2©n)) is negative, non-increasing,

and bounded below (resp. positive, non-decreasing, and bounded above), this implies the existence of limn→∞ 1©n (resp.
limn→∞ 2©n). Altogether, this implies the existence of

lim
n→∞

n−1∑
j=1

1

bj
+

n−1∑
j=1

j

bj(n− j)

 = lim
n→∞

cn =: c∞.

Now we will determine its precise value. Note the following recurrence for all n ∈ N:

cn+1 =
n+ 1

bn
(1 + cn) .

Taking the limit of both sides as n→∞ gives

c∞ =
1

b
(1 + c∞).

Solving this gives us c∞ = 1
b−1 , which completes the proof.

Proposition B.13. Suppose N ∼ Geom(p), g is continuously differentiable, and 1− p < κ2 < 1. Then

{x ∈ R | VarSN (x) =∞}

has positive Lebesgue measure.

Proof. From Proposition B.11, for a given x ∈ R, we can see that showing
∑∞
n=2 αn(x)Sn−1(x) diverges is sufficient to

prove VarSN (x) is infinite.

Consider using the ratio test to assess the convergence of the above series, with terms defined as an(x) := αn(x)Sn−1(x).
We have the following for any n ≥ 2:∣∣∣∣an+1(x)

an(x)

∣∣∣∣ =

∣∣∣∣αn+1(x)Sn(x)

αn(x)Sn−1(x)

∣∣∣∣
=

|(g′(x))n+1|
n+1

|(g′(x))n|
n

·

∣∣∣∣∣∣
∑n
j=1

αj(x)
pj∑n−1

j=1
αj(x)
pj

∣∣∣∣∣∣
=
n|g′(x)|
n+ 1

·

∣∣∣∣∣∣∣
(−1)n+1 · (g′(x))n

npn

n−1∑
j=1

(−1)j+1 · (g′(x))j

jpj

−1 + 1

∣∣∣∣∣∣∣ .
Recall pj = (1− p)j−1 ≡ qj−1. Then, writing b = − g

′(x)
q , we have

(−1)n+1 · (g′(x))n

npn

n−1∑
j=1

(−1)j+1 · (g′(x))j

jpj

−1 =
1

n
bn

n−1∑
j=1

1

j
bj

−1 .
Now let us assume that |g′(x)|2 > q. We can see that |g′(x)|2 > q =⇒ |g′(x)| > q since q ∈ (0, 1), which then entails
|b| > 1. Therefore, by Proposition B.12,

lim
n→∞

n

bn

n−1∑
j=1

bj

j
=

1

b− 1
.

This then implies

lim
n→∞

∣∣∣∣an+1(x)

an(x)

∣∣∣∣ = lim
n→∞

n|g′(x)|
n+ 1

∣∣∣∣∣ 1
n
bn

∑n−1
j=1

bj

j

+ 1

∣∣∣∣∣
= |g′(x)|

∣∣∣∣∣ 1
1
b−1

+ 1

∣∣∣∣∣ =
|g′(x)|2

q
> 1
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since we have assumed that |g′(x)|2 > q. Thus, for all x in the set

Vg,q := {x ∈ R | |g′(x)|2 > q},

the series
∑∞
n=2 αn(x)Sn−1(x) diverges by the ratio test. This means that VarSN (x) =∞ for all x ∈ Vg,q .

Finally, we will prove the set {x ∈ R | VarSN (x) = ∞} has positive Lebesgue measure. Recall that Lip g = κ, which
directly implies supx∈R |g′(x)| = κ from Proposition B.7 and thus supx∈R |g′(x)|2 = κ2. Then, since κ2 > q, there exists
x0 ∈ R such that |g′(x0)|2 ∈ (q, κ2). By the continuity of |g′|, there is open ball of nonzero radius around x0, denoted
B(x0), such that |g′(x)| > q for all x ∈ B(x0). Since B(x0) is open and non-empty, it has positive Lebesgue measure. The
inclusions

B(x0) ⊆ Vg,q ⊆ {x ∈ R | VarSN (x) =∞}

thus conclude the proof.

B.4.4 DISCUSSION

Changing p as κ increases An obvious strategy to avoid satisfying the conditions of Proposition B.13 is to set p such
that 1− κ2 > p. However, lowering p in this way incurs additional computational cost: the average number of iterations
per training step is equal to p−1, or is lower-bounded by (1 − κ2)−1 if p < 1 − κ2. Thus, if we send κ → 1 to mitigate
the bi-Lipschitz constraint (6), we will either incur an infinite computational cost or run the risk of encountering infinite
variance.

Higher dimensions Although Proposition B.13 only applies for d = 1, it is conceivable that similar results can be derived
for d > 1, especially when considering the discussion in Section B.4.2. We leave a deeper investigation for future work.

B.5 Density of a CIF

We make precise our heuristic derivation of the density (11) via the following result.

Proposition B.14. Suppose Z,X ⊆ Rd are open, and that F (·;u) : Z → X is a continuously differentiable bijection with
everywhere invertible Jacobian for each u ∈ U . Under the generative model (8), (X,U) has joint density

pZ(F−1(x;u)) pU |Z(u|F−1(x;u)) |det DF−1(x;u)|.

Proof. Suppose h : X × U → R is a bounded measurable test function. Then

E[h(X,U)] = E[h(F (Z;U), U)]

=

∫ [∫
h(F (z;u), u) pZ(z) pU |Z(u|z) dz

]
du

=

∫
h(x, u) pZ(F−1(x;u)) pU |Z(u|F−1(x;u)) |det DF−1(x;u)|dz du,

where in the third line we substitute x := F (z;u) on the inner integral, which is valid by Theorem 17.2 of Billingsley (2008).
Now for A ⊆ X × U , let h := IA. It follows that

P((X,U) ∈ A) = E[IA(X,U)] =

∫
A

pZ(F−1(x;u)) pU |Z(u|F−1(x;u)) |det DF−1(x;u)|dz du,

which gives the result since A was arbitrary.

B.6 Our Approximate Posterior Does Not Sacrifice Generality

The following result shows that our parameterisation of the approximate posterior qU1:L|X in (15) does not lose generality.
In particular, provided each qU`|Z`

is sufficiently expressive, we can always recover the exact posterior.
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Proposition B.15. Under the generative model (8), the posterior factors like

pU1:L|X(u1:L|x) =

L∏
`=1

pU`|Z`
(u`|z`),

where zL := x and z` := F−1`+1(z`+1;u`+1) for ` ∈ {1, . . . , L− 1}.

Proof. Writing pU1:L|X autoregressively gives

pU1:L|X(u1:L|x) =

L∏
`=1

pU`|U`+1:L,X(u`|u`+1:L, x).

But now it is clear from the generative model (8) that U` is conditionally independent of (U`+1:L, X) given Z`, and as such

pU`|U`+1:L,X(u`|u`+1:L, x) = pU`|Z`
(u`|z`).

Substituting this into the above expression then gives the result.

B.7 Conditions for a CIF to Outperform an Underlying Normalising Flow

For this result, the components of our model are assumed to be parameterised by θ ∈ Θ, which we will indicate by by
Fθ, pθU |Z , and qθU |X . We will also use θ to indicate quantities that result from the choice of parameters θ (e.g. P θX for the
distribution obtained), and will denote by Lθ the corresponding ELBO (14).
Proposition 4.1. Suppose there exists φ ∈ Θ such that, for some bijection f : Z → X , Fφ(·;u) = f(·) for all u ∈ U .
Likewise, suppose pφU |Z and qφU |X are such that, for some density r on U , pφU |Z(·|z) = qφU |X(·|x) = r(·) for all z ∈ Z and
x ∈ X . If Ex∼P?

X
[Lθ(x)] ≥ Ex∼P?

X
[Lφ(x)], then

DKL

(
P ?X

∥∥ P θX) ≤ DKL(P ?X ‖ f#PZ).

Proof. Observe from (11) that

pφX,U (x, u) = pZ(f−1(x)) |det Df−1(x)| pU |Z(u|f−1(x)).

It then follows from (13) that, under φ, the model has density

pφX(x) = pZ(f−1(x)) |det Df−1(x)|
∫
pU |Z(u|f−1(x)) du︸ ︷︷ ︸

=1

which is exactly the density of the normalising flow f#PZ . We also obtain the posterior

pφU |X(u|x) =
pφX,U (x, u)

pφX(x)

= pU |Z(u|f−1(x))

= r(u).

Since each qφU |X(·|x) = r(·) also, it follows that Lφ is tight, so that Lφ(x) = log pφX(x) for all x ∈ X .

Now suppose some θ ∈ Θ has
Ex∼P?

X
[Lθ(x)] ≥ Ex∼P?

X
[Lφ(x)].

It follows that
Ex∼P?

X
[log pθX(x)] ≥ Ex∼P?

X
[Lφ(x)] = Ex∼P?

X
[log pφX(x)].

Subtracting Ex∼P?
X

[log p?X(x)] from both sides and negating gives

DKL

(
P ?X

∥∥ P θX) ≤ DKL

(
P ?X

∥∥∥ PφX) = DKL(P ?X ‖ f#PZ).
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B.8 CIFs Can Learn Target Supports Exactly

In this section we give necessary and sufficient conditions for a CIF to learn the support of a target distribution exactly,
without needing changes to F . However, our argument applies more generally and does not make specific use of the bijective
structure of F . To make this clear, we formulate our result here in terms of a generalisation of the model (7). In particular,
we will take PX as the marginal in X of

Z ∼ PZ , U ∼ PU |Z(·|Z), X := G(Z,U), (B.12)

where G : Z × U → X . We will assume that

• Z ⊆ RdZ , U ⊆ RdU , and X ⊆ RdX are equipped with the subspace topology;

• PZ and each PU |Z(·|z) are Borel probability measures on Z and U respectively;

• G is continuous with respect to the product topology Z × U .

We then have the following formula for suppPX :

Lemma B.16. Under the model (B.12),

suppPX =
⋃

z∈suppPZ

G({z} × suppPU |Z(·|z)).

Proof. Denote the joint distribution of (Z,U) by PZ,U . Observe from Proposition B.3 that

suppPX = G(suppPZ,U ).

Let
B :=

⋃
z∈suppZ

{z} × suppPU |Z(·|z).

The result follows if we can show that
suppPZ,U = B,

since G(B) = G(B) because G is continuous.

We first show that suppPZ,U ⊇ B. Suppose (z, u) ∈ B, and let N(z,u) ⊆ Z × U be an open set containing (z, u). Then
there exists open Nz and Nu containing z and u respectively such that Nz ×Nu ⊆ N(z,u), since the open rectangles form a
base for the product topology. It follows that

PZ,U (N(z,u)) ≥ PZ,U (Nz ×Nu)

=

∫
Nz

PU |Z(Nu|z′)PZ(dz′)

> 0,

since by the definition of B we have PZ(Nz) > 0 and PU |Z(Nu|z) > 0 for each u ∈ Nz . From this we have suppPZ,U ⊇
B, and taking the closure of each side gives suppPZ,U ⊇ B.

In the other direction, suppose that (z, u) 6∈ B. Then there exist open sets Nz and Nu containing z and u respectively such
that

(Nz ×Nu) ∩B = ∅.

By the definition of B, it follows that if (z′, u′) ∈ Nz × Nu and z′ ∈ suppPZ , then u′ 6∈ suppPU |Z(·|z′). Otherwise
stated, if z′ ∈ Nz ∩ suppPZ , then

Nu ∩ suppPU |Z(·|z′) = ∅.
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Thus

PZ,U (Nz ×Nu) =

∫
Nz

[∫
Nu

PU |Z(du′|z′)
]
PZ(dz′)

=

∫
Nz∩suppPZ

[∫
Nu∩suppPU|Z(·|z′)

PU |Z(du′|z′)

]
PZ(dz′)

= 0,

where the second line follows from Proposition B.4. Consequently (z, u) 6∈ suppPZ,U , which gives suppPZ,U ⊆ B.

We now give necessary and sufficient conditions for the model (B.12) to learn a given target support exactly.

Proposition B.17. Suppose P ?X(∂ suppP ?X) = 0 and that

G(suppPZ × U) ⊇ suppP ?X . (B.13)

Then there exists PU |Z such that suppPX = suppP ?X if and only if, for all z ∈ suppPZ , there exists u ∈ U with

G(z, u) ∈ suppP ?X .

Proof. (⇒) Choose PU |Z such that suppPX = suppP ?X . Lemma B.16 gives⋃
z∈suppPZ

G({z} × suppPU |Z(·|z)) ⊆ suppP ?X .

Suppose z ∈ suppPZ . Then for indeed all u ∈ suppPU |Z(·|z) we must have G(z, u) ∈ suppP ?X , which proves this
direction since suppPU |Z(·|z) 6= 0 by Proposition B.4.

(⇐) For z ∈ suppPZ , let
Az := {u ∈ U : G(z, u) ∈ int(suppP ?X)}, (B.14)

where int denotes the interior operator. If Az = ∅, define PU |Z(·|z) to be Dirac on some u such that G(z, u) ∈ suppP ?X ,
which exists by assumption. Otherwise, we let PU |Z(·|z) be a probability measure with support Az . To show that such a
measure exists, observe that Az is open since G is continuous. Since U is separable, we can therefore write

Az =

∞⋃
n=1

Bn

for a countable collection of open sets Bn ⊆ Az . We can then define a probability measure µ by

µ(C) :=

∞∑
n=1

2−n I(C ∩Bn 6= ∅)

for measurable C ⊆ U . Since Az 6= ∅, it is straightforward to see that this is a probability measure with µ(Az) = 1.
Consequently suppµ = Az by Proposition B.2, since Az is open and suppµ is the smallest closed set with µ-probability 1.

We show this construction gives suppPX ⊆ suppP ?X . To this end, we first prove that if z ∈ suppPZ and u ∈
suppPU |Z(·|z) then

G(z, u) ∈ suppP ?X .

If Az = ∅ this is immediate. Otherwise, since suppPU |Z(·|z) = Az , there exists (un) ⊆ Az such that un → u. By (B.14),
each G(z, un) ∈ suppP ?X . By continuity we then have

G(z, un)→ G(z, u) ∈ suppP ?X

since suppP ?X is closed. It follows that⋃
z∈suppPZ

G({z} × suppPU |Z(·|z)) ⊆ suppP ?X ,
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which gives suppPX ⊆ suppP ?X from Lemma B.16 since suppP ?X is closed.

We now show suppPX ⊇ suppP ?X . Since P ?X(∂ suppP ?X) = 0 we have

suppP ?X = int(suppP ?X)

by Proposition B.2, so that suppPX ⊇ suppP ?X if suppPX ⊇ int(suppP ?X). Now suppose x ∈ int(suppP ?X). Then
there exists (zn) ⊆ suppPZ and (un) ⊆ U such that G(zn, un) → x by (B.13). But then we must have G(zn, un) ∈
int(suppP ?X) for n large enough because x lies in the interior. Consequently, for n large enough,

un ∈ Azn ⊆ suppPU |Z(·|zn)

and hence G(zn, un) ∈ suppPX by Lemma B.16. This means x ∈ suppPX since suppPX is closed.

The following proposition then gives a straightforward condition under which it is additionally possible to recover the target
exactly (i.e. not just its support). In our experiments we do not enforce this condition explicitly. However, since we learn
the parameters of G here, we can expect our model will approximate this behaviour if doing so produces a better density
estimator.

Proposition B.18. If G(z, ·) is surjective for each z ∈ Z , then there exists PU |Z such that PX = P ?X .

Proof. Fix z ∈ Z . Surjectivity of G(z, ·) means that, for x ∈ X , there exists u ∈ U such that G(z, u) = x. Thus we can
define Hz : X → U such that

G(z,Hz(x)) = x

for all x ∈ X . We then define each
PU |Z(·|z) := Hz#P

?
X .

From this it follows that PX = P ?X . For, letting B ⊆ X be measurable,

PX(B) =

∫
G−1(B)

PU |Z(du|z)PZ(dz)

=

∫ [∫
IB(G(z, u))Hz#P

?
X(du)

]
PZ(dz)

=

∫ [∫
IB(G(z,Hz(x)))P ?X(dx)

]
PZ(dz)

=

∫ [∫
IB(x)P ?X(dx)

]
PZ(dz)

= P ?X(B),

which gives the result.

C Experimental Details
Our choices (10) and (17) required parameterising s, t, µp, Σp, µq, and Σq. Since these terms are naturally paired, at each
layer of our model we set

[s(u), t(u)] := NNF (u),

[µp(z), ςp(z)] := NNp(z),

Σp(z) := diag(eς
p(z)),

[µq(x), ςq(x)] := NNq(x),

Σq(x) := diag(eς
q(x)),

where NN denotes a separate neural network and ςp(z), ςq(x) ∈ Rd.
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In all experiments we trained our models to maximise either the log-likelihood (for the baseline flows) or the ELBO (for the
CIFs) using the ADAM optimiser (Kingma & Ba, 2015) with default hyperparameters and no weight decay. The ELBO
was estimated using a single sample per datapoint (i.e. a single call to Algorithm 1). We used a held-out validation set and
trained each model until its validation score stopped improving, except for the NSF tabular data experiments where we train
for a fixed number of epochs as specified in Durkan et al. (2019). After training, we used validation performance to select
the best parameters found during training for use at test time (again except for the NSF experiments, where we just test
with the final model). Both validation and test scores were computed using the exact log-likelihood for the baseline and the
importance sampling estimate (16) for the CIFs, with m = 5 samples for validation and m = 100 for testing.

C.1 Tabular Data Experiments

Following Papamakarios et al. (2017), we experimented with the POWER, GAS, HEPMASS, and MINIBOONE datasets
from the UCI repository (Bache & Lichman, 2013), as well as a dataset of 8× 8 image patches extracted from the BSDS300
dataset (Martin et al., 2001). We preprocessed these datasets identically to Papamakarios et al. (2017), and used the same
train/validation/test splits. For all CIF-ResFlow models, we used a batch size of 1000 and a learning rate of 10−3. For the
MAF experiments, we used a batch size of 1000 and a learning rate of 10−3, except for BSDS300 where we used a learning
rate of 10−4 to control the instability of the baseline. For the NSF experiments, we used batch sizes and learning rates as
dictated by Durkan et al. (2019, Table 5), along with their cosine learning rate annealing scheme.

Also, for all CIF models, each U` had the same dimension dU , which we took to be roughly a quarter of the dimensionality
of the data (except in Section C.1.4 for which dU = dX ). In particular, we set dU := 2 for POWER and GAS, dU := 5 for
HEPMASS, dU := 10 for MINIBOONE, and dU := 15 for BSDS300.

C.1.1 RESIDUAL FLOWS

The residual blocks in all ResFlow models used multilayer perceptrons (MLPs) with 4 hidden layers of 128 hidden units
(denoted 4× 128), LipSwish nonlinearities (Chen et al., 2019, (10)) before each linear layer, and a residual connection from
the input to the output. We did not use any kind of normalisation (e.g. ActNorm or BatchNorm) for these experiments. For
all models we set κ = 0.9 in (5) to match the value for the 2-D experiments in the codebase of Chen et al. (2019). Other
design choices followed Chen et al. (2019). In particular:

• We always exactly computed several terms at the beginning of the series expansion of the log Jacobian, and then used
Russian Roulette sampling (Kahn, 1955) to estimate the sum of the remaining terms. In particular, at training time we
computed 2 exact terms, while at test time we computed 20 exact terms;

• We used a geometric distribution with parameter 0.5 for the number of terms to compute in our Russian Roulette
estimators;

• We used the Skilling-Hutchinson trace estimator (Skilling, 1989; Hutchinson, 1990) to estimate the trace in the log
Jacobian term;

• At both training and test time, we used a single Monte Carlo sample of (n, v) to estimate (6) of Chen et al. (2019);

However, note that for these experiments, for the sake of simplicity, we did not use the memory-saving techniques in (8) and
(9) of Chen et al. (2019), nor the adaptive power iteration scheme described in their Appendix E.

For NNF , NNp, and NNq we used 2× 10 MLPs with tanh nonlinearities These networks were much smaller than 4× 128,
and hence the CIF-ResFlows had only roughly 1.5-4.5% more parameters (depending on the dimension of the dataset) than
the otherwise identical 10-layer ResFlows, and roughly 10% of the parameters of the 100-layer ResFlows.

The 100-layer ResFlows were significantly slower to train than the 10-layer models, and for POWER, GAS, and BSDS300
we were forced to stop these before their validation loss had converged. However, to ensure a fair comparison, we allocated
more total computing power to these models than to the 10-layer models, which were terminated properly. In particular, we
trained each 100-layer ResFlow on POWER and GAS for a total of 10 days on a single NVIDIA GeForce GTX 1080 Ti, and
on BSDS300 for a total of 7 days. In contrast, the 10-layer ResFlows converged after around 1 day on POWER, 4.5 days on
GAS, and around 3 days on BSDS300. Likewise, the 10-layer CIF-ResFlows converged after around 1 day on POWER, 6
days on GAS, and 2 days on BSDS300.
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Table C.4: MAF and CIF-MAF parameter configurations for POWER and GAS.

LAYERS (L) AUTOREGRESSIVE NETWORK SIZE NNp SIZE NNq SIZE NNF SIZE

MAF 5, 10, 20 2× 100, 2× 200, 2× 400 - - -
CIF-MAF 5, 10 2× 128 2× 100, 2× 200 2× 100, 2× 200 2× 128

Table C.5: MAF and CIF-MAF parameter configurations for HEPMASS and MINIBOONE

LAYERS (L) AUTOREGRESSIVE NETWORK SIZE NNp SIZE NNq SIZE NNF SIZE

MAF 5, 10, 20 2× 128, 2× 512, 2× 1024 - - -
CIF-MAF 5, 10 2× 128 2× 128, 2× 512 2× 128, 2× 512 2× 128

C.1.2 MASKED AUTOREGRESSIVE FLOWS

The experiment comparing MAF baselines to CIF-MAFs was inspired by the experimental setup in Papamakarios et al.
(2017). For each dataset, we specified a set of hyperparameters over which to search for both the baselines and the CIFs;
these hyperparameters are provided in Table C.4, Table C.5, and Table C.6. Then, we trained each model until no validation
improvement had been observed for 50 epochs. We then evaluated the model with the best validation score among all
candidate models on the test dataset to obtain a log-likelihood score. We performed this procedure with three separate
random seeds, and report the average and standard error across the runs in Table 1.

We searched over all combinations of parameters listed in Table C.4, Table C.5, and Table C.6. For example, on HEPMASS
or MINIBOONE, our set of candidate MAF models included: for L = 5, an autoregressive network of size of either 2× 128,
2× 512, or 2× 1024; for L = 10, an autoregressive network size of either 2× 128, 2× 512, or 2× 1024; and for L = 20,
again an autoregressive network size of either 2× 128, 2× 512, or 2× 1024; this gave us a total of 9 candidate MAF models
for each seed. The set of candidate CIF-MAF models can similarly be determined via the table and gave us a total of 8
candidate models for each seed. We maintained this split of 9 candidates for MAF and 8 candidates for CIF-MAF across
datasets to fairly compare against the baseline by allowing them more configurations. We also considered deeper and wider
MAF models to compensate for the additional parameters introduced by NNF , NNp, and NNq in the CIF-MAFs. Finally, we
allowed the baseline MAF models to use batch normalization between MADE layers as recommended by Papamakarios
et al. (2017), but we do not use them within CIF-MAFs as the structure of our F generalises this transformation.

We should note that our evaluation of models is slightly different from Papamakarios et al. (2017). For the model which
scores best on the validation set, Papamakarios et al. (2017) report the average and standard deviation of log-likelihood
across the points in the test dataset. However, our error bars emerge as the error in average test-set log-likelihood across
multiple runs of the same experiment; this style of evaluation is often employed in other works as well (e.g. FFJORD
(Grathwohl et al., 2019), NAF (Huang et al., 2018), and SOS (Jaini et al., 2019) as noted in Durkan et al. (2019, Table 1)).

C.1.3 NEURAL SPLINE FLOWS

The experiment comparing NSF baselines to CIF-NSFs mirrors the experimental setup in Durkan et al. (2019). Specifically,
we constructed baseline NSFs that exactly copied the settings in Durkan et al. (2019, Table 5). We also built CIF-NSFs using
these baseline settings, although for the CIF-NSF-1 model we lowered the number of hidden channels in the autoregressive
networks so that the total number of trainable parameters matched that of the baseline. Our parameter settings are provided
in Table C.7; note that parameter settings are homogeneous across datasets, besides MINIBOONE for which we reduced

Table C.6: MAF and CIF-MAF parameter configurations for BSDS300

LAYERS (L) AUTOREGRESSIVE NETWORK SIZE NNp SIZE NNq SIZE NNF SIZE

MAF 5, 10, 20 2× 512, 2× 1024, 2× 2048 - - -
CIF-MAF 5, 10 2× 512 2× 128, 2× 512 2× 128, 2× 512 2× 128
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Table C.7: CIF-NSF configurations for all tabular datasets. The number of hidden features in the autoregressive network is
referred to as nh.

NNp SIZE NNq SIZE NNF SIZE nh VS. BASELINE

CIF-NSF-1 (MINIBOONE) 3× 50 2× 10 3× 25 FEWER
CIF-NSF-1 (NON-MINIBOONE) 3× 200 2× 10 3× 100 FEWER
CIF-NSF-2 3× 200 2× 10 3× 100 SAME

Table C.8: Mean ± standard error of average test set log-likelihood (higher is better). Best performing runs are shown in
bold. CIF-Id-1 had s ≡ 0 and t = Id. CIF-Id-2 had s ≡ 0 and t = NNF . CIF-Id-3 had (s, t) = NNF .

POWER GAS HEPMASS MINIBOONE

CIF-ID-1 (NNq = 10× 2) 0.43± 0.01 10.92± 0.10 −17.06± 0.05 −11.26± 0.03
CIF-ID-1 (NNq = 100× 4) 0.42± 0.01 10.86± 0.16 −17.44± 0.09 −10.91± 0.04

CIF-ID-2 (NNq = 10× 2) 0.45± 0.01 10.43± 0.08 −17.63± 0.10 −11.13± 0.08
CIF-ID-2 (NNq = 100× 4) 0.47± 0.01 10.89± 0.18 −17.51± 0.09 −10.75± 0.07

CIF-ID-3 (NNq = 10× 2) 0.50± 0.01 11.32± 0.14 −17.08± 0.02 −10.45± 0.04
CIF-ID-3 (NNq = 100× 4) 0.50± 0.01 11.58± 0.12 −16.68± 0.07 −10.01± 0.04

the size NNp and NNF by a factor of 4 as per Durkan et al. (2019)17. We trained both NSFs and CIF-NSFs for a number of
training epochs corresponding to the number of training steps divided by the number of batches in the training set, i.e.

ne = dns/ (nt/nb)e ,

where ne is the number of epochs, ns is the number of training steps, nb is the batch size, and nt is the number of training
data points. Note that ns and nb are from Durkan et al. (2019, Table 5), and nt is fixed by the pre-processing steps from
Papamakarios et al. (2017). We then evaluated the test-set performance of each model after the pre-specified number of
epochs, averaging across three seeds, and put the results in Table 1. We again average randomness across seeds, rather than
across points in the test set, as discussed in the previous section.

We quickly note here that we selected our parameters after trying a few settings on various UCI datasets. There were
other settings which performed better for individual datasets that are not included here, as we would like the proposed
configurations to be as homogeneous as possible. It appeared as though the NSF models were already fairly good at
modelling the data, which allowed us to make NNq much smaller while still achieving good inference.

We also should note that we wrapped our code around the NSF bijection code from https://github.com/
bayesiains/nsf. We also disable weight decay in all of these experiments without observing any problems with
convergence.

C.1.4 ABLATING f

We ran ablation experiments to gain some insight into the relative importance of f in (9). In particular, we considered a 10
layer model (L = 10) where at each layer U` had the same dimension as the data and f = Id was the identity. We refer to
this model as CIF-Id.

We considered three parameterisations of CIF-Id. The first had s ≡ 0 and t = Id, which from our choice (10) of pU |Z
corresponds to stacking the following generative process:

Z ∼ PZ
ε ∼ Normal(0, Id)

X := Z − µp(Z)− eς
p(Z) � ε. (C.1)

17Indeed, there was no choice of nh which would allow us to achieve the same number of parameters as the baseline for the models
noted in row 2 of Table C.7.
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Observe this generalise ResFlows, since (5) can be realised by sending ςp → −∞ and having µp < 1. Accordingly, we
took NNp to be a 4× 128 MLP to match the size of the residual blocks used in our tabular ResFlow experiments.

The second CIF-Id parameterisation had s ≡ 0 and t = NNF , which amounts to replacing (C.1) with

X := Z − t
(
µp(Z) + eς

p(Z) � ε
)
.

To align with the first CIF-Id, we took NNF and NNp to be 2 × 128 MLPs, and zeroed out the s output of NNF to obtain
s ≡ 0. The third parameterisation had (s, t) = NNF , which replaces (C.1) with

X := exp
(
−s
(
µp(Z) + eς

p(Z) � ε
))
� Z − t

(
µp(Z) + eς

p(Z) � ε
)
.

Again, we took NNF and NNp to be 2× 128 MLPs in this case.

We ran all configurations with two different choices of NNq: a 2 × 10 MLP as in our tabular ResFlow experiments, as
well as a 4× 100 MLP. The results are given in Table C.8.18 Observe that these models performed comparably or better
than the 100-layer ResFlows, but worse than the CIF-ResFlows and CIF-MAFs in Table 1. As discussed in Section 4.1.1,
we conjecture this occurs because a CIF-Id requires greater complexity from pU |Z to make up for its simple choice of f ,
which in turn makes inference harder and hence the ELBO (14) looser, resulting in a poorer model that is learned overall.
Likewise, note that the best performance in all cases was obtained when (s, t) = NNF . This provides some justification for
the generality of our choice of (9), as opposed to simpler alternatives that omit s or t.

C.2 Image Experiments

In all our image experiments we applied the same uniform dequantisation scheme as Theis et al. (2016), after which we
applied the logit transform of Dinh et al. (2017) with α = 10−5 for Fashion-MNIST and α = 0.05 for CIFAR10.

C.2.1 RESFLOW

For our baseline ResFlow experiments we used the same architecture as Chen et al. (2019). In particular, our convolutional
residual blocks (denoted Conv-ResBlock) had the form

LipSwish→ 3× 3 Conv→ LipSwish→ 1× 1 Conv→ LipSwish→ 3× 3 Conv,

while our fully connected residual blocks (denoted FC-ResBlock) had the form

LipSwish→ Linear→ LipSwish→ Linear,

with a residual connection from the input to the output in both cases. The overall architecture of the flow in all cases was:

Image→ LogitTransform(α)→ k× Conv-ResBlock→ [Squeeze→ k× Conv-ResBlock]× 2→ 4× FC-ResBlock,

where the Squeeze operation was as defined by Dinh et al. (2017). Like Chen et al. (2019), we used ActNorm layers
(Kingma & Dhariwal, 2018) before and after each residual block.

Due to computational constraints, the models we considered were smaller than those used by Chen et al. (2019). In particular,
our smaller ResFlow models used 128 hidden channels in their Conv-ResBlocks, 64 hidden channels in the linear layers of
their FC-ResBlocks, and had k = 4. Our larger ResFlow models used 256 hidden channels in their Conv-ResBlocks, 128
hidden channels in the linear layers of their FC-ResBlocks, and had k = 6. In contrast, Chen et al. (2019) used 512 hidden
channels in their Conv-ResBlocks, 128 hidden channels in their FC-ResBlocks, and had k = 16.

As described for our tabular experiments, we used the same estimation scheme as Chen et al. (2019). Additionally:

• We took κ = 0.98;

• We used the Neumann gradient series expression for the log Jacobian (Chen et al., 2019, (8)) and computed gradients
in the forward pass (Chen et al., 2019, (9)) to reduce memory overhead;

18Due to computational constraints we did not run these experiments on BSDS300.
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• We used an adaptive rather than a fixed number of power iterations for spectral normalisation (Gouk et al., 2018), with
a tolerance of 0.001;

For the CIF-ResFlows, we augmented the smaller baseline ResFlow by treating each composition of ActNorm→ ResBlock,
as well as the final ActNorm, as an instance of f in (9). Each NNF , NNp, and NNq was a ResNet (He et al., 2016a;b)
consisting of 2 residual blocks with 32 hidden channels (denoted 2 × 32). We gave each U` the same shape as a single
channel of Z`, and upsampled to the dimension of Z` by adding channels at the output of each NNF . Note that we did not
experiment with using the larger baseline ResFlow model as the basis for a CIF.

For all models we used a learning rate of 10−3 and a batch size of 64.

Figure C.3 through to Figure C.8 show samples synthesised from the ResFlow and CIF-ResFlow density models trained on
MNIST and CIFAR-10.

C.2.2 REALNVP

For our RealNVP-based image experiments, we took the baseline to be a RealNVP with the same architecture used by
Dinh et al. (2017) for their CIFAR-10 experiments. In particular, we used 10 affine coupling layers with the corresponding
alternating channelwise and checkerboard masks. Each coupling layer used a ResNet (He et al., 2016a;b) consisting of 8
residual blocks of 64 channels (denoted 8× 64). We replicated the multi-scale architecture of Dinh et al. (2017), squeezing
the channel dimension after the first 3 coupling layers, and splitting off half the dimensions after the first 6. This model had
5.94M parameters for Fashion-MNIST and 6.01M parameters for CIFAR-10.

For the CIF-RealNVP, we considered each affine coupling layer to be an instance of f in (9). When choosing the size of
our networks, we sought to maintain roughly the same depth over which gradients were propagated as in the baseline. To
this end, our coupling networks were 4× 64 ResNets, each NNp and NNq were 2× 64 ResNets, and each NNF was a 2× 8
ResNet. We gave each U` the same shape as a single channel of Z`, and upsampled to the dimension of Z` by adding
channels at the output of NNF . Our model had 5.99M parameters for Fashion-MNIST and 6.07M parameters for CIFAR-10.

For completeness, we also trained a RealNVP model with coupler networks of size 4 × 64 to match our CIF-RealNVP
configuration. This model had 2.99M parameters for Fashion-MNIST and 3.05M for CIFAR-10.

In all cases for these experiments we used a learning rate of 10−4 and a batch size of 100.

Figure C.9 through to Figure C.14 show samples synthesised from the RealNVP and CIF-RealNVP density models trained
on Fashion-MNIST and CIFAR-10.

C.3 2-D Experiments

To gain intuition about our model, we ran experiments on some simple 2-D datasets. For the datasets in Figure 1, we
used a 10-layer ResFlow, a 100-layer ResFlow, and 10-layer CIF-ResFlow. For the CIF-ResFlows we took dU = 1. Other
architectural and training details were the same as for the tabular experiments described in Section 5.1 and Section C.1.1.
The resulting average test set log-likelihoods for the top dataset were:

• -1.501 for the 10-layer ResFlow

• -1.419 for the 100-layer ResFlow

• -1.409 for the 10-layer CIF-ResFlow

The final average test set log likelihoods for the bottom dataset were:

• -2.357 for the 10-layer ResFlow

• -2.287 for the 100-layer ResFlow

• -2.275 for the 10-layer CIF-ResFlow

Note that in both cases the CIF-ResFlow slightly outperformed the 100-layer ResFlow.
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We additionally ran several experiments comparing a baseline MAF against a CIF-MAF on the 2-D datasets shown in
Figure C.15. The baseline MAFs had 20 autoregressive layers, while the CIF-MAFs had 5. The network used at each layer
had 4 hidden layers of 50 hidden units (denoted 4× 50). For the CIF-MAF, we took dU = 1, and used 2× 10 MLPs for
NNF and 4× 50 MLPs for NNp and NNq. In total the baseline MAF had 160160 parameters, while our model had 119910
parameters.

The results of these experiments are shown in Figure C.15. Observe that CIF-MAF consistently produces a more faithful
representation of the target distribution than the baseline, and in all cases achieved higher average test set log probability. A
failure mode of our approach is exhibited in the spiral dataset, where our model still lacks the power to fully capture the
topology of the target. However, we did not find it difficult to improve on this: by increasing the size of NNp to 8 × 50
(and keeping all other parameters fixed), we were able to obtain the result shown in Figure C.16. This model had a total of
221910 parameters. We also tried a larger MAF model with autoregressive networks of size 8 × 50, (obtaining 364160
parameters total). This model diverged after approximately 160 epochs. The result after 150 epochs is shown in Figure C.16.

Figure C.3: Synthetic MNIST samples generated by the small baseline ResFlow model
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Figure C.4: Synthetic MNIST samples generated by the large baseline ResFlow model

Figure C.5: Synthetic MNIST samples generated by the CIF-ResFlow model
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Figure C.6: Synthetic CIFAR-10 samples generated by the small baseline ResFlow model

Figure C.7: Synthetic CIFAR-10 samples generated by the large baseline ResFlow model
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Figure C.8: Synthetic CIFAR-10 samples generated by the CIF-ResFlow model

Figure C.9: Synthetic Fashion-MNIST samples generated by RealNVP with coupling networks of size 4× 64
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Figure C.10: Synthetic Fashion-MNIST samples generated by RealNVP with coupling networks of size 8× 64

Figure C.11: Synthetic Fashion-MNIST samples generated by CIF-RealNVP
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Figure C.12: Synthetic CIFAR-10 samples generated by RealNVP with coupling networks of size 4× 64

Figure C.13: Synthetic CIFAR-10 samples generated by RealNVP with coupling networks of size 8× 64
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Figure C.14: Synthetic CIFAR-10 samples generated by CIF-RealNVP
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Figure C.15: Density models learned by a standard 20 layer MAF (left) and by a 5 layer CIF-MAF (right) for a variety of
2-D target distributions. Samples from the target are shown in black.
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Figure C.16: Density models learned by a larger 20 layer MAF (left) and a larger 5 layer CIF-MAF (right) for the spirals
dataset.


