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Abstract

Gaussian processes (GPs) are nonparametric
Bayesian models that have been applied to re-
gression and classification problems. One of the
approaches to alleviate their cubic training cost
is the use of local GP experts trained on sub-
sets of the data. In particular, product-of-expert
models combine the predictive distributions of lo-
cal experts through a tractable product operation.
While these expert models allow for massively dis-
tributed computation, their predictions typically
suffer from erratic behaviour of the mean or uncal-
ibrated uncertainty quantification. By calibrating
predictions via a tempered softmax weighting, we
provide a solution to these problems for multiple
product-of-expert models, including the gener-
alised product of experts and the robust Bayesian
committee machine. Furthermore, we leverage
the optimal transport literature and propose a new
product-of-expert model that combines predic-
tions of local experts by computing their Wasser-
stein barycenter, which can be applied to both
regression and classification.

1. Introduction

Gaussian processes (GPs) (Rasmussen & Williams, 2006)
are nonparametric stochastic processes that have been ap-
plied extensively to regression and classification problems.
However, their cubic training and quadratic prediction cost
hinders their application in large-scale problems. Different
approaches alleviate this issue, including sparse approxima-
tions (Snelson & Ghahramani, 2006; Csato & Opper, 2002;
Quinonero Candela & Rasmussen, 2005; Titsias, 2009), the
exploitation of structural assumptions (Wilson & Nickisch,
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2015) and local-expert models (Tresp, 2000a; Rasmussen &
Ghahramani, 2001; Cao & Fleet, 2014; Deisenroth & Ng,
2015; Rulliere et al., 2018; Trapp et al., 2019).

Sparse approximations effectively reduce the rank of the
covariance matrix through inducing inputs, reducing the
training cost from O(n?) to O(nm?), where m is the num-
ber of inducing points and 7 is the size of the training dataset.
Optimisation consists of jointly learning kernel hyperparam-
eters and inducing locations. In particular, Titsias (2009)
treats inducing locations as variational parameters and opti-
mises them and the kernel hyperparameters by maximising
a lower bound on the marginal likelihood. Hensman et al.
(2013) scale this approach by introducing mini-batching,
reducing the complexity to O(m?), while Gal et al. (2014)
reparametrise the problem to allow for distributed inference.

An alternative to sparse GP approximations is to use lo-
cal experts. Here, the training dataset is partitioned into
J subsets of size m where m < n. Then, J local GP
experts are trained on each of these subsets, thereby reduc-
ing the training complexity to O(Jm?). Importantly, this
approach scales to large datasets because training and pre-
diction with each expert can be distributed across computing
units (Deisenroth & Ng, 2015). For instance, Rasmussen &
Ghahramani (2001); Tresp (2000a); Trapp et al. (2019) con-
sider mixture-of-expert models (MoEs). In particular, Trapp
et al. (2019) propose a sum-product network with local-
expert GP leaves allowing for tractable and exact posterior
inference. Other approaches leverage product-of-experts
models (PoEs) (Tresp, 2000b; Cao & Fleet, 2014), whereby
a global prediction can be obtained by means of averaging
the predictions of local experts. Generalisations of these
models can control the relevance of different experts when
making predictions (Cao & Fleet, 2015; Deisenroth & Ng,
2015; Liu et al., 2018).

In this work, we focus on PoEs because closed-form infer-
ence and training are tractable, which is not the case with
typical MoEs. However, previous PoE approaches to com-
bining predictions at test time suffer from unrealistic over-
or under-estimation of the variance and erratic mean be-
haviours. This holds especially when the number of points
m assigned to each expert is low, in which case a signifi-
cant number of experts are weak (Deisenroth & Ng, 2015).
These approaches are thus not overly robust to variations
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in m, which is a significant shortcoming. Unfortunately,
scalability requires the number of points per expert to be
reasonably small due to the O(m?) scaling of individual
experts. We propose a solution to these problems by con-
trolling the sparsity of expert weights through a tempered
softmax at test time, leveraging tools from the the exten-
sive uncertainty calibration literature (Platt, 1999; Bishop
& Svensén, 2003; Guo et al., 2017). We also propose a
novel principled PoE approach arising from the optimal
transport literature, which we name the barycenter of GPs,
and demonstrate that its performance is competitive to the
best PoE models on small and large-scale datasets. We
demonstrate empirically that calibrating expert weights lead
to substantial performance gains in both mean prediction
and uncertainty quantification. We also discuss common
failures of PoE models extensively and propose guidelines
to remediating these.

Contributions: 1) We introduce a new method for averag-
ing GP experts based on optimal transport theory that per-
forms competitively with the best-performing PoE models.
2) We propose a solution to the shortcomings of previously
proposed PoEs, based on controlling the weight sparsity.
3) We analyse and disentangle contradictory results arising
from recent GP experts papers on commonly used PoEs.

2. Gaussian Processes

Gaussian processes are powerful nonparametric Bayesian
models, often used for regression. A GP is defined as a col-
lection of random variables, every finite subset of which is
jointly Gaussian distributed (Rasmussen & Williams, 2006).
GPs are fully defined by a mean m(-) and a kernel k(-, -).

Consider a regression problem with a training dataset
{x;, y;}1, of n noisy observations y; = f(x;) + €, where
e ~ N(0,07). With a GP prior on f, it follows that
f(®) ~ N(my, K, + o) where (m,); = m(z;) and
(K4)ij = k(x;, ;). The mean and variance of the Gaus-
sian posterior predictive distribution of the function value
f(x,) at a test point ., are given by

E[f*|w*7X7y] = mw* + kZ(KCE + 051)_1(9 - mm)7
var[f. |z, X, y] = ko — kL (K, + 0o D) k.,

respectively, where k.. = k(x., x.) and k. = k(X x,).
Here X, y contain the training inputs and targets, respec-
tively. Kernel hyperparameters and the noise parameter o,
are learned by maximising the log-marginal likelihood

log p(y| X, 0) = log N (y|m,, K, + UgI). (1)

Computing (1) requires the inversion of the matrix K, +
051 € R™*", so that GP training scales in O(n?), where
n is the size of the training dataset. Optimizing the log-
marginal likelihood in (1) and the computation of the poste-

rior predictive distribution at a test input x,. become compu-
tationally intractable for large training sets.

Several approaches have been explored to avoid the cubic
training cost of GPs. These are mostly based on either sparse
approximations and structure-exploiting assumptions to the
covariance matrix (Quifionero Candela & Rasmussen, 2005;
Titsias, 2009; Hensman et al., 2013; Wilson & Nickisch,
2015) or training distributed (weak) experts on subsets of
the full dataset (Tresp, 2000b; Cao & Fleet, 2014; Deisen-
roth & Ng, 2015; Trapp et al., 2019; Liu et al., 2018). An
alternative is to use large-scale computing infrastructure and
incomplete Cholesky decompositions (Wang et al., 2019).

2.1. Sparse Gaussian Processes

Sparse GPs (Quifionero Candela & Rasmussen, 2005; Snel-
son & Ghahramani, 2006) leverage inducing inputs to re-
duce the rank of the matrix to be inverted. Sparse variational
GPs extend this by introducing a variational approximation
to the posterior (Titsias, 2009), treating inducing inputs as
variational parameters, and mini-batching (Hensman et al.,
2013) to scale. Wilson & Nickisch (2015) exploit struc-
tural assumptions and combine inducing-point approaches
with Kronecker and Toeplitz methods to perform kernel
approximations leading to increased scalability. The ap-
proximation quality of sparse GPs relies on the number of
inducing points, and a large number of these can be required
to represent the local structures of fast varying functions.

2.2. Gaussian Process Experts

Another approach to scaling GPs to large datasets is to
use expert models. Here, multiple GPs are trained on sub-
sets of the data, and predictions are recombined using ei-
ther a product-of-expert (log-opinion pool) approach (Hin-
ton, 1999; Tresp, 2000b; Cao & Fleet, 2014; Deisenroth &
Ng, 2015; Rulliere et al., 2018; Bertone et al., 2019), or
a mixture-of-expert (linear-opinion pool) approach (Tresp,
2000a; Rasmussen & Ghahramani, 2001; Trapp et al., 2019).
MoEs are useful in heteroskedastic and nonstationary set-
tings, but do not typically allow tractable posterior inference,
by contrast with PoEs.

In this paper, we thus focus on product-of-expert models
with M experts, which all share hyperparameters. We first
describe the training of such models. Assuming a full GP is
the model we seek to approximate, sharing kernel hyperpa-
rameters automatically regularises the population of experts:
individual experts can not overfit to the local subset of the
data they are fed with due to this shared set of hyperparam-
eters. Assuming independence across experts (given the
training data), the log-marginal likelihood is

J
logp(y|X,0) = logp;(y"| XD, 0), (2
j=1
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Figure 1. Different expert models trained on synthetic data with three points per GP expert on a dataset of 300 observations. (a) PoE;
(b) gPoE; (c¢) BCM; (d) rBCM. All models display some shortcomings in their vanilla forms. For instance (a): over-confidence, (b)
under-confidence within data region, and (c)-(d) erratic mean in the transitioning region.

where {X (@) 4yl )} is the data assigned to the j" expert.

To train the model, we maximise the log-marginal likeli-
hood (2) with respect to the (shared) kernel hyperparameters
(Deisenroth & Ng, 2015). Training can be distributed across
diverse compute clusters, enabling scaling with total time
complexity O(Jm?) where J is the number of experts, and
m < n is the size of the training set of each expert. With J
compute nodes, the complexity per node reduces to O(m?).
This is in stark contrast to the O(n?3) scaling of full GPs.

In the following, we describe the process of predicting with
product-of-GP-experts models. In particular, we introduce
several approaches to recombining predictions from trained
experts. We note that an important particularity of these
models is that all predictive distributions p( f«|x.) of func-
tion values are Gaussians, which is not the case with MoEs.
Also, throughout the paper, aggregation is performed in
function space, and the likelihood is subsequently applied.

(Generalised) product of experts — (g)PoE  The (g)PoE
aggregates predictions of M experts at test point x, via

J
plfelas) oc TT 07

j=1

fila, DD), 3)
where the predictive mean and precision are

J
m(g)Poe(w*) U(g poe Z w*)m] (17*)

O (opoe (@) = X Bi(@)a; 2 (@.),

respectively. Here, D@ = {X) 4@} is the data as-
signed to expert j, 8 () controls the contribution of ex-
pert j at x, (typically a measure of its confidence at x..),
and the PoE model is recovered when setting 3;(x,) = 1
for all 7. As the number of experts .J increases, the PoE’s
aggregated variance vanishes, which leads to overconfident
predictions (Deisenroth & Ng, 2015; Liu et al., 2018). An
illustration of such behaviour is shown in Figure 1(a).

The gPoE with uniform weights > 3;(x.) = 1 falls back
to the prior far from training points, which is a desirable
property. However, a drawback is that it over-estimates the
variance close to training points (Deisenroth & Ng, 2015)
when setting the weights uniformly (3; () = %). We also
observe such behaviour in Figure 1(b).

(Robust) Bayesian committee machine — (r)BCM  The
(robust) Bayesian committee machine (r)BCM (Tresp,
2000b; Deisenroth & Ng, 2015) assumes conditional inde-
pendence D; 1L D;|f.. By repeated application of Bayes’
theorem, we obtain the predictive distribution

J (. j
szlpjﬂj( )(fi|s, DY)
p I AE) (f fe)

p(ful@.) = @)

at test point « .. Then the predictive mean and precision are
J
M ypem (@) = Olrypen (@) D B (@4)o; (@ )my (),

j=1

bcm ZﬁJ w* (E*)—J;2)+U:2,

0'

respectively. BCM is recovered when /3;(x,) = 1 for all j.
This predictive distribution guarantees that the model falls
back to the prior far from training data. However, the BCM
exhibits uncharacteristic behaviour in regions transitioning
from high to low-density data (Deisenroth & Ng, 2015); see
Figure 1(c). The rBCM mitigates some of the issues of the
BCM and allows for flexible weighting of GP experts, via
Bj(z.), but it still exhibits problematic behaviour in regions
with density transitioning; see Figure 1(d).

Generalised rBCM - grBCM Liu et al. (2018) pro-
posed the grBCM in which a master expert communicates
with the children experts leading to a consistent predictive
distribution of the form

J (@) ;
H] 2pf’]( (y*las*, D(+]))

1+Z =2 Bi (m*)(Dc

P(y«|@.) = )

Y, @)
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D¢ is the global data assigned to the master expert, and
D) = {D¢, DU} is the data of the j** expert aggregated
with the data of the master expert. The predictive mean and
variance of (5) are

Og(®) = D (@) (037 (@) — 07 (@) + 02 ().

Jj=2

where m j(z.) and 0% ; (x.) are the predictive mean and
variance of the j*" expert at z,,, conditioned on the aggre-
gated dataset D(t7). Liu et al. (2018) perform aggregation
in y-space, in contrast to Deisenroth & Ng (2015), who
perform it in f-space. The former is not directly applicable
in non-conjugate cases (e.g., classification), and can lead to
erratic mean and variance behaviours (especially when used
for IBCM/BCM/PoE as observed in (Liu et al., 2018; Zhang
& Williamson, 2019)). We therefore consider in this paper
aggregation in f-space and discuss differences between both
approaches further in later sections.

Likelihoods As expert averaging is performed in function
space throughout the paper, we will need to map the aggre-
gated predictive GP distribution p( f,) through a likelihood
function to predict labels y,. In the conjugate regression
case with a Gaussian likelihood, this can be done in closed
form (Rasmussen & Williams, 2006). For classification, we
consider non-conjugate likelihoods, such as the Bernoulli
or Poisson likelihoods. Since the aggregated predictive dis-
tribution p( f.) in PoEs is Gaussian, we obtain the expected
predicted label by averaging under the posterior predictive
latent distribution

Efy.|z.] = / S(f@)IN(fulm(@.), o (@))df., (©)

where ¢ is a classification likelihood (e.g., Bernoulli, Pro-
bit). The integral in (6) is intractable, but we can resort to
standard approximate inference techniques for GP classi-
fication, such as MAP estimation, Laplace approximation,
expectation propagation, variational inference, or numerical
integration (Rasmussen & Williams, 2006; Hensman et al.,
2015). Similarly, the marginal likelihood, which we use
for training the experts, becomes intractable. Therefore, we
use stochastic variational inference to train models in that
setting (Hensman et al., 2015), and apply the same strategies
for training and prediction with other GP expert models.

experts
barycenter

| VD’

Figure 2. Tllustration of the barycenter of GPs with tempered soft-
max weighting. At z., one expert (left) is highly confident about its
prediction, and two are highly unconfident (right). As temperature
increases, only confident experts get weight (sparsity increases),
thus the barycenter is pulled towards the confident expert.

3. Barycenters of Predictive Distributions

Now, we propose a new way of combining experts’ pre-
dictions leveraging optimal transport theory. We begin by
introducing two important tools, namely the Wasserstein
distance and barycenter between 1D Gaussians, noting that
both can be computed using simple closed-form formulas.

Given two Gaussians 1 = N(my,K;) and v =
N (ms, K5), we define the 2-Wasserstein distance between
them as (Villani, 2008)

W3 (p,v) = [lma — ma|3 (7)
+ Tr<K1 YKy — 2(K%K2K%)%). )

(7) can be interpreted as the minimal expected cost of trans-
porting mass from the Gaussian p to the Gaussian v.

Given that distance, the barycenter between Gaussian-
distributed p1, ..., gy with weights 3 is

J
fi = argmin Y B3 (15, 1), ©)

v 4
where Zj B; =1,0<p; <1 Alvarez Esteban et al.
(2016) show that if ;i; = N'(m;, K ;) for all j, the Wasser-
stein barycenter with weights 3 is itself a Gaussian measure
i = N(m, K), where

J J
_ _ 1 _ 1 3
rhzZﬁjmj, K:Zﬁj(KzK]‘Kz)f. (10)
j=1 j=1

The authors also propose a fixed-point iteration algorithm
to efficiently compute K in (10).

In the following, we discuss our approach to aggregat-
ing GP experts’ predictions for regression and classifi-
cation. In all product-of-experts models we discussed,
each expert computes a predictive distribution of the form
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p;(f(2.)|DW) = N(mj(.),0?(x,)), where m; and o
are the posterior predictive mean and variance of the jth GP
expert at test point x,. Since these distributions (in latent
space of f) are all Gaussian (by definition of the GP), we
propose combining these into their weighted 2-Wasserstein
barycenter using (10), which can be computed in closed
form in the one-dimensional case (Bonneel & Pfister, 2013).
We obtain the closed-form Gaussian predictive distribution

p(filzs) = N (Mpar (@), 0par (24)) (11)

J
Mpar(To) = Y Bi(@)my (@), (12)
j=1

J
(@) =D Bj(@)o} (). (13)
j=1

The barycenter of GPs is a product-of-experts variant, and
the mean and variance of the predictive distribution consist
of the weighted average of predictive means and variances
of the experts. Importantly, such weights can be a function
of test points, analogously to the gPoE and the rBCM.

We train the barycenter of GPs following the training pro-
cedure of other PoEs discussed in Section 2.2, namely by
optimising the marginal likelihood (2), and we share expert
hyperparameters for regularising the expert pool.

The barycenter of GP’s predictive distribution is deeply
connected to that of previously proposed PoEs. In particular,
the aggregated mean is a weighted mean of the experts’
predictive means, which is also the case for other expert
models. The aggregated variance is a weighted mean of
experts’ variances, which has a similar interpretation to the
predictive precision of other PoEs, itself a weighted mean of
the experts’ precisions. The barycenter of GPs falls back to
the prior outside the data regime which is a highly desirable
property, and is also true for gPoE with uniform weights,
and rBCM. Further connections are discussed in Section 4.

WASP (Srivastava et al., 2015) leverages a related idea,
which consists in averaging subset posteriors using Wasser-
stein barycenters. However, they average discrete measures
consisting of samples from the different posteriors at a dis-
cretizsed set of points, and then have to solve a large linear
problem to compute the barycenter. By contrast, we av-
erage marginal posterior predictive distributions, which is
done in closed-form leveraging the known closed-form of
barycenters of Gaussians in 1D.

4. Calibrating Product-of-Experts

In the previous sections, we introduced several approaches
to combining predictions of local GP experts, including our
proposal, the barycenter of GPs. We also discussed short-
comings of previous PoE approaches in low-data regimes,

including under- (Figure 1(a)) and over-estimation of the
variance (Figure 1(b)), but also erratic and uncharacteris-
tic behaviours of the mean and variance predictions (Fig-
ures 1(c)—1(d)). These behaviours are exacerbated when the
number of points assigned per expert is low, which leads to
a significant number of weak experts'.

Whilst exact Gaussian processes are well-known for well-
calibrated uncertainty estimates, approximate Bayesian
methods fall prey to inferior calibration. These issues in the
context of sparse GP approximations are discussed in depth
by Bauer et al. (2016). Our aim in this section is to remedi-
ate such calibration issues for POE models. There has been
a significant recent emphasis on uncertainty calibration in
the deep learning community (Guo et al., 2017), and we will
extend tools from this literature to the problem of training
product-of-experts-based GP approximations.

The prevalence of weak experts is significantly affected
by the data assignment strategy. For example, when using
stationary kernels, clustering-based partition approaches
tend to create localised experts which leads to greater weak
expert prevalence. The latter approach is intuitively sensible
if we choose stationary kernels, as expert approaches can be
interpreted as divide-and-conquer strategies. However, this
strategy can have disastrous consequences if expert weights
are not properly regulated. Indeed, the lower the number of
points per expert, the weaker the experts are overall if the
training data associated with these experts is not dense in
the vicinity of test inputs. This can be observed in Figure 3
(Top), where pathologies arise as the number of points per
expert decreases significantly. This is mainly caused by the
poorly regulated expert weighting.

In that setting, weight sparsity has to increase to alleviate
the weakness of most experts by relying only on locally-
calibrated predictions. In the following, we propose a so-
lution to such shortcomings that can be applied to gPoE,
rBCM and the barycenter of GPs.

The softmax function provides a natural mechanism for
controlling the sparsity of experts’ importance weights. In
particular, an (inverse) temperature parameters 7' can di-
rectly control the degree of smoothness and sparsity in the
resulting weights. Using a temperature-endowed softmax
to combat miscalibrated predictions has seen widespread
use, ranging from hierarchical mixtures of experts (Bishop
& Svensén, 2003) to support vector machines (Platt, 1999)
and deep learning (Guo et al., 2017).

We adapt these ideas to weighted ensembles of GP experts,
such as the gPoE, the rBCM and the barycenter. We there-

"We refer to weak experts as experts that provide calibrated
predictions only on local subsets of the data manifold.
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Figure 3. Full GP baseline (orange) and expert models (blue) trained on synthetic data with a decreasing number of points per experts
(Left to Right), and for different weighting methods: rBCM with differential entropy in Figures (a)-(d) and the gPoE with proposed

softmax-variance in Figures (e)—(h)

fore propose a general expression for expert weights as

Bj(xs) o< exp(=T () ZBJ z) =1, (14)

where 7' is an (inverse) temperature parameter that controls
the sparsity between experts by multiplicatively compound-
ing the weights of stronger experts. The functional ¥; ()
describes the level of confidence of the jth expert at test
point x,. We provide an illustration of such framework
in Figure 2. In particular, we plot the barycenter of GP
experts’ predictive distribution at &, under several tempera-
ture values, highlighting that as temperature increases, the
barycenter gets pulled towards the most confident expert,
i.e., uncertain experts are not given weight in the prediction.

We now discuss the choice of confidence functional ). We
set y; () to the posterior predictive variance at &, i.e.,

bi(e.) = o). (15)

Intuitively, this will give high weight to experts with low
posterior predictive variance (high confidence) in their pre-
diction. Such experts have training data close to test points
(all experts share the same hyperparameters), and should
thus have a high contribution in the final prediction. Our
proposal can also be combined with the previously proposed
differential entropy weighting (Cao & Fleet, 2014)

Yi(xy) = %(bg 02 —log af(a:*)) (16)

or with the Wasserstein distance (7), leveraging its closed-
form computation in the 1D case (Alvarez Esteban et al.,

. Our method is significantly more robust to variations in the number of points per experts.

2016), which has the same complexity as differential en-
tropy. In the infinite temperature limit, weight sparsity is
maximised. We show that in this regime, the gPoE, the
rBCM and the barycenter of GPs are equivalent, and pro-
vide proofs in Appendix A

Proposition 1. In the infinite-temperature limit T — oo,
and if; = crj2. (), the gPoE, the rBCM and the barycenter
of GPs have equivalent predictive distributions.

Intuitively, in such a regime, only the most confident ex-
perts have (equal) weight, and as a result the inverse of the
weighted sum of precisions of the two former equals the
weighted sum of the variances, and thus predictive distribu-
tions are equal. Under weaker assumptions, the rBCM and
the gPoE are equivalent:

Proposition 2. If > . B;(xz.) = 1 for all x., then

m’fbcm(x*) = mgpoe(w*) and O.'rbcm(a:*) - O.gpoe(sc*)'

Proposition 2 highlights that under normalised weights,
gPoE and rBCM are equivalent. Therefore, under our
weighting proposal, which consists of using normalised
tempered softmax functionals, gPoE and rBCM’s predictive
distributions are equal.

5. Experiments

Throughout this section, we evaluate the performance of
our approaches to calibrating GP experts when applied to
regression and classification, while comparing with sparse
variational methods and previous approaches to local-expert
weighting and averaging. We consider performance metrics
including the negative log-predictive density (NLPD), and
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dataset N D rBCM/gPoE_unif rBCM/gPoE_var rBCM_entr BAR_var grBCM_f SVGP509 linear full GP
Concrete 1030 8 0.506 (0.370) 0.288 (0.342)  0.292 (0.343)  0.288 (0.342)  0.285(0.339)  0.289 (0.338) 0.953 (0.626)  0.261 (0.330)
Airfoil 1503 5 0.699 (0.474) 0.411 (0.350)  0.409 (0.360)  0.411 (0.351)  0.413 (0.350)  0.409 (0.353) 1.096 (0.721)  0.358 (0.331)
Parkinsons 5875 20 1.057 (0.713) 0.101 (0.338)  0.157 (0.339)  0.100 (0.337)  0.145(0.345)  0.554 (0.412) 1.282(0.871)  0.079 (0.320)
Power 9568 4 0.303 (0.318) -0.084 (0.222)  -0.079 (0.223) -0.076 (0.224) -0.074 (0.224) -0.044 (0.231) 0.098 (0.267) -0.079 (0.223)
Kin40K 40000 8 1.078 (0.693) -0.329(0.186)  0.359(0.191) -0.339(0.183) -0.432 (0.150) 0.124 (0.263).  1.419 (1.000) N/A
Protein 45730 9 1.379 (0.961) 0.775 (0.582)  0.799 (0.608)  0.775 (0.583)  0.797 (0.607)  1.083 (0.715) 1.257 (0.850) N/A
Airline 800000 7 1.440 (0.996) 1.318 (0.908)  1.312 (0.902)  1.318 (0.908)  1.311 (0.902) 1.335(0.921)  1.388 (0.969) N/A
average 0.923 (0.646) 0.354 (0.418)  0.464 (0.423)  0.353(0.419) 0.350 (0.417)  0.537 (0.461) 1.070 (0.758) N/A

Table 1. Average NLPD (RMSE) for small (1K+ points) and large-scale (40K+ points) benchmarks under clustering partitioning.

the root mean squared error (RMSE). *

Baselines: We consider the gPoE, rBCM and barGP with
random and K-means partitioning to assess the effect of
the data assignment strategy. For the rBCM, gPoE and
barGP, we evaluate the proposed softmax weighting strategy
(BAR_var, rBCM_var, gPoE_var) with different tempera-
ture choices as proposed in Section 4. We also evaluate dif-
ferential entropy (_entr) weighting (Cao & Fleet, 2014) and
uniform weighting (_unif). According to Remark 2, when
using normalised weights, the gPoE and rBCM are equiva-
lent. We thus combine their results into ‘tBCM/gPoE_...".
We further compare to the grBCM (Liu et al., 2018) and
showcase results of this model obtained by averaging in
y-space as proposed in (Liu et al., 2018), and in f-space.
For all other expert models, averaging is done in f-space fol-
lowing (Deisenroth & Ng, 2015). Finally, we also consider
a full GP baseline and linear regression.

5.1. Regression

We evaluate the performance of our approach to setting
local experts’ weights and compare it to previous weighting
methods. In particular, we evaluate the robustness of the
rBCM using differential entropic weighting as motivated by
Deisenroth & Ng (2015), and the gPoE and barycenter with
softmax-variance weighting (proposed in this paper), when
reducing the number of points per experts. As motivated in
Section 4, the softmax weighting should encourage expert
sparsity, and as such be effective when the number of points
per experts decreases (causing the number of strong experts
to decrease). In this case, we set the temperature 7" to 15
(for T' > 15, sparsity is well-controlled; see Figure 4).

Figure 3 shows that the gPoE with softmax-variance weight-
ing provides sensible and calibrated predictions even with
only two points per experts, while the rBCM with differ-
ential entropic weights leads to erratic mean and variance
behaviours in the transitioning region even with 20 points
per experts. Thus, encouraging sparsity in the expert weights
through the variance-softmax weighting enables expert mod-

’Code  available  at  https://github.com/
samcohenl6/Healing-POEs—-ICML
SDatasets are from https://github.com/

hughsalimbeni/bayesian_benchmarks.

els to be robust to the reduction in the number of points per
experts, thereby addressing a shortcoming of local-expert
models. Also, the erratic behaviour in the transitioning
region appears remediated. With very weak experts, it is
unrealistic to expect uncertainties that are identical to the
full GP’s uncertainty. Importantly, the predictions are (mod-
erately) on the conservative side for the softmax-variance
weighting, which is preferable to overconfidence. We report
similar behaviours for the barycenter combination (Sec-
tion 3) in the Appendix (Figure 7).

We now perform a large-scale evaluation of the different
expert models with different choices of weighting, including
our approach (softmax-variance) and previous approaches
(uniform for gPoE and differential entropy for rBCM) on 7
datasets of size ranging between 1000 and 800000. We also
use SVGP5q, grBCM, and linear regression baselines. For
softmax weightings, we use a temperature of 100, which
performs well across small and large-scale benchmarks (i.e.,
it induces enough weight sparsity). We provide extensive
additional results with different temperatures and random
partitioning in the Appendix.

Table 1 shows that the gPoE and the barGP with softmax-
variance weighting perform on par with grBCM and out-
perform all other models on all datasets. They significantly
outperform the SVGP with 500 inducing points, but also the
rBCM with differential entropy weighting, and linear regres-
sion across benchmarks. Moreover, the gPoE with softmax-
variance weighting outperforms the gPoE with uniform
weighting by a large margin across small and large-scale
datasets. Also, whilst the grBCM outperforms rBCM with
differential entropic weights across datasets, our weighting
proposal (softmax-variance) outperforms or performs on par
with it on all datasets, besides on Kin40k, while having a
significantly lower prediction cost.

This demonstrates that controlling the sparsity of expert
weights heals issues of the product-of-expert models and
leads to more calibrated uncertainty quantification and mean
estimation, while having the same running cost (and a signif-
icantly lower prediction cost than grBCM). The complexity
of predictions of the grBCM is 8 x higher than under other
expert models, because children datasets are aggregated
with the master’s. Therefore, these performance gains are
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accompanied by computational gains.

Finally, Liu et al. (2018) and Zhang & Williamson (2019)
found that the rBCM and the gPoE under-perform when
averaging in y-space, which is the reason we average in
f-space in this paper. We analyse the performance of gr-
BCM in both regimes, and observe that the latter leads to
substantial performance gains, thus motivating averaging in
f-space for all product-of-expert models (see Tables 1 and
8). We provide a more thorough discussion in Section 6.

5.2. Sensitivity and Robustness Analysis

We now consider the sensitivity of the gPoE, rBCM and
barGP with softmax-variance weighting to the temperature
hyperparameter 7". For the gPoE and barGP, we use the
normalised version of the softmax (in which case the gPoE
is equivalent to the rBCM with such weights). We also
evaluate the rBCM’s robustness, when using unnormalised
softmax-variance weights. To that end, we consider the
Parkinsons, Kin40k, Airfoil and Concrete datasets, and plot
the NLPD as a function of the temperature (Figure 4). We
observe that the NLPD decreases monotonically until sta-
bilising for both the gPoE and the barGP, demonstrating
the robustness of these models with respect to the choice
of the temperature parameter. Hence, the NLPD is stable
across temperatures (for 7' > 15) when using normalised
weights. We also produce such an analysis for unnormalised
softmax-variance weights (in which case the rBCM is not
equivalent to the gPoE). In this case, the model is more sen-
sitive to the change in temperature, and it is difficult to find a
single softmax scaling that performs well across small- and
large-scale benchmarks. Hence, using normalised softmax
weights is important to obtaining models that are robust to
the choice of temperature.

5.3. Classification Benchmarks

We now assess the classification performance of expert
models in a non-conjugate multi-class classification setting
(MNIST dataset). The dataset comprises 10 classes with a
training/test split of 60,000/10, 000 images. We reduce the
dimensionality of images with PCA (20 principal compo-
nents). Note that the overall accuracy resulting from PCA
features will not outperform the state of the art. However,
PCA features provide a deterministically reproducible basis
for relative comparison of various methods. We assign 500
training points to each SVGP expert, and provide them with
100 trainable inducing inputs each. We use a multiclass
likelihood with a robust-max link function. Note that in the
setting of Liu et al. (2018), classification is not directly ap-
plicable because averaging is happening in y-space, which
is more challenging in non-conjugate settings.

Table 2 shows classification results. We report top-n accu-
racy and NLPD. Consistently, we observe that the BAR_var
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Figure 4. NLPD against temperature for different expert models
with softmax-variance weighting on Parkinson (top left), Kin4d0K
(top right), Airfoil (bottom left) and Concrete (bottom right).

and gPoE_var outperform all products of experts and SVGP
baseline models. The difference in performance between the
rBCM_entr and gPoE_var shows that introducing weight
sparsity via a tempered softmax improves the performance
as it only allows confident experts to contribute to the ag-
gregated predictions. We observe similar performance gaps
between gPoE_unif and our proposals which suggests that
using tempered softmax-variance weighting results in more
informed posterior predictive means and variances.

The improvement of the SVGP1gy expert models over a
single (full) SVGPs5( is not surprising since every single
SVGP expert has the modelling capacity of the global SVGP,
so that the distributed models effectively work with M times
as many inducing inputs as the SVGP. This suggests that the
combination of sparse GPs and expert models can be useful
in settings, where a large number of inducing inputs for a
full SVGP is required for good modelling.

6. Discussion

In light of empirical results, we aim to explain our findings
and compare them to those of similar papers, in particu-
lar (Liu et al., 2018), (Trapp et al., 2019) and (Zhang &
Williamson, 2019). All three papers reported poor NLPDs
and RMSE:s for the PoE, the BCM, but also the gPoE and
the rBCM across small and large-scale benchmarks. At first
sight, this seems to contradict the empirical observations
drawn in this paper. We thus aim to disentangle such con-
flicting conclusions. The main reason for the discrepancies
is that those papers depart from the framework of Deisen-
roth & Ng (2015) and aggregate GP predictions in y-space
instead of f-space. However, this is problematic for such
models, especially with unnormalised weights and random
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BAR_var gPoE_unif gPoE_var rBCM_entr SVGPj5¢g
Top-1-accur.  0.912 0.893 0.911 0.895 0.862
Top-2-accur.  0.965 0.955 0.965 0.956 0.940
Top-3-accur.  0.982 0.975 0.982 0.976 0.967
NLPD 0.308 0.382 0.309 0.878 0.469

Table 2. Top-n accuracy and NLPDs on the MNIST dataset (PCA features).

104 4 .
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rBCM entr y-averaging

[ gPoE softmax f-averaging

101 B W rBCM entr f-averaging

. . ] l

0 T T T T
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Figure 5. NLPD of the gPoE with our softmax proposal, and the
rBCM with differential entropy under f- and y- averaging regimes
(random partitioning). The latter model leads to weak performance

under y-averaging whilst our proposal is robust in both regimes.

partitioning, because the variance shrinks for all such mod-
els, explaining the bad NLPDs reported in all three papers.

In Figure 5, we show that with random partitioning, the
rBCM with differential entropy has weak performance us-
ing y-averaging (in particular on power and protein), which
is similar to results reported in all three papers, whilst its per-
formance is good when using f-averaging. This explains the
discrepancy between the results in (Deisenroth & Ng, 2015)
and in our paper (f-averaging) and the results reported by
Liu et al. (2018); Trapp et al. (2019); Zhang & Williamson
(2019) (y-averaging). The problem with y-averaging has
to do with weight calibration. We see in Figure 5 that our
calibrating approach leads to strong performance in both y-
and f- averaging, thus healing PoEs in both settings.

We also provide an illustration of such results in Figure 6,
using data from (Liu et al., 2018). We observe that when
using differential entropic weighting, we recover the poor
results reported Liu et al. (2018); Zhang & Williamson
(2019), in which the variance shrinks significantly under y-
averaging (whilst the model is sensible under f-averaging).
By contrast, when using softmax-variance weighting, which
calibrates the model, sensible results are obtained for both
f- and y- averaging, further corroborating the quantitative
results of Figure 5. We argue that using normalised weights
for the rBCM is essential. Otherwise, even in the case,

= f-averaging

= f-averaging
y-averaging

y-averaging

Figure 6. Predictions with BarGP softmax-var (Left) and rBCM
diff-entropy (Right) in the f- and y- averaging regimes. The former
works in both whilst the latter’s variance shrinks under y-averaging

where the number of experts is M = 1, the rBCM does
not have a predictive distribution equivalent to the one of
a full GP; see Proposition 3 (Appendix), which gives an
intuition for the erratic behaviours typically observed in the
transitioning region for rBCM with unnormalised weights
(e.g., Figure 1(d)). We therefore advise practitioners to
average in f-space, use normalised weighting approaches
and appropriate weight calibration.

7. Conclusion

We identified significant shortcomings of previous ap-
proaches, notably the PoE, BCM, gPoE and rBCM, to
scaling GP regression and classification via local-expert
averaging. These models struggle in settings, where the
number of strong experts is small, but the experts’ weights
are not sparse enough. Weight sparsity should thus be set
to account for the overall strength of experts. To address
these shortcomings, we control weight sparsity via the use
of (normalised) softmax weights, along with a temperature
to enforce this trade-off. Note that our approach can be com-
bined with SVGPs (Hensman et al., 2015) (as was done in
Section 5.3) but also with other methods, such as KISS-GP
(Wilson & Nickisch, 2015). We provide strong empirical ev-
idence that shortcomings of previous expert models can be
addressed through this approach, which leads to substantial
performance gains across benchmarks. We further propose
a novel scalable and distributable approach to averaging
GP experts’ predictions by means of Wasserstein barycen-
ters, which can be used for regression and classification
problems. When combined with our weighting proposal, it
obtains state-of-the art performance across most datasets.
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