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Abstract
Recently there has been increased interest in us-
ing machine learning techniques to improve clas-
sical algorithms. In this paper we study when
it is possible to construct compact, composable
sketches for weighted sampling and statistics esti-
mation according to functions of data frequencies.
Such structures are now central components of
large-scale data analytics and machine learning
pipelines. However, many common functions,
such as thresholds and pth frequency moments
with p > 2, are known to require polynomial
size sketches in the worst case. We explore per-
formance beyond the worst case under two dif-
ferent types of assumptions. The first is having
access to noisy advice on item frequencies. This
continues the line of work of Hsu et al. (ICLR
2019), who assume predictions are provided by
a machine learning model. The second is provid-
ing guaranteed performance on a restricted class
of input frequency distributions that are better
aligned with what is observed in practice. This
extends the work on heavy hitters under Zipfian
distributions in a seminal paper of Charikar et
al. (ICALP 2002). Surprisingly, we show ana-
lytically and empirically that “in practice” small
polylogarithmic-size sketches provide accuracy
for “hard” functions.

1. Introduction
Composable sketches, also known as mergeable sum-
maries (Agarwal et al., 2013), are data structures that sup-
port summarizing large amounts of distributed or streamed
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data with small computational resources (time, communi-
cation, and space). Such sketches support processing ad-
ditional data elements and merging sketches of multiple
datasets to obtain a sketch of the union of the datasets. This
design is suitable for working with streaming data (by pro-
cessing elements as they arrive) and distributed datasets, and
allows us to parallelize computations over massive datasets.
Sketches are now a central part of managing large-scale
data, with application areas as varied as federated learn-
ing (McMahan et al., 2017) and statistics collection at net-
work switches (Liu et al., 2016; 2019).

The datasets we consider consist of elements that are key-
value pairs (x, v) where v ≥ 0. The frequency wx of a key
x is defined as the sum of the values of elements with that
key. When the value of all elements is 1, the frequency is
simply the number of occurrences of a key in the dataset.
Examples of such datasets include search queries, network
traffic, user interactions, or training data from many devices.
These datasets are typically distributed or streamed.

Given a dataset of this form, one is often interested in com-
puting statistics that depend on the frequencies of keys. For
example, the statistics of interest can be the number of keys
with frequency greater than some constant (threshold func-
tions), or the second frequency moment (

∑
x w

2
x), which

can be used to estimate the skew of the data. Generally, we
are interested in statistics of the form∑

x

Lxf(wx) (1)

where f is some function applied to the frequencies of the
keys and the coefficients Lx are provided (for example as
a function of the features of the key x). An important
special case, popularized in the seminal work of (Alon
et al., 1999), is computing the f -statistics of the data:
‖f(w)‖1 =

∑
x f(wx).

One way to compute statistics of the form (1) is to compute a
random sample of keys, and then use the sample to compute
estimates for the statistics. In order to compute low-error
estimates, the sampling has to be weighted in a way that
depends on the target function f : each key x is weighted by
f(wx). Since the problem of computing a weighted sample
is more general than computing f -statistics, our focus in this
work will be on composable sketches for weighted sampling
according to different functions of frequencies.
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The tasks of sampling or statistics computation can always
be performed by first computing a table of key and fre-
quency pairs (x,wx). But this aggregation requires a data
structure of size (and in turn, communication or space) that
grows linearly with the number of keys whereas ideally we
want the size to grow at most polylogarithmically. With
such small sketches we can only hope for approximate re-
sults and generally we see a trade-off between sketch size,
which determines the storage or communication needs of
the computation, and accuracy.

When estimating statistics from samples, the accuracy de-
pends on the sample size and on how much the sampling
probabilities “suit” the statistics we are estimating. In order
to minimize the error, the sampling probability of each key
x should be (roughly) proportional to f(wx). This leads
to a natural and extensively-studied question: for which
functions f can we design efficient sampling sketches?

The literature and practice are ripe with surprising suc-
cesses for sketching, including small (polylogarithmic size)
sketch structures for estimating the number of distinct el-
ements (Flajolet & Martin, 1985; Flajolet et al., 2007)
(f(w) = Iw>0), frequency moments (f(w) = wp) for
p ∈ [0, 2] (Alon et al., 1999; Indyk, 2001), and computing `p
heavy hitters (for p ≤ 2, where an `p ε-heavy hitter is a key
x with wpx ≥ ε‖w‖pp) (Misra & Gries, 1982; Charikar et al.,
2002; Manku & Motwani, 2002; Cormode & Muthukrish-
nan, 2005; Metwally et al., 2005). Here Iσ is the indicator
function that is 1 if the predicate σ is true, and 0 other-
wise. A variety of methods now support sampling via small
sketches for rich classes of functions of frequencies (Cohen,
2018; McGregor et al., 2016; Jayaram & Woodruff, 2018;
Cohen & Geri, 2019), including the moments f(w) = wp

for p ∈ [0, 2] and the family of concave sublinear functions.

The flip side is that we know of lower bounds that limit the
performance of sketches using small space for some funda-
mental tasks (Alon et al., 1999). A full characterization of
functions f for which f -statistics can be estimated using
polylogarithmic-size sketches was provided in (Braverman
& Ostrovsky, 2010). Examples of “hard” functions are
thresholds f(w) = Iw>T (counting the number of keys
with frequency above a specified threshold value T ), thresh-
old weights f(w) = wIw>T , and high frequency moments
f(w) = wp with p > 2. Estimating the pth frequency
moment (

∑
x w

p
x) for p > 2 is known to require space

Ω(n1−2/p) (Alon et al., 1999; Li & Woodruff, 2013), where
n is the number of keys. These particular functions are
important for downstream tasks: Threshold aggregates char-
acterize the distribution of frequencies, and high moment
estimation is used in the method of moments, graph applica-
tions (Eden et al., 2019), and for estimating the cardinality
of multi-way self-joins (Alon et al., 2002) (a pth moment is
used for estimating a p-way join).

Beyond the worst case. Much of the discussion of sketch-
ing classified functions into “easy” and “hard”. For example,
there are known efficient methods for sampling according
to f(w) = wp for p ≤ 2, while for p > 2, even the easier
task of computing the pth moment is known to require poly-
nomial space. However, the hard data distributions used to
establish lower bounds for some functions of frequency are
arguably not very realistic. Real data tends to follow nice
distributions and is often (at least somewhat) predictable.
We study sketching where additional assumptions allow
us to circumvent these lower bounds while still providing
theoretical guarantees on the quality of the estimates. We
consider two distinct ways of going beyond the worst case:
1) access to advice models, and 2) making natural assump-
tions on the frequency distribution of the dataset.

For the sampling sketches described in this paper, we use
a notion of overhead to capture the discrepancy between
the sampling probabilities used in the sketch and the “ideal”
sampling probabilities of weighted sampling according to
a target function of frequency f . An immensely power-
ful property of using sampling to estimate statistics of the
form (1) is that the overhead translates into a multiplicative
increase in sample/sketch size, without compromising the
accuracy of the results (with respect to what an ideal “bench-
mark” weighted sample provides). This property was used
in different contexts in prior work, e.g., (Frieze et al., 2004;
Cohen et al., 2009), and we show that it can be harnessed for
our purposes as well. For the task of estimating f -statistics,
we use a tailored definition of overhead, that is smaller than
the overhead for the more general statistics (1).

Advice model. The advice model for sketching was recently
proposed and studied by Hsu et al. (2019). The advice takes
the form of an oracle that is able to identify whether a given
key is a heavy hitter. Such advice can be generated, for
example, by a machine learning model trained on past data.
The use of the “predictability” of data to improve perfor-
mance was also demonstrated in (Kraska et al., 2018; Indyk
et al., 2019). A similar heavy hitter oracle was used in (Jiang
et al., 2020) to study additional problems in the streaming
setting. For high frequency moments, they obtained sketch
size O(n1/2−1/p), a quadratic improvement over the worst-
case lower bound.

Here we propose a sketch for sampling by advice. We
assume an advice oracle that returns a noisy prediction of
the frequency of each key. This type of advice oracle was
used in the experimental section of (Hsu et al., 2019) in order
to detect heavy hitters. We show that when the predicted
f(wx) for keys with above-average contributions f(wx)
is approximately accurate within a factor C, our sample
has overhead O(C). That is, the uncertainty in the advice
translates to a factor O(C) increase in the sketch size but
does not impact the accuracy.
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Frequencies-functions combinations. Typically, one de-
signs sketch structures to provide guarantees for a certain
function f and any set of input frequencies w. The perfor-
mance of a sketch structure is then analyzed for a worst-case
frequency distribution. The analysis of the advice model
also assumes worst-case distributions (with the benefits that
comes from the advice). We depart from this and study
sketch performance for a combination (F,W, h) of a fam-
ily of functions F , a family W of frequency distributions,
and an overhead factor h. Specifically, we seek sampling
sketches that produce weighted samples with overhead at
most h with respect to f(w) for every function f ∈ F
and frequency distribution w ∈ W . By limiting the set
W of input frequency distributions we are able to provide
performance guarantees for a wider set F of functions of
frequency, including functions that are worst-case hard. We
particularly seek combinations with frequency distributions
W that are typical in practice. Another powerful property
of the combination formulation is that it provides multi-
objective guarantees with respect to a multiple functions of
frequency F using the same sketch (Cohen, 2015; 2018; Liu
et al., 2016).

The performance of sketch structures on “natural” distri-
butions was previously considered in a seminal paper by
Charikar et al. (2002). The paper introduced the Count
Sketch structure for heavy hitter detection, where an `2
ε-heavy hitter is defined to be a key with w2

x ≥ ε‖w‖22.
They also show that for Zipf-distributed data with parameter
α ≥ 1/2, a count sketch of size O(k) can be used to find
the k heaviest keys (a worst-case hard problem) and that
an `1 sample can only identify the heaviest keys for Zipf
parameter α ≥ 1.

We significantly extend these insights to a wider family of
frequency distributions and to a surprisingly broad class
of functions of frequencies. In particular we show that all
high moments (p > 2) are “easy” as long as the frequency
distribution has an `1 or `2 ε-heavy hitter. In this case, an
`1 or `2 sample with overhead 1/ε can be used to estimate
all high moments. We also show that in a sense this char-
acterization is tight in that if we allow all frequencies, we
meet the known lower bounds. It is very common for data
sets in practice to have a most frequent key that is an `1
or `2 ε-heavy hitter. This holds in particular for Zipf or
approximate Zipf distributions.

Moreover, we show that Zipf frequency distributions have
small universal sketches that apply to any monotone func-
tion of frequency (including thresholds and high moments).
Zipf frequencies were previously considered in the advice
model (Aamand et al., 2019). Interestingly, we show that
for these distribution a single small sketch is effective with
all monotone functions of frequency, even without advice.
In these cases, universal sampling is achieved with off-the-

shelf polylogarithmic-size sketches such as `p samples for
p ≤ 2 and multi-objective concave-sublinear samples (Co-
hen et al., 2012; Cohen, 2018; McGregor et al., 2016; Ja-
yaram & Woodruff, 2018).

Empirical study. We complement our analysis with an
empirical study on multiple real-world datasets including
datasets studied in prior work on advice models (Pass
et al., 2006; CAIDA, 2016; Paranjape et al., 2017; Maciá-
Fernández et al., 2018). (Additional discussion of the
datasets appears in the Appendix A.) We apply sampling
by advice, with advice based on models from prior work or
direct use of frequencies from past data. We then estimate
high moments from the samples. We observe that sampling-
by-advice was effective on these datasets, yielding low error
with small sample size. We also observed however that `2
and `1 samplers were surprisingly accurate on these tasks,
with `2 samplers generally outperforming sampling by ad-
vice. This surprisingly good performance of these simple
sampling schemes is suggested from our analysis.

We compute the overhead factors for some off-the-shelf
sampling sketches on multiple real-world datasets with the
objectives of `p sampling (p > 2) and universal sampling.
We find these factors to be surprisingly small. For exam-
ple, the measured overhead of using `2 sampling for the
objective of `p sampling is in the range [1.2, 18]. For uni-
versal sampling, the observed overhead is lower with `1
and with multi-objective concave sublinear samples than
with `2 sampling and is in [93, 800], comparing very favor-
ably with the alternative of computing a full table. Finally,
we use sketches to estimate the distribution of rank versus
frequency, which is an important tool for optimizing per-
formance across application domains (for network flows,
files, jobs, or search queries). We find that `1 samples pro-
vide quality estimates, which is explained by our analytical
results.

2. Preliminaries
We consider datasets where each data element is a (key,
value) pair. The keys belong to a universe denoted by X
(e.g., the set of possible users or words), and each key may
appear in more than one element. The values are positive,
and for each key x ∈ X , we define its frequency wx ≥ 0 to
be the sum of values of all elements with key x. The data
elements may appear as a stream or be stored in a distributed
manner. We denote the number of active keys (keys with
frequency greater than 0) by n.

We are interested in sketches that produce a weighted sample
of keys according to some function f of their frequencies,
where roughly key x is sampled with probability propor-
tional to f(wx). We use f(w) as a shorthand for the vector
of all values f(wx) (in any fixed order).
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Estimates from a sample. We work with sampling
schemes that produce a random subset S ⊆ X of the keys
in the dataset. For each key x ∈ S we have its frequency
wx and can compute its probability px to be sampled. From
such a sample, we can compute for each key x the inverse
probability estimate (Horvitz & Thompson, 1952) of f(wx)
defined as

f̂(wx) =

{
f(wx)
px

if x ∈ S
0 if x /∈ S

.

These unbiased per-key estimates can be summed to obtain
unbiased estimates of the f -statistics of a domain H ⊂ X :∑̂

x∈H
f(wx) :=

∑
x∈H

f̂(wx) =
∑
x∈S

f̂(wx) .

The last equality follows because f̂(wx) = 0 for keys not
in the sample. We can similarly estimate other statistics that
are linear in f(wx), e.g.,

∑
x∈X Lxf(wx) (for coefficients

Lx).

Benchmark variance bounds. We measure performance
with respect to that of a “benchmark” weighted sam-
pling scheme where each key x is sampled with proba-
bility proportional to f(wx). Recall that for “hard” func-
tions f these schemes can not be implemented with small
sketches. These benchmark schemes include (i) probabil-
ity proportional to size (pps) with replacement where we
have k independent draws where key x is selected with
probability f(wx)/‖f(w)‖1, (ii) pps without replacement
(ppswor (Rosén, 1972; 1997; Cohen & Kaplan, 2008)), or
(iii) priority sampling (Ohlsson, 1998; Duffield et al., 2007).
With these schemes, the variance for key x is upper bounded
by1

Var[f̂(wx)] ≤ 1

k
f(wx)‖f(w)‖1 (2)

Consequently, the variance of the sum estimator for the f -
statistics of a domain H is bounded by (due to nonpositive
covariance shown in earlier works):

Var

[∑̂
x∈H

f(wx)

]
≤ 1

k

∑
x∈H

f(wx)‖f(w)‖1. (3)

1With ppswor and priority sampling, k − 2 instead of k. We
use this upper bound as the benchmark, since when the sampling
probability px = f(wx)/‖f(w)‖1 approaches 1 (one key dom-

inates the data), the variance (f(wx))2
(

1
px
− 1

)
approaches 0,

and we cannot approximate it multiplicatively with a sampling
probability that multiplicatively approximates px. However, when
there is not just one key that dominates the data, for example,
px ≤ 1/2 for all x, or more generally, px ≤ 1 − 1

c
, we get

that Var[f̂(wx)] ≥ (f(wx))2 1
cpx

, so the bound on the variance is
almost tight.

The variance on the estimate of ‖f(w)‖1 is bounded by

Var[ ̂‖f(w)‖1] ≤ 1

k
‖f(w)‖21 .

With these “benchmark” schemes, if we wish to get multi-
plicative error bound (normalized root mean squared er-
ror) of ε for estimating ‖f(w)‖1 we need sample size
k = O(ε−2). We note that the estimates are also concen-
trated in the Chernoff sense (Duffield et al., 2007; Cohen,
2015).

We refer to the probability vector

px :=
f(wx)

‖f(w)‖1

as pps sampling probabilities for f(w). When f(w) = wp

(for p > 0) we refer to sampling with the respective pps
probabilities as `p sampling.

Emulating a weighted sample. Let p be the base pps
probabilities for f(w). When we use a weighted sampling
scheme with weights q 6= p then the variance bound (3)
does not apply. We will say that weighted sampling ac-
cording to q emulates weighted sampling according to p
with overhead h if for all k and for all H , a sample of
size kh provides the variance bound (3) (and the respective
concentration bounds).

Lemma 2.1. The overhead of emulating weighted sample
according to p using weighted sampling according to q is
at most

h(p, q) := max
x

px
qx

.

Proof. We first bound the variance of f̂(wx) for a key x
with weighted sampling by q. Consider a weighted sample
of size k according to base probabilities qx. Then for all x,

Var[f̂(wx)] ≤ 1
k (f(wx))2( 1

qx
− 1) ≤ 1

k (f(wx))2 1
px

px
qx

≤ 1
kf(wx)‖f(w)‖1 pxqx .

The upper bound on the variance for a domain H is:

1

k

(∑
x∈H

f(wx)

)
‖f(w)‖1 max

x∈H

px
qx

. (4)

Thus for any H , the variance bound (4) is larger by the
benchmark bound (3) by at most a factor of h(p, q).

Note that the inaccuracy in the probabilities (using q instead
of p) is compensated for by a larger sample size without
compromising accuracy of the estimate.
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Remark 2.2. Overhead bounds accumulate multiplicatively:
If sampling according to q emulates a sample by p and
a sample by q′ emulates a sample by q, then a sample
by q′ emulates a sample by p with overhead h(q′, p) ≤
h(q′, q)h(q, p).
Remark 2.3. The emulation overhead can be interpreted
as providing an upper bound over all possible estima-
tion tasks that the emulated sample could be used for.
This definition of overhead is tight if we wish to trans-
fer guarantees for all subsets H: Consider a (subset that
is a single) key x and sample size k such that qx ≤
px � 1/k. The variance when sampling according to
q is ≈ (f(wx))2(1/(kqx) − 1) ≈ (f(wx))2/(kqx) =
1
kf(wx) f(wx)

px

px
qx

= 1
kf(wx)‖f(w)‖1 pxqx . This is a factor

of px/qx larger than the variance when sampling according
to px = f(wx)/‖f(w)‖1, which is ≈ (f(wx))2/(kpx) =
1
kf(wx)‖f(w)‖1.

Overhead for estimating f -statistics. If we are only in-
terested in estimates of the full f -statistics ‖f(w)‖1, the
overhead reduces to the expected ratio Ex∼p[px/qx] instead
of the maximum ratio.

Corollary 2.4. Let p be the base pps probabilities for f(w).
Consider weighted sampling of size k according to q. Then,

Var[ ̂‖f(w)‖1] ≤ ‖f(w)‖21
k

∑
x

px · pxqx =
‖f(w)‖21

k Ex∼p[pxqx ].

Multi-objective emulation. For h ≥ 1 and a function
of frequency f , there is a family F of functions so that a
weighted sample according to f emulates a weighted sample
for every g ∈ F with overhead h. A helpful closure property
of such F is the following:

Lemma 2.5. (Cohen, 2015) F is closed under nonnegative
linear combinations. That is, if {fi} ⊂ F and ai ≥ 0, then∑
i aifi ∈ F .

2.1. Off-the-Shelf Composable Sampling Sketches

We consider off-the-shelf use of known polylogarithmic-
size sampling sketches. These sketches are designed to
provide statistical guarantees on accuracy (bounds on the
variance) with respect to specific functions of frequencies
and all frequency distributions. The samples still provide
unbiased estimates of statistics with respect to any function
of frequency. We study the estimates provided by these
off-the-shelf sketches through the lens of combinations: in-
stead of considering a particular function of frequency and
all frequency distribution, we study the overhead of more
general function-frequency combinations.

(i) `1 sampling without replacement. A ppswor
sketch (Cohen et al., 2012) (that builds on the aggre-
gated scheme (Rosén, 1997; Cohen & Kaplan, 2008)

and related schemes (Gibbons & Matias, 1998; Estan
& Varghese, 2002)) of size k (storing k keys or hashes
of keys) performs perfect without replacement sam-
pling of k keys according to the weights wx. The exact
frequencies of sampled keys and corresponding inclu-
sion probabilities can be obtained by a second pass
over the dataset. Alternatively, in a single streaming
pass we can collect partial counts that can be used with
appropriate tailored estimators (Cohen et al., 2012).

(ii) `2 (and generally `p samples for p ∈ [0, 2]) with re-
placement. There are multiple designs based on linear
projections (Indyk, 2001; Andoni et al., 2011; Mc-
Gregor et al., 2016). The currently best asymptotic
space bound is O(log δ−1 log2 n) for a single sampled
key, where δ is the probability of success of produc-
ing the sample (Jayaram & Woodruff, 2018). A with-
replacement sample of size k can be obtained with
a sketch with O(k log2 n log δ−1) bits (assuming the
keys are integers between 1 and n).2 We note that
on skewed distributions without-replacement sampling
is significantly more effective for a fixed sample size.
Our understanding is that there is no prior work for
sketches of size Õ(k) for without-replacement schemes
for p > 1 but there is a planned publication for such
sketches for p ≤ 2 (Cohen et al., 2020).

(iii) Sampling sketches for capping functions (Cohen, 2018)
and more generally concave sublinear functions (Co-
hen & Geri, 2019). We will also consider a multi-
objective sample that emulates all concave sublinear
functions of frequency with space overhead O(log n)
(Cohen, 2018).

In our analysis and experiments we compute the overhead
of using the above sketches with respect to certain fre-
quencies and functions. Recall that for each target func-
tion of frequency, the overhead is computed with respect
to the applicable base pps probabilities px = f(wx)

‖f(w)‖1 .
Consider a frequency vector w in nonincreasing order
(wi ≥ wi+1). The base pps sampling for `p sampling are
simply wpi /‖w‖pp. The base pps probabilities for multi-
objective concave sublinear sampling are qi = q′i/‖q′‖1
where q′i := wi

iwi+
∑n
j=i+1 wj

. These samples emulate sam-
pling for all concave-sublinear functions with overhead
‖q′‖1.

3. The Advice Model
In this section, we assume that in addition to the input, we
are provided with an oracle access to an “advice” model.
When presented with a key x, the advice model returns a

2The dependence on δ improves with k but we omit this for
brevity.
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prediction ax for the total frequency of x in the data. For
simplicity, we assume that predictions are the same for all
queries with the same key. This model is similar to the
model used in a recent paper about frequency estimation
(Hsu et al., 2019).

A detailed description of our sketch structure and the corre-
sponding estimators (including proofs) is provided in Ap-
pendix B. At a high level, our sampling sketch takes size pa-
rameters (kh, kp, ku), maintains a set of at most kh+kp+ku
keys, and collects the exact frequencies wx for these stored
keys. The primary component of the sketch is a weighted-
sample-by-advice of size kp. Our sketch stores keys accord-
ing to two additional criteria in order to provide robustness
to the prediction quality of the advice:

• The top-kh keys by advice. This provides tolerance
to inaccuracies in the advice for these heaviest keys.
Since these keys are included with probability 1, they
will not contribute to the error.

• A uniform sample of ku keys. This allows keys that are
”below average” in their contribution to ‖f(w)‖1 to be
represented appropriately in the sample, regardless of
the accuracy of the advice. This provides robustness to
the accuracy of the advice on these very infrequent keys
and ensures they are not undersampled. Moreover, this
ensures that all active keys (wx > 0), including those
with potentially no advice (ax = 0), have a positive
probability of being sampled. This is necessary for
unbiased estimation.

We provide an unbiased estimator that smoothly combines
the different sketch components and provides the following
guarantees:

Lemma 3.1. Suppose the advice model is such that for
some cp, cu ≥ 0 and h ≥ 0, all keys x that are active
(wx > 0) and not in the h largest advice values of active
keys (ax < {ay | wy > 0}(n−h+1)}) satisfy

f(wx)
‖f(w)‖1 ≤ max{cp f(ax)

‖f(a)‖1 , cu
1

n
} .

Then for all k ≥ 1, a sample with (kh, kp, ku) = (h, dkcpe+
2, dkcue+ 2) satisfies the variance bound (3) for all H .

In particular, if our advice is approximately accurate, say
f(wx) ≤ f(ax) ≤ cp · f(wx), the overhead when sampling
by advice is cp.

Corollary 3.2. Let f be such that f(wx) ≤ f(ax) ≤
cpf(wx) then for all k ≥ 1, with sample size (kh, kp, ku) =

(0, dkcpe+ 2, 0) we have Var
[

̂‖f(w)‖1
]
≤ 1

k‖f(w)‖21.

Experiments. We evaluate the effectiveness of “sampling
by advice” for estimating the frequency moments with

Figure 1. Estimating the third moment on the AOL dataset (with
learned advice) and the tenth moment on the Stack Overflow
dataset (with past frequencies).

p = 3, 7, 10 on datasets from (Pass et al., 2006; Paran-
jape et al., 2017) (see details in Appendix A). We use advice
models from prior work (Hsu et al., 2019) based on a ma-
chine learning algorithms applied to past data and advice
based directly on frequencies in past data. Some represen-
tative results are reported in Figure 1 and additional results
and more details are provided in Appendix C. The results
reported for sampling by advice are with kh = 0 and two
choices of balance between the ppswor sample based on
the advice and the uniform sample: kp = ku and ku = 32.
We also report performance of ppswor (`1 sampling without
replacement), `2 sampling (with and without replacement),
and the benchmark upper bound (1/

√
k).

We observe that for the third moment, sampling by advice
did not perform significantly better than ppswor (and some-
times performed even worse). For higher moments, however,
sampling by advice performed better than ppswor when the
sample size is small. With replacement `2 sampling was
more accurate than advice (without replacement `2 sampling
performs best). Our analysis in the next section explains
the perhaps surprisingly good performance of `1 and `2
sampling schemes.

4. Frequencies-Functions Combinations
In this section, we analyze performance for inputs that
comes from restricted families of frequency distributionsW .
Restricting the family W of possible inputs allows us to ex-
tend the family F of functions of frequency that can be
efficiently emulated with a small overhead.

Specifically, we will consider sampling sketches and corre-
sponding combinations (W,F, h) of frequency vectors W ,
functions of frequency F , and overhead h ≥ 1 so that for
every frequency distribution w ∈W and frequency function
f ∈ F , our sampling sketch emulates a weighted sample of
f(w) with overhead h. We will say that our sketch supports
the combination (W,F, h).

Recall that emulation with overhead hmeans that a sampling
sketch of size hε−2 (i.e., holding this number of keys or
hashes of keys) provides estimates with NRMSE ε for f(w)
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for any f ∈ F and that these estimates are concentrated in
the Chernoff bound sense. Moreover, for any f ∈ F we can
estimate statistics of the form (1) with the same guarantees
on accuracy as provided by a dedicated weighted sample
according to f .

We study combinations supported by off-the-shelf sampling
schemes that can be implemented with small (e.g. polylog-
arithmic) size sketches as detailed in Section 2.1. We will
use the notation w = {wi} for dataset frequencies, where
wi is the frequency of the ith most frequent key.

We reports results of experiments on datasets listed in Ta-
ble 1 with details provided in in Appendix A.

4.1. Emulating an `p Sample by an `q Sample

We express the overhead of emulating `p sampling by `q
sampling (p ≥ q) in terms of the properties of the frequency
distribution. Recall that `p sampling (and estimates of p-th
frequency moments) can be implemented with polylogarith-
mic size sketches for p ≤ 2 but requires polynomial size
sketches in the worst case when p > 2.

Lemma 4.1. Consider a dataset with frequencies w (in
nonincreasing order). For p ≥ q, the overhead of emulating
`p sampling by `q sampling is bounded by∥∥∥ w

w1

∥∥∥q
q∥∥∥ w

w1

∥∥∥p
p

. (5)

Proof. The sampling probabilities for key i under `p sam-
pling and `q sampling are wpi

‖w‖pp and wqi
‖w‖qq , respectively.

Then, the overhead of emulating `p sampling by `q sam-
pling is

max
i

wpi /‖w‖
p
p

wqi /‖w‖
q
q

= max
i
wp−qi · ‖w‖

q
q

‖w‖pp = wp−q1 · ‖w‖
q
q

‖w‖pp =

∥∥∥ w
w1

∥∥∥q
q∥∥∥ w

w1

∥∥∥p
p

.

We can obtain a (weaker) upper bound on the overhead,
expressed only in terms of q, that applies to all p ≥ q:

Corollary 4.2. The overhead of emulating `p sampling us-

ing `q sampling (for any p ≥ q) is at most
∥∥∥ w
w1

∥∥∥q
q
.

Proof. For any set of frequencies w, the normalized norm∥∥∥ w
w1

∥∥∥p
p

is non-increasing with p and is at least 1. Therefore,

the overhead (5) is∥∥∥∥ w

w1

∥∥∥∥q
q

/∥∥∥ w
w1

∥∥∥p
p
≤
∥∥∥ w
w1

∥∥∥q
q
.

Remark 4.3. Emulation works when p ≥ q. When
q > p, the maximum in the overhead bound (see proof
of Lemma 4.1) is incurred on the least frequent key, with

frequencywn. We therefore get a bound of
∥∥∥ w
wn

∥∥∥q
q
/
∥∥∥ w
wn

∥∥∥p
p

and Corollary 4.2 does not apply.

4.2. Frequency Distributions with a Heavy Hitter

We show that for distributions with an `q heavy hitter, `q
sampling emulates `p sampling for all p ≥ q with a small
overhead.

Definition 4.4. Consider frequencies w. An `q φ-heavy
hitter is defined to be a key such that wqi ≥ φ · ‖w‖qq .

We rephrase Corollary 4.2 in terms of a presence of a heavy
hitter:

Corollary 4.5. Let w be a frequency vector with a φ-heavy
hitter under `q. Then for p ≥ q, the overhead of using `q
sample to emulate an `p sample is at most 1/φ.

Proof. If there is an `q heavy hitter then then the most
frequent key (the key with frequency w1) must be a heavy

hitter. From the definition of a heavy hitter,
∥∥∥ w
w1

∥∥∥q
q
≤ 1

φ ,

and we get the desired bound on the overhead.

We are now ready to specify combinations (W,F, h) of fre-
quency vectors W , functions of frequency F , and overhead
h ≥ 1 that are supported by `q sampling.

Theorem 4.6. For any q > 0 and φ ∈ (0, 1], an `q-sample
supports the combination

W := {w with an `q φ-heavy hitter}
F := {f(w) = wp | p ≥ q}+
h := 1/φ ,

where the notation F+ is the closure of a set F of functions
under nonnegative linear combinations.

Proof. The claim for functions f(w) = wp is immediate
from Corollary 4.5. The claim for the nonnegative convex
closure of these function is a consequence of Lemma 2.5.

In particular, if the input distribution has an `q φ-heavy hitter
then `q sampling of size ε−2/φ emulates an `p sampling of
size ε−2 for any p > q.

Table 1 reports properties and the relative `1 and `2 weights
of the most frequent key for our datasets. We can see that
the most frequent key is a heavy hitter with 1/φ ≤ 21 for
`2 and 1/φ ≤ 625 for `1 which gives us upper bounds on
the overhead of emulating any `p sample (p ≥ 2). Table 3
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Table 1. Datasets
Dataset n/106 lnn `1 HH `2 HH α

SO in 2.23 14.6 0.0016, 0.0010 0.053, 0.022 1.48
SO out 2.30 14.6 0.0015, 0.0009 0.107, 0.036 1.38
AOL 10.15 16.1 0.0275, 0.0091 0.827, 0.091 0.77

CAIDA 1.07 13.9 0.0033, 0.0032 0.048, 0.046 1.35
UGR 79.38 18.2 0.1118, 0.0401 0.850, 0.109 1.35

reports (for p = 3, 7, 10) the overhead of emulating the re-
spective `p sample and the (smaller) overhead of estimating
the pth moment. We can see that high moments can be
estimated well from `2 and with a larger overhead from `1
samples.

Certified emulation. The quality guarantees of a combi-
nation (W,F, h) are provided when w ∈ W . In practice,
however, we may compute samples of arbitrary dataset fre-
quencies w. Conveniently, we are able to test the valid-
ity of emulation by considering the most frequent key in
the sample: For an `q sample of size k we can compute
r ← maxx∈S w

q
x/‖w‖qq and certify that our sample emu-

lates `p samples (p > q) of size kr. If kr is small, then we
do not provide meaningful accuracy but otherwise we can
certify the emulation with sample size kr. When the input
w has an `q φ-heavy hitter then an `q sample of size k will
include it with probability at least 1− e−kφ and the result
will be certified. Note that the result can only be certified if
there is a heavy hitter.

Tradeoff between W and F . If w has an `q φ-heavy
hitter then it has an `p φ-heavy hitter for every p ≥ q. This
means that for moments p ≥ 2, an `2 sample supports a
larger set W of frequencies than an `1 sample, including
also those with an `2 φ-heavy hitter but not an `1 φ-heavy
hitter. The `1 sample however supports a larger family F
that includes moments with p ∈ [1, 2). Note that for a fixed
overhead and `q sampling, the set F of supported functions
decreases with q whereas W increases with q.

4.3. Zipfian and sub-Zipfian Frequencies

Zipf distributions are a very common model for frequency
distributions in practice. We explore supported combina-
tions with frequencies that are (approximately) Zipf.

Definition 4.7. We say that the frequencies w where
‖w‖0 = n are Zipf[α, n] (Zipf with parameter α) if for
all i, wi/w1 = i−α.

Values α ∈ [1, 2] are common in practice. The best-fit Zipf
parameter for the datasets we studied is reported in Table 1
and the frequency distribution (sorted by rank) is shown in
Figure 2. We can see that our datasets are approximately
Zipf (which would be an approximate straight line) and for
all but one we have α ∈ [1.3, 1.5].

Table 2. Supported combinations for subZipf[α, c, n] frequencies
method W F Overhead
`1 sampling {α ≥ 2} {f(w) = wp | p ≥ 1}+ 1.65c

`1 sampling {α ≥ 1} {f(w) = wp | p ≥ 1}+ (1 + lnn)c

`2 sampling {α ≥ 1} {f(w) = wp | p ≥ 2}+ 1.65c2

`2 sampling {α ≥ 1/2} {f(w) = wp | p ≥ 2}+ (1 + lnn)c2

We now define a broader class of approximately Zipfian
distributions.

Definition 4.8. Frequencies w are subZipf[α, c, n] if for
all i, wiw1

≤ ci−α.3

Note that Zipf[α, n] is sub-Zipfian with the same α and
c = 1. We show that sub-Zipf frequencies (and in particular
Zipf frequencies) have heavy hitters:

Lemma 4.9. For subZipf[α, c, n] frequencies, and q such
that qα ≥ 1, the frequency vector has an `q cq 1

Hn,αq
-heavy

hitter, where Hn,α :=
∑n
i=1 i

−α are the generalized har-
monic numbers.

Proof. We use Corollary 4.2 to express the overhead (5) for
subZipf[α, c, n] frequencies∥∥∥∥ w

w1

∥∥∥∥q
q

≤ cq
n∑
i=1

i−αq = cqHn,qα . (6)

Table 2 lists supported combinations that include these ap-
proximately Zipfian distributions.

Lemma 4.10. The combinations shown in Table 2 are sup-
ported by `1 and `2 samples.

Proof. We use Lemma 4.9 and Theorem 4.6. Recall that
when α = 1, the harmonic sum is Hn,1 ≤ 1 + lnn. For
α > 1, Hn,α ≤ ζ(α), where the Zeta function ζ(α) :=∑∞
i=1 i

−α. The Zeta function is decreasing with α, defined
for α > 1 with an asymptote at α = 1, and is at most 1.65
for α ≥ 2.

When qα ≥ 2, the overhead is ≤ cqζ(qα) ≤ 1.65cq . When
qα = 1 the overhead is at most (1 + lnn)cq and when
qα > 1 we can bound it by min{1 + lnn, ζ(qα)}cq .

We see that for these approximately Zipf distributions, `1 or
`2 samples emulate `p samples with small overhead.

4.4. Experiments on Estimate Quality

The overhead factors reported in Table 3 are in a sense worst-
case upper bounds (for the dataset frequencies). Figure 4

3This is a slight abuse of notation since the parameters do not
fully specify a distribution
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Figure 2. Freq. by rank

Table 3. Overhead
Dataset `1 max overhead (expected overhead) `2 max overhead (expected overhead) concave

3rd 10th universal 3rd 10th universal universal
SO in 124.30 (42.76) 600.44 (577.57) 624.58 3.74 (1.90) 18.04 (17.36) 1.25× 105 1672.60

SO out 299.80 (155.32) 677.56 (673.45) 681.72 4.12 (2.58) 9.30 (9.25) 4.20× 104 1628.36
AOL 34.81 (33.45) 36.38 (36.37) 92.92 1.16 (1.12) 1.21 (1.21) 2.94× 105 170.84

CAIDA 31.23 (18.73) 90.66 (56.20) 301.28 2.16 (1.57) 6.28 (4.03) 2.65× 105 846.15
UGR 8.52 (8.17) 8.95 (8.95) 772.83 1.12 (1.09) 1.18 (1.18) 1.89× 1011 143.94

reports the actual estimation error (normalized root mean
square error) for high moments for representative datasets as
a function of sample size. The estimates are with ppswor (`1
sample with replacement) and `2 samples with and without
replacement. Additional results are reported in Appendix E.
We observe that actual accuracy is significantly better than
even the benchmark bounds.

Finally we consider estimating the full distribution of fre-
quencies, that is, the curve that relates frequency of keys
to their rank. We do this by estimating the actual rank of
each key in the sample (using an appropriate threshold func-
tion of frequency). Representative results are reported in
Figure 3 for ppswor and for with-replacement `2 sampling
(additional results are reported in Appendix E). We used
a sample of size k = 32 or k = 1024 for each set of esti-
mates. We observe that generally the estimates are fairly
accurate even with a small sample size (despite threshold
function requiring large sketches in the worst case). We see
that `2 samples are accurate for the frequent keys but often
have no representatives from the tail whereas the without
replacement `1 samples are more accurate on the tail.

Figure 3. Actual and estimated distribution of frequency by rank.
Estimates for ppswor and with-replacement `2 sampling and sam-
ple sizes k = 32, 1024.

4.5. Worst-Case Bound on Overhead

The overhead (5) of ‖w/w1‖22/‖w/w1‖pp is the space factor
increase needed for an `2 sample to emulate an `p sample on
the frequencies w (and estimate accurately pth moments). A
natural question is whether there is a better way to emulate
an `p sampling with a polylogarithmic size sampling sketch.
The following shows that in a sense an `2 sample is the best
we can do:

Figure 4. Estimating 3rd and 10th moments on various datasets
from ppswor (`1 without replacement) and `2 samples (with and
without replacement). The error is averaged over 50 repetition.

Lemma 4.11. An `2 sample with overhead n1−2/p can em-
ulate an `p sample for any frequency vector w with support
‖w‖0 = n.

Proof. maxw
‖w/w1‖22
‖w/w1‖pp ≤ n

1−2/p.

This matches upper bounds on sketch size attained with
dedicated sketches for pth-moment estimation (Indyk &
Woodruff, 2005; Andoni et al., 2011) and the worst-
case lower bound of Ω̃(n1−2/p) (Alon et al., 1999; Li &
Woodruff, 2013). Interestingly, the worst case distributions
that establish that bound are those where the most frequent
key is `p heavy but not `2 heavy.

5. Universal Samples
We study combinations where the emulation is universal,
that is, F includes the setM of all monotone non-decreasing
functions of frequency. Interestingly, there are sampling
probabilities that provide universal emulation for any w:

Lemma 5.1. (Cohen, 2015) Consider the probabilities q
where the ith most frequent key has qi = 1

iHn
. Then a
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weighted sample by q is a universal emulator with overhead
at most Hn.

Proof. Consider a monotone non-decreasing f with respec-
tive pps probabilities p. By definition, for the ith most
frequent key, pi = f(wi)

‖f(w)‖1 ≤
1
i . Therefore, pi/qi ≤

1/i(iHn) = Hnqi.

This universal sampling, however, can not be implemented
with small (polylogarithmic size) sketches. This because
M includes functions that require large (polynomial size)
sketches such as thresholds (Iw≥T for some T ) and high
moments (p > 2). We therefore aim for small sketches that
provide universal emulation to a restricted W .

For particular sampling probabilities q and frequencies w
we consider the universal emulation overhead to be the over-
head factor that will allow the sample to emulate weighted
sampling with respect to f(w) for any f ∈M .

max
f∈M

max
i
f(wi)/(‖f(w)‖1qi) (7)

Interestingly, the universal emulation overhead of q does
not depend on the particular w.
Lemma 5.2. The universal emulation overhead of q is

max
i

1/(iqi)

and is always at least Hn. This is tight even when W
contains a single w, as long as frequencies are distinct
(wi > wi+1 for all i).

Proof. Consider w. We have

max
f∈M

max
i
f(wi)/(‖f(w)‖1qi)

= max
i

max
f∈M

f(wi)/(‖f(w)‖1qi) ≤ max
i

1/(iqi) .

The last inequality follows because f ∈M , for all j < i we
must have f(wj) ≥ f(wi). Therefore f(wi)/‖f(w)‖1 ≤
1/i. This is maximized for the threshold function at wi and
equality holds (if wi+1 < wi).

We can similarly consider for sampling probabilities q the
universal estimation overhead which is the overhead needed
for estimating all (full) monotone f -statistics. As discussed
in Section 2, the estimation is a weaker requirement than
emulation (only applies to the full statistics) and hence for
any particular q the estimation overhead can be lower than
the emulation overhead. The estimation overhead, however,
is still at least Hn.
Lemma 5.3. The universal estimation overhead for estimat-
ing all monotone f -statistics for q is

max
i

1

i2

i∑
j=1

1

qi
.

Proof. The overhead with frequencies w is

max
f∈M

∑
i

f(wi)
2

‖f(w)‖21
1

qi
. (8)

It suffices to consider f that are threshold functions. The
expression for the threshold at wi has f(wj)/‖f(w)‖1 =
1/i for j ≤ i and 0 otherwise. We get that the sum is
1
i2

∑i
j=1

1
qi

. The claim follows from taking the maximum
over all threshold functions.

In our context, the probabilities q are not something we
directly control but rather emerge as an artifact of applying
a certain sampling scheme to a dataset with certain frequen-
cies w. We will explore the universal overhead of q we ob-
tain when applying off-the-shelf schemes (see Section 2.1)
to Zipf frequencies and to our datasets.

For Zipf[α] frequencies (α ≥ 1/2), `p sampling with
p = 1/α is a universal emulator with (optimal) overhead
Hn. Interestingly, for α ≥ 1/2, this is attained by `p sam-
pling with p ≤ 2, which has polylogarithmic size sketches.
Note that we match here a different `p sample for each pos-
sible Zipf parameter α of the data frequencies. A sampling
scheme that emulates `p sampling for a range [p1, p2] of p
values with some overhead h will be a universal emulator
with overhead hHn for Zipf[α] forα ∈ [1/p2, 1/p1] (see Re-
mark 2.2). One such sampling scheme with polylogarithmic-
size sketches was provided in (Cohen, 2018; 2015). The
sample emulates all concave sublinear functions that include
capping functions f(w) = min{w, T} for T > 0 and low
moments with p ∈ [0, 1] with O(log n) overhead.

Table 3 reports the universal overhead on our datasets with
`1, `2, and multi-objective concave-sublinear sampling prob-
abilities. We observe that while `2 sampling emulates high
moments extremely well, its universal overhead is very large
due to poor emulation of “slow growth” functions. The bet-
ter universal overhead of `1 and concave-sublinear samples
is h ∈ [143, 700] and is practically meaningful as it is in the
regime where hε−2 � n.

The universal overhead was computed using Lemma 5.2
with respect to base pps probabilities for the sampling
schemes as described in Section 2.1.

We next express a condition on the frequency distribution
under which a multi-objective concave-sublinear sample
provides a universal emulator. The condition is that for all i,
the weight of the ith most frequent key is at least c/i times
the weight of the tail from i.

Lemma 5.4. Let w be such that mini
iwi∑n

j=i+1 wj
≥ c. Then

a sample that emulates all concave-sublinear functions with
overhead h′ is a universal emulator for w with overhead
h′(1 + 1/c)Hn.
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Proof. Consider the ith largest frequency wi. The capping
function f(w) := min{w,wi} maximizes the sampling
probability of key i, which is

f(wi)∑
j f(wj)

= wi
iwi+

∑
j>i wj

≤ wi

iwi+
i
cwi

= 1
i(1+1/c) .

Interestingly, for high moments to be ”easy” it sufficed to
have a heavy hitter. For universal emulation we need to
bound from below the relative weight of each key with
respect to the remaining tail.

6. Conclusion
We propose a framework where performance and statistical
guarantees of sampling sketches are analyzed in terms of
supported frequencies-functions combinations. We demon-
strate analytically and empirically that sketches originally
designed to sample according to “easy” functions of fre-
quency on “hard” frequency distributions turn out to be
accurate for sampling according to “hard” functions of fre-
quency on “practical” frequency distributions. In particular,
on “practical” distributions we can accurately approximate
high frequency moments (p > 2) and the rank versus fre-
quency distribution using small composable sketches.
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A. Datasets
For the experiments, we use the following datasets:

• AOL (Pass et al., 2006): A log of search queries col-
lected over three months in 2006. For each query, its
frequency is the number of lines in which it appeared
(over the entire 92 days).

• CAIDA (CAIDA, 2016): Anonymous passive traffic
traces from CAIDA’s equinix-chicago monitor. We
use the data collected over one minute (2016/01/21
13:29:00 UTC), and count the number of packets for
each tuple (source IP, destination IP, source port, desti-
nation port, protocol).

• Stack Overflow (SO) (Paranjape et al., 2017): A tem-
poral graph of interactions between users on the Stack
Overflow website. For each node in the graph, we con-
sider its weighted in degree (total number of responses
received that user) and its weighted out degree (total
number of responses by that user).

• UGR (Maciá-Fernández et al., 2018): Real traffic in-
formation collected from the network of a Spanish ISP
(for network security studies). We consider only one
week of traffic (May 2016 Week 2). For a pair of source
and destination IP addresses, its frequency will be the
number packets sent between these two addresses (only
considering flow labeled as “background”, not suspi-
cious activity).

For the experiments with advice, we use parts of these
datasets in the following way:

• AOL: We use the same predictions given in (Hsu et al.,
2019), which were the result training a deep learning
model on the queries from the first five days. We use
the prediction to estimate frequency moments on the
queries from the 51st and 81st days (after removing
duplicate queries from multiple clicks on results).

• Stack Overflow: We consider two six month periods:
1/2013-6/2013 and 7/2013-12/2013. We estimate the
in and out degree moments on the data from 7/2013-
12/2013, where the advice for each node is its exact
degree in past data (the previous six month period).

B. Sample by Advice: Algorithm and Proofs
The pseudocode for our sampling by advice sketch and the
respective estimators is provided in Algorithms 1 and 2. The
sampling sketches also support merging (pseudocode not
shown). Since the advice is available with each occurrence
of a key, we can implement the weighted sample by advice
ax using schemes designed for aggregated data (a model
where each key occurs once with its full weight) such as
(Chao, 1982; Ohlsson, 1998; Duffield et al., 2007; Rosén,
1997; Cohen & Kaplan, 2008; Cohen et al., 2011). Some
care (using a hash function) is needed because keys occur
in multiple data elements. The pseudocode shows a ppswor
implementation. The pseudocode also integrates the uni-
form and ppswor-by-advice samples to avoid duplication
(keys that qualify for both samples are stored once).

We establish that the sampling sketch returns the exact fre-
quencies for sampled keys:

Lemma B.1. The frequency wx of each key x in the final
sample is accurate.

Proof. Note that if a key enters the sample when an element
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Algorithm 1: Sample by advice (data processing)
Input: A stream of updates, advice model a, kh, kp, ku (sample

size for heaviest, by-advice, and uniform)
Output: A sampling sketch for f(w)
Initialization:
begin

Set hash function such that h(x) ∼ Exp(1) (independently
for all keys) // Exp(1) for ppswor, U [0, 1] for priority

Create empty sample S := (S.h, S.pu) // S.h stores top

kh keys by advice; S.pu is a sketch for a combined

weighted-by-advice and uniform sample

Process an update (x,∆) with prediction ax:
begin

if x ∈ S then // x is in (any component) of the

sample
wx ← wx + ∆ // Update the count of x

Break
else

if |S.h| < kh or ax > miny∈S.h a.y then // x has a

top-kh advice value

insert (x,wx ← ∆) to S.h
if |S.h| = kh + 1 then

Eject y ← arg minz∈S.h az from S.h
// eject key with smallest advice in

S.h

Process (y, wy) by the ppswor+uniform
sampling sketch S.pu

Break
else

process (x,∆) by the ppswor+uniform sampling
sketch S.pu

// Process update (y,∆) by ppswor+uniform sampling

sketch S.pu:

begin
ry ← h(y)

f(ay)
// Compute by-advice seed value of

key y

if ry < {rz | z ∈ S.pu}(kp) then // y has one of kp

smallest ry and qualifies for ppswor sample

Insert (y, wy ← ∆) to S.pu
else

if h(y) < {h(z) | z ∈ S.pu}(ku) then // y has

one of ku smallest h(y) and qualifies for

uniform sample

Insert (y, wy ← ∆) to S.pu

foreach z ∈ S.pu | h(z) > {h(z′) | z′ ∈
S.pu}(ku)and rz > {rz′ | z′ ∈ S.pu}(kp) do

Eject z from S.pu

Algorithm 2: Sample by advice (estimator computation)
Input: A by-advice sampling sketch for f(w) with parameters

kh, kp, ku
Output: Sparse representation of f(w) and estimate of ‖f(w‖1
foreach x in Sh do

f̂(wx)← f(wx)

foreach x ∈ S.pu do // keys stored in uniform/ppswor

samples

τp ← {rz | z ∈ S.pu \ {x}}(kp−1) // The (kp − 1)th

smallest seed of a key other than x

τu ← {h(z) | z ∈ S.pu \ {x}}(ku−1) // The (ku − 1)th

smallest hash value of a key other than x

if h(x) < τu or rx < τp then // key x strictly

included in the uniform or by-advise samples

px ← Prh[h(x) < max{f(ax)τp, τu}] // For ppswor

1− e−max{τu,f(ax)τp}; For priority

min{max{τu, f(ax)τp}, 1}

f̂(wx)← f(wx)
px

Return {(x, f̂(wx))} (sparse representation of f(w)); The sum
of f̂(wx) as an estimate of ‖f(w)‖1. // For x assigned with

f̂(wx)

with the key is processed and remains stored, its count is go-
ing to be accurate (we account for all the updates involving
that key). Since the prediction ax is consistent (the predic-
tion ax is the same in all updates involving x), the seed of
x is the same every time x appears. For x to not enter the
sample on its first occurrence or to be removed at any point,
there must be other k keys in the sample with seed values
lower than that of x. If such keys exist, x is not in the final
sample. The argument for the kh top advice keys and for
the ku uniformly samples keys is similar.

Proof of Lemma 3.1. It suffices to establish the upper bound

Var[f̂(wx)] ≤ f(wx)f(w) min{ cp
kp−2 ,

cu
ku−2} .

on the variance of the estimate of each key x.

A key x with one of the top h advised frequencies has
Var[f̂(wx)] = 0 and the claim trivially holds. Otherwise,
recall that we assume that for some cp, cu ≥ 0,

f(wx)
‖f(w)‖1 ≤ max{cp f(ax)

‖f(a)‖1 , cu
1

n
}.

The variance is Var[f̂(wx)] = f(wx)2Epx [(1/px − 1)],
where px is as computed by the algorithm. Now note that
px = max{p′x, p′′x}, where p′x is the probability x is in-
cluded in a ppswor-by-advice sample of size kp and p′′x is
the probability it is included in a uniform sample of size ku.
We obtain that the variance is the minimum of the variance
in these two scenarios.
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The variance from a uniform sample of size ku is bounded
by 1

ku−2nf(wx)2. If f(wx)
‖f(w)‖1 ≤ cu

1
n we substitute

f(wx) ≤ ‖f(w)‖1cu 1
n and obtain

1

ku − 2
nf(wx)2 ≤ 1

ku − 2
nf(wx)‖f(w)‖1cu

1

n

=
cu

ku − 2
f(wx)‖f(w)‖1 .

The variance from a weighted-by-advice sample of size kp
is bounded by

1

kp − 2
f(ax)‖f(a)‖1

f(wx)2

f(ax)2
=

1

kp − 2
‖f(a)‖1

f(wx)2

f(ax)
.

If f(wx)
‖f(w)‖1 ≤ cp

f(ax)
‖f(a)‖1 we similarly substitute and obtain

that the variance is at most
cp

kp − 2
f(wx)‖f(w)‖1 .

C. Sample by Advice: Experiments
Results for performance of sampling by advice on additional
datasets are provided in Figure 5.

Error estimation

The estimators we use are unbiased and we consider the
Normalized Mean Squared Error (NRMSE) which for unbi-
ased estimators is the same as the Coefficient of Variation
(CV), the ratio of the standard deviation to the mean:

Var[ ̂‖f(w)‖1]1/2

‖f(w)‖1
.

A simple way to estimate the variance is to use the empirical
squared error over a set of runs: We take the average of
( ̂‖f(w)‖1 − ‖f(w)‖1)2 over runs and apply a square root.
We found that 50 runs were not sufficient for an accurate
estimate with our sample-by-advice methods. This is be-
cause of keys that had relatively high frequency and low
advice, which resulted in low inclusion probability and high
contribution to the variance. Samples that included these
keys had higher estimates of the statistics than the bulk of
other samples and often significant increase was attributed
to one or two keys. This could be remedied by significantly
increasing the number of runs we average over. We instead
opted to use different and more accurate estimators for the
by-advice and (for consistency) for the baseline with and
without-replacement schemes.

For with-replacement schemes we computed the exact vari-
ance (and hence the NRMSE) as follows: The inclusion
probability of a key x in a sample of size k is

p′x := 1− (1− px)k

where px is the probability to be selected in one sampling
step. That is, px = wx/‖w‖1 for with-replacement `1
sampling and px = w2

x/‖w‖22 for with-replacement `2 sam-
pling. The per-key variance of our estimator for key x is
(1/p′x−1)(f(wx))2. Since estimates for different keys have
0 correlations, the variance of our estimate of the statistics
‖f(w)‖1 is

Var[ ̂‖f(w)‖1] :=
∑
x

(1/p′x − 1)f(wx)2 .

For the without-replacement schemes (the by-advice sam-
pling and the without-replacement reference methods) we
apply a more accurate estimator over the same set of 50 runs.
For each ”run” and each key x (sampled or not) we consider
all the possible samples where the randomization of all keys
y 6= x is as in the ”run.” These include samples that include
and do not include x. We then compute the inclusion proba-
bility p′x of key x under these conditions. The contribution
to the variance due to this set of runs is (1/p′x − 1)f(wx)2.
We sum the estimates (1/p′x − 1)f(wx)2 over all keys and
take the average of the sums over runs as our estimate of the
variance.

For the pure bottom-k (the ppswor bywq for q = 1, 2) recall
that we compute random seed values to keys of the form
rx/w

q
x, where rx ∼ D are independent. The sample is the

k keys with lowest seed values. The inclusion probability is
computed with respect to a threshold that is defined to be the
kth smallest ”seed” value of other keys τx ← {seed(y)|y 6=
x}(k). For keys in the sample, this is the (k + 1)th smallest
seed overall. For keys not in the sample the applicable τx is
the kth smallest overall. We get p′x = Prr∼D[rx/w

q
x ≤ τx]

(a different p′x is obtained in each run).

The calculation for the by-advice+uniform sampling is as
in the estimator in Algorithm 1, except that it is computed
for all keys x.

D. Combinations of Frequencies and
Functions: Proofs and Details

D.1. Near-uniform Frequency Distributions

We showed that frequency distributions with heavy hitters
are easy for high moments and moreover, the validity of the
result can be certified. Interestingly, the other extreme of
near-uniform distributions (where w1/wn is bounded) are
also easy. But unfortunately, unlike the case with heavy hit-
ters, there is no “certificate” to the validity of the emulation.

Lemma D.1. Let w be a frequency distribution with sup-
port size n. Then the overhead of using `1 or `0 sampling

to emulate `p sampling is at most
(
w1

wn

)p
.

Proof. We use Lemma 4.1 and the full form of the over-
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head bound (5) and lower bound the denominator
∥∥∥ w
w1

∥∥∥p
p
.

Note that for any w with support size n,
∥∥∥ w
w1

∥∥∥1

1
≤ n and∥∥∥ w

w1

∥∥∥
0

= n. Now,

∥∥∥∥ w

w1

∥∥∥∥p
p

=

n∑
i=1

(
wi
w1

)p
≥

n∑
i=1

(
wn
w1

)p
= n ·

(
wn
w1

)p
.

The overhead for q ∈ {0, 1} is then∥∥∥ w
w1

∥∥∥q
q∥∥∥ w

w1

∥∥∥p
p

≤ n

n ·
(
wn
w1

)p =

(
w1

wn

)p
.

E. Additional Experiments
Estimates of the distribution of frequencies for all datasets
are reported in Figure 6. The estimates are from ppswor (`1
without replacement) and `2 (with replacement) samples of
sizes k = 32 and k = 1024. For each key x in the sample,
we estimate its rank in the data set (the number of keys
y with frequency wy ≥ wx). The estimate is computed
using the threshold function f(w) := Iw≥wx . The pairs of
frequency and estimated rank are then plotted. The figures
also provide the exact frequency distribution.

Additional results on estimation of moments from ppswor
(`1 without replacement) and `2 samples (with and without
replacement) are reported in Figure 7. As suggested by our
analysis, the estimates on all datasets are surprisingly accu-
rate even with respect to the ”benchmark” upper bound (for
weighted with-replacement sampling tailored to the moment
we are estimating). The figures also show the advantage of
”without replacement” sampling on these skewed datasets.
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Figure 5. NRMSE for estimating 3rd, 7th, and 10th moments on AOL dataset (days 50 and 80 with learned advice from (Hsu et al., 2019))
and on Stack Overflow dataset (outgoing and incoming edges), based on past frequencies.
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Figure 6. Actual and estimated distribution of frequency by rank. Estimates for ppswor and with-replacement `2 sampling and sample
sizes k = 32, 1024.
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Figure 7. Estimating 3rd and 10th moments on various datasets from ppswor (`1 without replacement) and `2 samples (with and without
replacement). The error is averaged over 50 repetition.


