
Leveraging Procedural Generation to Benchmark Reinforcement Learning

A. Environment Descriptions
In all environments, procedural generation controls the se-
lection of game assets and backgrounds, though some en-
vironments include a more diverse pool of assets and back-
grounds than others. When procedural generation must
place entities, it generally samples from the uniform distri-
bution over valid locations, occasionally subject to game-
specific constraints. Several environments use cellular au-
tomata (Johnson et al., 2010) to generate diverse level lay-
outs.

A.1. CoinRun

A simple platformer. The goal is to collect the coin at the
far right of the level, and the player spawns on the far left.
The player must dodge stationary saw obstacles, enemies
that pace back and forth, and chasms that lead to death.
Note that while the previously released version of CoinRun
painted velocity information directly onto observations, the
current version does not. This makes the environment sig-
nificantly more difficult.

Procedural generation controls the number of platform sec-
tions, their corresponding types, the location of crates, and
the location and types of obstacles.

A.2. StarPilot

A simple side scrolling shooter game. All enemies fire
projectiles that directly target the player, so an inability
to dodge quickly leads to the player’s demise. There are
fast and slow enemies, stationary turrets with high health,
clouds which obscure player vision, and impassable mete-
ors.

Procedural generation controls the spawn timing of all en-
emies and obstacles, along with their corresponding types.

A.3. CaveFlyer

The player controlling a starship must navigate a network
of caves to reach the goal (a friendly starship). Player
movement mimics the Atari game “Asteroids”: the ship
can rotate and travel forward or backward along the cur-
rent axis. The majority of the reward comes from success-
fully reaching the goal, though additional reward can be
collected by destroying target objects along the way with
the ship’s lasers. There are stationary and moving lethal
obstacles throughout the level.

Procedural generation controls the level layout via cellular
automata, as well as the configuration of all enemies, tar-
gets, obstacles, and the goal.

A.4. Dodgeball

Loosely inspired by the Atari game “Berzerk”. The player
spawns in a room with walls and enemies. Touching a wall
loses the game and ends the episode. The player moves rel-
atively slowly and can navigate throughout the room. There
are enemies which also move slowly and which will occa-
sionally throw balls at the player. The player can also throw
balls, but only in the direction they are facing. If all ene-
mies are hit, the player can move to the unlocked platform
and earn a significant level completion bonus.

Procedural generation controls the level layout by recur-
sively generating room-like structures. It also controls the
quantity and configuration of enemies.

A.5. FruitBot

A scrolling game where the player controls a robot that
must navigate between gaps in walls and collect fruit along
the way. The player receives a positive reward for collect-
ing a piece of fruit, and a larger negative reward for mis-
takenly collecting a non-fruit object. On expectation, half
of the spawned objects are fruit (positive reward) and half
are non-fruit (negative reward). The player receives a large
reward if they reach the end of the level. Occasionally the
player must use a key to unlock gates which block the way.

Procedural generation controls the level layout by sequen-
tially generating barriers with randomly-sized gaps. It also
controls the quantity and configuration of fruit and non-
fruit objects, as well as the placement of gates.

A.6. Chaser

Inspired by the Atari game “MsPacman”. The player must
collect all the green orbs in the level. 3 large stars spawn
that will make enemies vulnerable for a short time when
collected. A collision with an enemy that isn’t vulnerable
results in the player’s death. When a vulnerable enemy is
eaten, an egg spawns somewhere on the map that will hatch
into a new enemy after a short time, keeping the total num-
ber of enemies constant. The player receives a small reward
for collecting each orb and a large reward for completing
the level.

Procedural generation controls the level layout by generat-
ing mazes using Kruskal’s algorithm (Kruskal, 1956), and
then removing walls until no dead-ends remain. The large
stars are constrained to spawn in different quadrants. Initial
enemy spawn locations are randomly selected.

A.7. Miner

Inspired by the classic game “BoulderDash”. The player, a
robot, can dig through dirt to move throughout the world.
The world has gravity, and dirt supports boulders and dia-

Leveraging Procedural Generation to Benchmark Reinforcement Learning

monds. Boulders and diamonds will fall through free space
and roll off each other. If a boulder or a diamond falls on
the player, the game is over. The goal is to collect all the di-
amonds in the level and then proceed through the exit. The
player receives a small reward for collecting a diamond and
a larger reward for completing the level.

Procedural generation controls the position of all boulders,
diamonds, and the exit. No objects may spawn adjacent
to the player. An approximately fixed quantity of boulders
and diamonds spawn in each level.

A.8. Jumper

A platformer with an open world layout. The player, a
bunny, must navigate through the world to find the carrot.
It might be necessary to ascend or descend the level to do
so. The player is capable of “double jumping”, allowing it
to navigate tricky layouts and reach high platforms. There
are spike obstacles which will destroy the player on con-
tact. The screen includes a compass which displays direc-
tion and distance to the carrot. The only reward in the game
comes from collect the carrot, at which point the episode
ends.

Procedural generation controls the level layout via cellu-
lar automata, which is seeded with a maze-like structure.
Long flat vertical edges are intentionally perturbed to avoid
unsolvable levels, as the player can take advantage of ir-
regular ledges on vertical walls. Obstacles cannot spawn
adjacent to each other, as this could create impassable con-
figurations.

A.9. Leaper

Inspired by the classic game “Frogger”. The player must
cross several lanes to reach the finish line and earn a re-
ward. The first group of lanes contains cars which must
be avoided. The second group of lanes contains logs on a
river. The player must hop from log to log to cross the river.
If the player falls in the river, the episode ends.

Procedural generation controls the number of lanes of both
roads and water, with these choices being positively cor-
related. It also controls the spawn timing of all logs and
cars.

A.10. Maze

The player, a mouse, must navigate a maze to find the sole
piece of cheese and earn a reward. The player may move
up, down, left or right to navigate the maze.

Procedural generation controls the level layout by generat-
ing mazes using Kruskal’s algorithm (Kruskal, 1956), uni-
formly ranging in size from 3x3 to 25x25.

A.11. BigFish

The player starts as a small fish and becomes bigger by
eating other fish. The player may only eat fish smaller than
itself, as determined solely by width. If the player comes
in contact with a larger fish, the player is eaten and the
episode ends. The player receives a small reward for eating
a smaller fish and a large reward for becoming bigger than
all other fish, at which point the episode ends.

Procedural generation controls the spawn timing and posi-
tion of all fish.

A.12. Heist

The player must steal the gem hidden behind a network of
locks. Each lock comes in one of three colors, and the nec-
essary keys to open these locks are scattered throughout the
level. The level layout takes the form of a maze. Once the
player collects a key of a certain color, the player may open
the lock of that color. All keys in the player’s possession
are shown in the top right corner of the screen.

Procedural generation controls the level layout by gener-
ating mazes using Kruskal’s algorithm (Kruskal, 1956).
Locks and keys are randomly placed, subject to solvabil-
ity constraints.

A.13. Climber

A simple platformer. The player must climb a sequence of
platforms, collecting stars along the way. A small reward
is given for collecting a star, and a larger reward is given
for collecting all stars in a level. If all stars are collected,
the episode ends. There are lethal flying monsters scattered
throughout the level.

Procedural generation controls the level layout by sequen-
tially generating reachable platforms. Enemies and stars
spawn near each platform with fixed probabilities, except
when spawning an enemy would lead to an unsolvable con-
figuration. The final platform always contains a star.

A.14. Plunder

The player must destroy enemy pirate ships by firing can-
nonballs from its own ship at the bottom of the screen. An
on-screen timer slowly counts down. If this timer runs out,
the episode ends. Whenever the player fires, the timer skips
forward a few steps, encouraging the player to conserve
ammunition. The player should also avoid hitting friendly
ships. The player receives a positive reward for hitting an
enemy ship and a large timer penalty for hitting a friendly
ship. A target in the bottom left corner identifies the color
of the enemy ships to target. Wooden obstacles capable of
blocking the player’s line of sight may exist.

Leveraging Procedural Generation to Benchmark Reinforcement Learning

Procedural generation controls the selection of friendly and
enemy ship types, as well as the spawn times and positions
of all non-player ships. It also controls the placement of
wooden obstacles.

A.15. Ninja

A simple platformer. The player, a ninja, must jump across
narrow ledges while avoiding bomb obstacles. The player
can toss throwing stars at several angles in order to clear
bombs, if necessary. The player’s jump can be charged over
several timesteps to increase its effect. The player receives
a reward for collecting the mushroom at the end of the level,
at which point the episode terminates.

Procedural generation controls the level layout by sequen-
tially generating reachable platforms, with the possibility
of superfluous platform generation. Bombs are occasion-
ally randomly placed near platforms.

A.16. Bossfight

The player controls a small starship and must destroy a
much bigger boss starship. The boss randomly selects from
a set of possible attacks when engaging the player. The
player must dodge the incoming projectiles or be destroyed.
The player can also use randomly scattered meteors for
cover. After a set timeout, the boss becomes vulnerable
and its shields go down. At this point, the players projec-
tile attacks will damage the boss. Once the boss receives
a certain amount of damage, the player receives a reward,
and the boss re-raises its shields. If the player damages the
boss several times in this way, the boss is destroyed, the
player receives a large reward, and the episode ends.

Procedural generation controls certain game constants, in-
cluding the boss health and the number of rounds in a level.
It also selects the configuration of meteors in the level, and
the attack pattern sequence the boss will follow.

B. Core Capabilities in RL
To better understand the strengths and limitations of current
RL algorithms, it is valuable to have environments which
isolate critical axes of performance. (Osband et al., 2019)
recently proposed seven core RL capabilities to profile with
environments in bsuite. We focus our attention on three
of these core capabilities: generalization, exploration, and
memory. Among these, Procgen Benchmark contributes
most directly to the evaluation of generalization, as we have
already discussed at length. In this section, we describe
how Procgen environments can also shed light on the core
capabilities of exploration and memory.

B.1. Evaluating Exploration

The trade off between exploration and exploitation has long
been recognized as one of the principal challenges in rein-
forcement learning. Although exploration plays some role
in every environment, the difficulty of the exploration prob-
lem can vary drastically. In many environments, the abil-
ity to adequately explore becomes an overwhelming bottle-
neck in agents’ training. With Procgen environments, we
strive to be deliberate in our consideration of exploration.

The generalization curves in Figure 2 show that training
performance often increases with the size of the training
set. This reveals an interesting phenomenon: exploration
can become less of a bottleneck in the presence of greater
diversity. On the other hand, when the training set is re-
stricted and diversity is removed, an otherwise tractable en-
vironment can become intractable due to exploration. By
taking this to the extreme and restricting training to a single
high difficulty level, 8 of the Procgen environments can be
made into highly challenging exploration tasks. In doing
so, these environments come to resemble traditional hard
exploration environments, like the infamous Atari game
Montezuma’s Revenge. We note that generalization is not
measured in this setting; the focus is solely on the agent’s
ability to explore.

The 8 environments that specifically support the evaluation
of exploration are CoinRun, CaveFlyer, Leaper, Jumper,
Maze, Heist, Climber, and Ninja. For each environment,
we handpick a level seed that presents a significant ex-
ploration challenge. Instruction for training on these spe-
cific seeds can be found at https://github.com/openai/train-
procgen. On these levels, a random agent is extraordinarily
unlikely to encounter any reward. For this reason, our base-
line PPO implementation completely fails to train, achiev-
ing a mean return of 0 in all environments after 200M
timesteps of training.

https://github.com/openai/train-procgen
https://github.com/openai/train-procgen

Leveraging Procedural Generation to Benchmark Reinforcement Learning

B.2. Evaluating Memory

The extent to which agents must attend to the past varies
greatly by environment. In environments in the ALE, mem-
ory beyond a small frame stack is not generally required to
achieve optimal performance. In more general settings and
in more complex environments, we expect memory to be-
come increasingly relevant.

By default, Procgen environments require little to no use of
memory, and non-recurrent policies achieve approximately
the same level of performance as recurrent policies. We de-
signed environments in this way to better isolate the chal-
lenges in RL. However, 6 of the 16 Procgen environments
support variants that do require memory. These variants
remove linearity constraints from level generation and in-
crease the impact of partial observability. By introducing
a dependence on memory, these environments become dra-
matically more difficult.

The 6 environments that specifically support the evaluation
of memory are CoinRun, CaveFlyer, Dodgeball, Miner,
Jumper, Maze, and Heist. In this setting, we modify the
environments as follows. In all environments we increase
the world size. In Caveflyer and Jumper, we remove logic
in level generation that prunes away paths which do not
lead to the goal. In Dodgeball, Miner, Maze, and Heist,
we make the environments partially observable by restrict-
ing observations to a small patch of space surrounding the
agent. We note that Caveflyer and Jumper were already
partially observable. With these changes, agents can re-
liably solve levels only by utilizing memory. Instructions
for training environments in memory mode can be found at
https://github.com/openai/train-procgen.

C. Normalization Constants
Rmin is computed by training a policy with masked out
observations. This demonstrates what score is trivially
achievable in each environment. Rmax is computed in sev-
eral different ways.

For CoinRun, Dodgeball, Miner, Jumper, Leaper, Maze,
BigFish, Heist, Plunder, Ninja, and Bossfight, the maximal
theoretical and practical reward is trivial to compute.

For CaveFlyer, Chaser, and Climber, we empirically deter-
mine Rmax by generating many levels and computing the
average max achievable reward.

For StarPilot and FruitBot, the max practical reward is not
obvious, even though it is easy to establish a theoretical
bound. We choose to define Rmax in these environments
as the score PPO achieves after 8 billion timesteps when
trained at an 8x larger batch size than our default hyperpa-
rameters. On observing these policies, we find them very
close to optimal.

Hard Easy
Environment Rmin Rmax Rmin Rmax

CoinRun 5 10 5 10
StarPilot 1.5 35 2.5 64

CaveFlyer 2 13.4 3.5 12
Dodgeball 1.5 19 1.5 19
FruitBot -.5 27.2 -1.5 32.4
Chaser .5 14.2 .5 13
Miner 1.5 20 1.5 13
Jumper 1 10 3 10
Leaper 1.5 10 3 10
Maze 4 10 5 10

BigFish 0 40 1 40
Heist 2 10 3.5 10

Climber 1 12.6 2 12.6
Plunder 3 30 4.5 30
Ninja 2 10 3.5 10

BossFight .5 13 .5 13

https://github.com/openai/train-procgen

Leveraging Procedural Generation to Benchmark Reinforcement Learning

D. Hyperparameters
We use the Adam optimizer (Kingma and Ba, 2014) in all experiments.

Table 1. PPO Hyperparameters

ENV. DISTRIBUTION MODE HARD EASY

� .999 .999
� .95 .95
TIMESTEPS PER ROLLOUT 256 256
EPOCHS PER ROLLOUT 3 3
MINIBATCHES PER EPOCH 8 8
ENTROPY BONUS (kH) .01 .01
PPO CLIP RANGE .2 .2
REWARD NORMALIZATION? YES YES
LEARNING RATE 5⇥ 10�4 5⇥ 10�4

WORKERS 4 1
ENVIRONMENTS PER WORKER 64 64
TOTAL TIMESTEPS 200M 25M
LSTM? NO NO
FRAME STACK? NO NO

Table 2. Rainbow Hyperparameters

ENV. DISTRIBUTION MODE: HARD

� .99
LEARNING RATE 2.5⇥ 10�4

WORKERS 8
ENVIRONMENTS PER WORKER 64
ENV. STEPS PER UPDATE PER WORKER 64
BATCH SIZE PER WORKER 512
REWARD CLIPPING? NO
DISTRIBUTIONAL MIN/MAX VALUES [0, Rmax]2

TOTAL TIMESTEPS 200M
LSTM? NO
FRAME STACK? NO

2In FruitBot, we change the distributional min value to -5.

Leveraging Procedural Generation to Benchmark Reinforcement Learning

E. Test Performance for All Training Sets

Figure 7. Test performance of agents trained on different sets of levels. All agents are evaluated on the full distribution of levels from
each environment.

Leveraging Procedural Generation to Benchmark Reinforcement Learning

F. Arcade Learning Environment Performance

Figure 8. Performance of our implementation of PPO on the ALE.

In these ALE experiments, we use a frame stack of 4 and we do not use sticky actions (Machado et al., 2018). Note that
although we render Procgen environments at 64x64 pixels, they can easily be rendered at 84x84 pixels to match the ALE
standard, if desired.

Leveraging Procedural Generation to Benchmark Reinforcement Learning

G. Training Curves by Architecture

Figure 9. Performance of agents using each different architecture in each environment, trained and evaluated on the full distribution of
levels.

Figure 10. Performance of agents using each different architecture in each environment, trained on 500 levels and evaluated on held out
levels. Light dashed lines denote training curves and dark solid lines denote test curves.

Leveraging Procedural Generation to Benchmark Reinforcement Learning

H. Frame Stack vs. LSTM

Figure 11. Comparison of our baseline to agents that use either frame stack or a recurrent architecture.

For simplicity, our baseline experiments forgo the use of frame stack by default. This limits agents to processing informa-
tion from only the single current frame. We compare this baseline to agents that use a frame stack of 4. We also compare
both methods to agents using an LSTM (Hochreiter and Schmidhuber, 1997) on top of the convolutional network.

In general, we find these methods to be fairly comparable. In the Jumper environment, the LSTM agents outperform others,
perhaps as the ability to perform non-trivial temporally extended navigation is helpful. In other environments like Leaper
and Ninja, our LSTM baseline is notably unstable. In most environments, frame stack agents perform similarly to baseline
agents, though in a few environments the difference is noticeable.

Leveraging Procedural Generation to Benchmark Reinforcement Learning

I. Easy Difficulty Baseline Results

Figure 12. Performance of agents on easy difficulty environments, trained and evaluated on the full distribution of levels.

Figure 13. Performance of agents on easy difficulty environments, trained on 200 levels and evaluated on the full distribution of levels.

