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1. Simulated experiments
In §5.1 of the main text we studied fusion of mixture model
posteriors learned from heterogeneous datasets. Below we
describe the data generating process used in these experi-
ments.

First, we generate true global means µg ∼ N (0, IDσ
2
0) ∈

RD for g = 1, . . . , G. We set true number of global com-
ponents G = 5, data dimension D = 10, and entries of the
diagonal covariance σ2

0 = sG. Parameter s is the separa-
tion scale controlling the degree of separation between the
true global means and corresponds to the x-axis in Figure
2 of the main text. To generate covariances {Σg}Gg=1 of
the global mixture components we used a slightly modified
Scikit-learn (Pedregosa et al., 2011) function for random
positive definite matrices (see code for details).1

To generate J = 50 heterogeneous datasets, we first assign
a random probability to each global component. For each
dataset j we then select a random subset of global means
and covariances by drawing Bernoulli random variables
with the corresponding probabilities. This corresponds to
the Beta-Bernoulli process (Thibaux & Jordan, 2007). Next,
to each selected mean we add Gaussian noise with standard
deviation σ to enforce heterogeneity in the parameters. This
σ is the x-axis in Figure 3 of the main text. We also slightly
perturb covariances using Wishart distribution (see code for
details). Finally, each dataset is generated from a Gaussian
mixture with the corresponding means and covariances and
mixture component probabilities drawn from a symmetric
Dirichlet distribution. To illustrate the generative process
for one dataset, in Figure 1 we give an example in D = 2 di-
mensions, with G = 3 global components, separation scale
s = 0.1 and heterogeneity noise σ = 0.1. Our generative
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Figure 1. Illustration of the data simulation process in two dimen-
sions: contours of the Gaussian densities corresponding to the
global mixture components are in red with black stars as means.
Components of the local mixture model are in blue with black
circles marking means: our data generative process selected a
subset of two global mixture components and perturbed means
with some Gaussian noise to enforce heterogeneity. Corresponding
local dataset is shown in orange.

process resulted in a local mixture model with two com-
ponents slightly perturbed from the corresponding global
components.

To obtain local posteriors for KL-fusion, on each of the
datasets we ran variational inference with Gaussian-Wishart
variational distributions.2 Recall that our KL-fusion algo-
rithm alternates between clustering of the components of
the local posterior distributions and finding corresponding
barycenters. In Figure 2(a) we show the result of the clus-
tering step on one of the iterations of KL-fusion and in
Figure 2(b) we present estimates of the fused mixture model
means and covariances obtained from the corresponding
barycenter.

2sklearn.mixture.BayesianGaussianMixture

https://github.com/IBM/KL-fusion
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(a) Clustering iteration of KL-fusion: after several iterations our
algorithm learned meaningful clustering of the distributions cor-
responding to the posterior approximations of the local mixture
components. Distributions in the same cluster are shown with the
same color and mean marker. Our algorithm correctly identified
that there should be 3 clusters.

(b) Fused posterior learned with KL-fusion: in blue we show esti-
mates of the fused mixture model means and covariances obtained
using our algorithm. This is the result of taking KL barycenter
corresponding to the clustering on the left. In red we show true
global means and covariances. KL-fusion produces an accurate
estimate and estimates the size of the global model correctly.

Figure 2. Visualization of the KL-fusion algorithm in 2 dimensions

2. Topic modeling details
The problem setup for the topic modeling experiment was
as follows: The 20news training dataset was split into 5
separate datasets based on topics of the news articles. For
each local dataset, we fit a topic model with 10 topics. In this
context, each component is a topic, the parameters for each
component are the posterior Dirichlet variational parameters
(one for each word), and the goal of fusion is to infer these
posterior Dirichlet parameters for the global model. We
then fused these posterior distributions using either AMPS
(Campbell & How, 2014), the parametric version of our
algorithm, or the non-parametric version of our algorithm.

For each document in the test set, we measure predictive log
likelihood of the 10% of the words based on the remaining
90%. Predictive log likelihood is defined as in Wang et al.
(2011), and approximated by

p(wj2 |wj1,Dtrain) =
∏

w∈wj2

∑
k

π̄jkφ̄kw (1)

where π̄jk is the proportion of topic k in document j, and
φ̄kw is the posterior Dirichlet parameter of word w in topic
k, wj2 are the held-out words. The log of this quantitity is
summed over all documents in the test set.

3. HDP-HMM details
Our HMM models use multivariate Normal-Wishart obser-
vation models and Hierarchical Dirichlet process allocation
models. The state specific transition probabilities πk are
drawn according to the following generative process. First,
we draw β ∼ GEM(γ) from the stick breaking distribution.
That is,

βj = νj

j−1∏
l=1

(1−νl); νj | γ ∼ Beta(1, γ); j = 1, 2, . . . ,

(2)
We then draw πk from a Dirichlet process with a discrete
base measure shared across states,

πk | η, κ, β ∼ DP(η+κ,
ηβ + κδk
η + κ

); k = 1, 2, . . . , (3)

where η is a concentration parameter and κ is a “stickyness”
parameter (Fox et al., 2008) that encourages state persis-
tence. The latent states for a particular sequence then evolve
as zt, evolve as zt+1 | zt, {πk}∞k=1 ∼ πzt . Finally, obser-
vations at time step t, yt ∈ RD are drawn from a Normal
Wishart distribution,

µk | µ0, λ,Λk ∼ N (µ0, (λΛk)−1)

Λk | S, n0 ∼Wishart(n0, S)

yt | zt = k ∼ N (yt | µk,Λ−1k )

(4)
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For all our experiments, we set κ to 10.0, γ = 5. and
η = 0.5. For the observation model, we set n0 = 1 and S to
an identity matrix I , encoding our belief that E[Λ−1k ] = I .

3.1. MoCAP data details

We consider the problem of discovering common struc-
ture in collections of related time series. Although such
problems arise in a wide variety of domains, here we re-
strict our attention to data captured from motion capture
sensors on joints of people performing exercise routines.
We collected this data from the CMU MoCap database
(http://mocap.cs.cmu.edu). Each motion capture
sequence in this database consists of 64 measurements of hu-
man subjects performing various exercises. Following Fox
et al. (2014), we select 12 measurements deemed most in-
formative for capturing gross motor behaviors: body torso
position, neck angle, two waist angles, and a symmetric pair
of right and left angles at each subjects shoulders, wrists,
knees, and feet. Each MoCAP sequence thus provides a
12-dimensional time series. We use a curated subset (Fox
et al., 2014) of the data from two different subjects each
providing three sequences. In addition to having several
exercise types in common this subset comes with human
annotated labels allowing for easy quantitative comparisons
across different models.

4. Bayesian Neural Network Details
We use Bayesian neural networks with regularized horse-
shoe priors (Ghosh et al., 2019; 2018) as our local BNN mod-
els. In more detail, let a network with L− 1 hidden layers
be parameterized by a set of weight matricesW = {Wl}L1 ,
where each weight matrix Wl is of size R(Kl−1+1)×Kl , and
Kl is the number of units (excluding the bias) in layer l.
Let the node weight vector wkl ∈ R(Kl−1+1) denote the set
of weights incident to unit k of hidden layer l. Following
Ghosh et al. (2019; 2018), we place regularized horseshoe
priors over wkl:

wkl | τkl, υl, c ∼ N (0, (τ̃2klυ
2
l )I), τ̃2kl =

c2τ2kl
c2 + τ2klυ

2
l

,

(5)
with τkl ∼ C+(0, b0), υl ∼ C+(0, bg), and c ∼
Inv-Gamma(ca, cb). Here, I is an identity matrix and
a ∼ C+(0, b) is the half-Cauchy distribution with den-
sity p(a|b) = 2/πb(1 + (a2/b2)) for a > 0; τkl is a unit
specific scale parameter, while the scale parameter υl is
shared across layer l. The regularized horseshoe distribution
exhibits a spike at zero that provides strong shrinkage to-
wards zero and encourages sparsity by turning off nodes in a
layer that are not necessary for explaining the data. This al-
lows the local BNNs to automatically select the appropriate
number of nodes in each layer.

We resort to variational inference on an equivalent param-
eterization, wkl = τ̃klυlβkl, βkl ∼ N (0, I). After learn-
ing the variational posteriors of this equivalent model, we
arrive at q(wkl) by first approximating the factorized varia-
tional approximations q(c), q(τkl), q(υl) with their expected
values µc, µτkl

, µυl , and defining

µ2
τ̃kl

=
µ2
cµ

2
τkl

µ2
c + µ2

τkl
µ2
υl

.

Given the expected values and the Gaussian variational dis-
tribution q(βkl) = N (µβkl

,Ψβkl
), wkl = τ̃klυlβkl follows

a Gaussian distribution N (µwkl
,Σwkl

), with

µwkl
= µτ̃kl

µυlµβkl
; Σwkl

= µ2
τ̃kl
µ2
υl

Ψβkl
.

We thus recover the variational approximation on wkl,
q(wkl) = N (µwkl

,Σwkl
). These variational distributions

from different local BNNs are then used for fusion.

5. Initialization
To initialize KL-fusion algorithm we used a variation of
k-means++ initialization as discussed in the conclusion of
Arthur & Vassilvitskii (2006). This is a popular initialization
scheme used in Scikit-learn (Pedregosa et al., 2011) for
k-means clustering. In our KL-fusion initialization, we
replaced squared Euclidean distance with KL divergence.

References
Arthur, D. and Vassilvitskii, S. k-means++: The advantages

of careful seeding. Technical report, Stanford, 2006.

Campbell, T. and How, J. P. Approximate decentralized
Bayesian inference. arXiv:1403.7471, 2014.

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky,
A. S. An HDP-HMM for systems with state persistence.
In International Conference on Machine Learning, pp.
312–319. ACM, 2008.

Fox, E. B., Hughes, M. C., Sudderth, E. B., and Jordan,
M. I. Joint modeling of multiple time series via the beta
process with application to motion capture segmentation.
The Annals of Applied Statistics, pp. 1281–1313, 2014.

Ghosh, S., Yao, J., and Doshi-Velez, F. Structured varia-
tional learning of Bayesian neural networks with horse-
shoe priors. In International Conference on Machine
Learning, pp. 1744–1753, 2018.

Ghosh, S., Yao, J., and Doshi-Velez, F. Model selection in
Bayesian neural networks via horseshoe priors. Journal
of Machine Learning Research, 20(182):1–46, 2019.

http://mocap.cs.cmu.edu


KL-Fusion Supplementary material

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., and Dubourg, V. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research,
12(Oct):2825–2830, 2011.

Thibaux, R. and Jordan, M. I. Hierarchical Beta processes
and the Indian buffet process. In Artificial Intelligence
and Statistics, pp. 564–571, 2007.

Wang, C., Paisley, J., and Blei, D. Online variational infer-
ence for the hierarchical Dirichlet process. In Proceed-
ings of the 14th International Conference on Artificial
Intelligence and Statistics, pp. 752–760, 2011.


