
Deep Divergence Learning

Kubra Cilingir 1 Rachel Manzelli 1 Brian Kulis 1

Abstract classification (Davis et al., 2007; Weinberger & Saul, 2009;

Classical linear metric learning methods have re-
cently been extended along two distinct lines:
deep metric learning methods for learning em-
beddings of the data using neural networks, and
Bregman divergence learning approaches for ex-
tending learning Euclidean distances to more gen-
eral divergence measures such as divergences over
distributions. In this paper, we introduce deep
Bregman divergences, which are based on learn-
ing and parameterizing functional Bregman diver-
gences using neural networks, and which unify
and extend these existing lines of work. We show
in particular how deep metric learning formula-
tions, kernel metric learning, Mahalanobis met-
ric learning, and moment-matching functions for
comparing distributions arise as special cases of
these divergences in the symmetric setting. We
then describe a deep learning framework for learn-
ing general functional Bregman divergences, and
show in experiments that this method yields supe-
rior performance on benchmark datasets as com-
pared to existing deep metric learning approaches.
We also discuss novel applications, including a
semi-supervised distributional clustering problem,
and a new loss function for unsupervised data
generation.

1. Introduction

The goal of metric learning is to use supervised data in or-
der to learn a distance function (or more general divergence
measure) that is tuned to the data and task at hand. Classical
approaches to metric learning are generally focused on the
linear regime, where one learns a linear mapping of the
data and then applies the Euclidean distance in the mapped
space for downstream tasks such as clustering, ranking, and

1Department of Electrical and Computer Engineering,
Boston University, Boston, Massachusetts, USA. Correspon-
dence to: Kubra Cilingir <kubra@bu.edu>, Rachel Manzelli
<manzelli@bu.edu>, Brian Kulis <bkulis@bu.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Goldberger et al., 2004). These methods, known as Ma-
halanobis metric learning approaches, have been analyzed
theoretically, are scalable, and usually involve convex opti-
mization problems that can be solved globally (Kulis, 2013;
Bellet et al., 2015).

Classical metric learning methods have been extended along
various axes; two important directions are deep metric learn-
ing and Bregman divergence learning. Deep metric learning
approaches replace the linear mapping learned in Maha-
lanobis metric learning methods with more general map-
pings that are learned via neural networks (Hoffer & Ailon,
2015; Chopra et al., 2005). On the other hand, Bregman
divergence methods replace the squared Euclidean distance
with arbitrary Bregman divergences (Bregman, 1967), and
learn the underlying generating function of the Bregman
divergence via piecewise linear approximators (Siahkamari
et al., 2019) or convex combinations of existing basis func-
tions (Wu et al., 2009). These two extensions of classical
metric learning are complementary and disjoint. For in-
stance, Bregman divergence approaches can be utilized in
scenarios where one needs to compare distributions (the
well-known KL-divergence arises as a special case), but the
learning problems are not directly applicable to the deep
learning setting. Similarly, deep metric learning methods
still employ Euclidean distances, and are thus not directly
amenable to problems where one needs to compare distribu-
tions.

In this paper, we introduce a framework for studying Breg-
man divergences that can naturally be learned in the deep set-
ting. Figure 1 gives a high-level overview of our approach,
which we term as deep Bregman divergences, in comparison
to existing metric learning approaches. These divergences
are based on functional Bregman divergences (Frigyik et al.,
2008), which were introduced as an extension of classical
Bregman divergences but with functional inputs instead of
vector inputs. In this functional setting, the underlying Breg-
man divergence is parameterized by a convex functional
whose input itself is a function.

We first perform an analysis for the symmetric divergence
case. In this setting, we prove a result about the form for any
functional Bregman divergence and observe that many exist-
ing metric learning models can be seen to arise from special

mailto:bkulis@bu.edu
mailto:manzelli@bu.edu
mailto:kubra@bu.edu

Deep Divergence Learning

cases of this form. These include deep learning methods,
classical linear metric learning methods, and kernel metric
learning. There are also special cases that include moment-
matching functions, which yields connections to the Wasser-
stein distance (Arjovsky et al., 2017), maximum mean dis-
crepancy (MMD), and kernel MMD (Gretton, 2012).

We then turn our attention to the strictly more general case,
where the divergences need not be symmetric; the KL-
divergence is a classical example of such an asymmetric
Bregman divergence. In this setting, we describe a frame-
work for learning an arbitrary deep Bregman divergence.
Our approach is based on appropriately parameterizing the
convex functional governing the underlying Bregman di-
vergence with a neural network, and learning the resulting
parameters of that network.

We describe several applications of our proposed deep Breg-
man divergence framework. First, we can extend existing
deep metric learning formulations to learn more general
deep Bregman divergences. Second, since our divergences
can naturally be applied to compare distributions on data,
another application is in unsupervised generative learning,
where the goal is to minimize a learned distributional diver-
gence between real and generated data. In particular, we dis-
cuss connections to GAN models and describe some novel
algorithms for unsupervised data generation. Third, we de-
scribe a semi-supervised distributional clustering problem.
Here, the problem is to cluster data where each data point is
represented as a distribution—for example, a movie’s rating
may be represented as a distribution over user scores—using
training data where we know whether pairs of distributions
should be clustered together or not.

In all three of the above settings, we show empirical results
that highlight the benefits of our framework. In particular,
we show that learning asymmetric divergences offers perfor-
mance gains over existing symmetric models on benchmark
data, and achieve state-of-the-art classification performance
in some settings. We also show that our clustering algorithm
outperforms existing baselines on a simple proof-of-concept
dataset as well as several human activity sensor data sets,
and that our data generation results suggest that there may
be value in further developing and studying new learned
distributional divergence measures. Our code is available at
https://github.com/kubrac/Deep_Bregman.

2. Related Work

Much of the early work on metric learning focused on the
linear setting, often referred to as Mahalanobis metric learn-
ing. In this setting, the goal is to learn a global linear trans-
formation of the data and apply standard distances such as
the Euclidean distance on top of the learned transformation.
This is often expressed as learning a distance function of the

Linear(Mahalanobis)
Metric Learning

Beyond Euclidean

Bregman Divergence
Learning

Deep Metric
Learning

Deep Divergence
Learning

Weights
to

Functions

Figure 1. Overview of our framework in comparison to existing
metric learning approaches. Deep Bregman divergences feature
both the ability to learn divergences beyond Euclidean (such as
divergences over distributions) while encompassing parameteriza-
tions that are amenable to deep learning architectures.

form dA(x, y) = (x − y)T A(x − y), where A is a positive
semi-definite matrix. This is equivalent to learning a lin-
ear transformation G, where A = GT G, since dA(x, y) =
(x−y)T GT G(x−y) = kGx−Gyk22. Examples of this ap-
proach to metric learning include MMC (Xing et al., 2003),
MCML (Globerson & Roweis, 2005), LMNN (Weinberger
& Saul, 2009), ITML (Davis et al., 2007), POLA (Shalev-
Shwartz et al., 2004), LEGO (Jain et al., 2008), and others.
See the surveys by Kulis (2013) and Bellet et al. (2015) for
further references and details on some of these approaches.
Note that one of the advantages of the linear approach is
that one can often provide performance guarantees—for in-
stance, a significant amount of work has gone into proving
regret bounds in the online setting (Shalev-Shwartz et al.,
2004), as well as generalization bounds (Bellet & Habrard,
2015; Cao et al., 2016) for some Mahalanobis metric learn-
ing models.

While linear methods are simpler and can often be analyzed
theoretically, in practice it is often useful to learn other, non-
linear, approaches to metric learning. For instance, one can
show that many linear models can be appropriately adapted
to run in kernel space (Jain et al., 2012; Chatpatanasiri et al.,
2010). Another more recent approach to moving beyond
linear metric learning is the Bregman divergence learning
framework discussed in the introduction (Siahkamari et al.,
2019; Wu et al., 2009). Here we move beyond learning
Mahalanobis metrics, but instead focus on a strictly larger
class of divergences that includes asymmetric divergences
such as the KL-divergence, Itakura-Saito divergence, and
others. These may be considered as non-linear approaches
(since the resulting divergence does not involve linear trans-
formations in general). The Bregman learning framework is
thus more powerful than linear approaches but also remains
well-principled: one can prove generalization bounds in this
framework.

https://github.com/kubrac/Deep_Bregman

Deep Divergence Learning

The third, and by far the most well-studied, approach to
non-linear metric learning is known as deep metric learning,
and involves learning a neural network to embed data into
some new space, where standard distances such as Euclidean
distance are used. If f is a function that maps an input x
to an embedding f(x), then the resulting learned metric is
typically kf(x) − f(y)k22. Several popular loss functions
have been proposed to learn such a metric—the two main
ones are the contrastive loss (Chopra et al., 2005) and the
triplet loss (Hoffer & Ailon, 2015). Both utilize supervision
(pairwise for the contrastive loss and relative constraints for
the triplet loss) and use the learned distance kf(x)−f(y)k22.
Moreover, there has been considerable follow-up work that
explores how best to choose pairs or triples of points from
a training set to achieve the best results (Hermans et al.,
2017). There has also been work on deep metric learning
using other losses, such as the angular loss (Wang et al.,
2017) or the average precision for deep metric learning to
rank (Cakir et al., 2019).

Our work also has ties to methods involving comparing
distributions. Examples of such measures that are relevant
to our work include the maximum mean discrepancy met-
ric (also known as the integral probability metric) (Gretton,
2012), the kernel MMD, and the Wasserstein distance (Ar-
jovsky et al., 2017). Several notions of divergences over
distributions have been used for unsupervised data gener-
ation in GAN-type models, including the Jensen-Shannon
divergence (Goodfellow et al., 2014), the Wasserstein dis-
tance (Arjovsky et al., 2017), and the MMD (Li et al., 2015;
2017).

3. Deep Bregman Divergences

We now turn our attention to functional Bregman diver-
gences, the main tool for our learning problems. Our goal is
two-fold: we first prove a result that characterizes the form
for a symmetric functional Bregman divergence and show
connections between this form and existing metric learn-
ing models. Second, we consider a parameterization for
arbitrary functional Bregman divergences that will permit
learning via neural networks.

3.1. Bregman Divergences and Functional Bregman
Divergences

A Bregman divergence is a generalized measure of distance
between objects, parameterized by a strictly convex function
φ (Bregman, 1967). Let φ : Ω → R, where Ω is a closed,
convex set. The Bregman divergence with respect to φ (for
vector inputs) is defined as

Dφ(x, y) = φ(x) − φ(y) − (x − y)T rφ(y).

Note that the last term represents the derivative of φ in the
direction of x − y. Examples of Bregman divergences in-

clude the squared Euclidean distance, parameterized by
1φ(x) = kxk22; the KL-divergence, parameterized by P2

φ(x) = i xi log xi; and the Itakura-Saito distance, pa-P
rameterized by φ(x) = − log xi.i

Bregman divergences arise in many settings in machine
learning and related areas. In the study of exponential fam-
ily distributions, there is a bijection between the class of
regular Bregman divergences and regular exponential fami-
lies (see Banerjee et al. (2005)). In optimization, Bregman
divergences arise frequently; for instance, mirror descent
utilizes Bregman divergences, and Bregman divergences
were originally proposed as part of constrained optimiza-
tion (Bregman, 1967). In the study of clustering, Bregman
divergences offer a straightforward way to extend the k-
means algorithm beyond the use of the squared Euclidean
distance (Banerjee et al., 2005). A consequence of this is a
way to cluster multivariate Gaussians in a k-means frame-
work (Davis & Dhillon, 2006); we will use this algorithm
as a baseline later in the paper.

More recently, Frigyik et al. (2008) proposed and studied
an extension to standard Bregman divergences called func-
tional Bregman divergences, where instead of vector inputs,
we compute a divergence between pairs of functions (or
distributions). In this case, given two functions p and q, and
a strictly convex functional φ whose input space is a convex
set of functions and whose output is in R, the corresponding
Bregman divergence is Z
Dφ(p, q) = φ(p) − φ(q) − [p(x) − q(x)]δφ(q)(x)dx.

Here δφ(q) is the functional derivative of φ at q and the
integral term calculates this derivative in the direction of
p − q.1 An example of a functional Bregman divergenceR
arises when we choose φ(p) = p(x)2dx; in this case, one
can work out that the functional derivative of φ at p is 2pR
and that the resulting functional divergence is [p(x) −
q(x)]2dx.

3.2. The Symmetric Setting
Our first goal is to relate functional Bregman divergences
back to concepts in metric learning and other related learn-
ing models. To do this, let us define a symmetric functional
Bregman divergence as a functional Bregman divergence
such that Dφ(p, q) = Dφ(q, p) for all p and q.

Our first result characterizes the form of an arbitrary sym-
metric functional Bregman divergence. This result can be
stated as follows:

Theorem 3.1. A functional Bregman divergence Dφ(p, q)
is a symmetric functional Bregman divergence if and only if

1Note that Frigyik et al. (2008) utilize the more general Fréchet
derivative. Also, for simplicity, we limit ourselves to Riemann
integrals unless otherwise noted. See Appendix for more details.

Deep Divergence Learning

it has the following form: ZZ
Dφ(p, q) = (p(x) − q(x))(p(y) − q(y))ψ(x, y)dxdy,

where ψ(x, y) is some symmetric positive semi-definite func-
tion.

For instance, the example from above, where φ(p) =R
p(x)2dx, can be seen as a special case where ψ(x, y) = 1

if x = y and 0 otherwise. The proof of the theorem appears
in the appendix. In essence, this result extends an anal-
ogous result known from the vector setting, which states
that any symmetric Bregman divergence must be a Maha-
lanobis distance, namely Dφ(x, y) = (x−y)T A(x−y) for
some positive semi-definite matrix A (Bauschke & Borwein,
2001).

Next we must show that, for particular choices of the
symmetric positive semi-definite function ψ, as well as
restrictions on p and q, the resulting divergence yields
familiar forms.

Deep Metric Learning and Moment-Matching. Let us
consider ψ(x, y) = fW (x)

T fW (y), where fW (x) is an
embedding given by a neural network parameterized by
weights W . This is clearly a positive semi-definite function,
as it is an inner product between embedded data points.
Further, assume p and q are distributions.

First, from Fubini’s theorem, observe that we can re-write
the functional Bregman divergence in this special case as

Dφ(p, q) = kEp[fW] − Eq[fW]k2 .

This is a moment-matching type of metric. Note the similar-
ity to the Wasserstein distance (Arjovsky et al., 2017) and
the maximum mean discrepancy (Gretton, 2012). (In those
cases, one further takes a supremum over the function fW ,
which we would also do when performing optimization to
learn fW .)

This general form of the divergence is typically difficult to
compute. We can consider the case when we have finite
samples or, equivalently, we let p and q be given by empiri-
cal distributions over sets of points P and Q, respectively.
In this case, the resulting divergence simplifies to

2X X1 1
Dφ(p, q) = fW (x) − fW (y) .

|P | |Q|
x∈P y∈Q

This yields a divergence measure between distributions p
and q that matches the first moment, similar to how MMD
operates.

To make connections to deep metric learning, consider the
case where P and Q are of size one, namely Dirac delta

functions at points x and y, respectively. Then the diver-
gence is simply

Dφ(p, q) = kfW (x) − fW (y)k2 ,

or just the squared Euclidean distance after embedding the
data via a neural network. This form is precisely what
nearly all deep metric learning methods employ: they learn a
neural network to embed data, apply the (squared) Euclidean
distance in the mapped space, and then apply a loss function
such as a contrastive or triplet loss on top of this mapped
distance (Chopra et al., 2005; Hoffer & Ailon, 2015).

Linear Metric Learning. If we replace the integral in the
functional Bregman divergence with a Lebesgue integral (as
it was defined in the original functional Bregman divergence
paper), then use the counting measure for integration, the
integral in the functional Bregman divergence simply be-
comes a sum over the elements in the measure space. In this
case, ψ(x, y) is then replaced by a positive semi-definite
matrix A, and function inputs to the divergence are replaced
by vectors x and y. Then the resulting divergence is the
usual Mahalanobis distance

Dφ(x, y) = (x − y)T A(x − y).

Thus, we can recover the usual Mahalanobis metric used in
linear metric learning under our framework.

Kernel Metric Learning. We can also recover familiar
kernel forms of the preceding functions. In the case of a
kernel function ψ(x, y) = κ(x, y), the divergence recovers
the moment-matching objective but with the norm induced
by the kernel’s reproducing kernel Hilbert space, similar
to kernel MMD (Gretton, 2012). Further, in the case of
a kernel function κ(x, y) = g(x)T Ag(x), where g(x) is
an embedding to a reproducing kernel Hilbert space, and
A is a positive-definite operator, the resulting divergence
in the single-sample case yields the divergence studied for
Mahalanobis metric learning in kernel space (Kulis et al.,
2009).

A summary of some of the special cases described in this
section appear in Table 3.2.

3.3. The General Setting
Next we consider the more general setting, i.e., when the
functional divergence may not be symmetric. Here our goal
is to introduce a parameterization of the functional diver-
gences that are amenable to learning via neural networks.
We term the resulting divergences as deep Bregman diver-
gences.

A key insight of Siahkamari et al. (2019) was that one can
approximate a strictly convex function arbitrarily well with
a piecewise linear function. In particular, they chose to

Deep Divergence Learning

Case Integral Setting ψ(x, y) Inputs to Dφ Dφ

Mahalanobis Distance Lebesgue + Count. Meas. A � 0 Vectors x, y (x − y)T A(x − y)
Deep Metric Learning Riemann fW (x)

T fW (y) Dirac Deltas at x, y kfW (x) − fW (y)k2

Moment Matching Riemann fW (x)
T fW (y) Distributions p, q kEp[fW] − Eq [fW]k2

Table 1. Some of the special cases of Dφ(p, q) for the symmetric divergence setting.

parameterize the generating function φ of a vector Bregman
divergence by the following max-affine function:

Tφ(x) = max(x wc + bc).
c

Here c ranges from 1 to K, where K is the number of hyper-
planes used to approximate the underlying strictly convex
function. Such functions can be used to approximate any
vector Bregman divergence arbitrarily well. Thus, learning
a Bregman divergence amounts to learning the weights wi

and biases bi given appropriate supervision.

We can perform an analogous parameterization in the func-
tional divergence setting. By generalizing the piecewise
linear functions of Siahkamari et al, we can define a convex
generating functional. The following theorem demonstrates
that every convex generating functional can be expressed
in terms of linear functionals, thus justifying our choice of
parameterization:

Theorem 3.2. Let φ(p) be a convex generating functional
corresponding to a functional Bregman divergence Dφ.
Then φ can be formulated as Z

φ(p) = sup p(x)w(x)dx + bw,
(w,bw)∈A

where A is a set of affine functionals in which each member
is characterized by w and bw.

For our parameterization, we replace supremum with maxi-
mum, and denote each function pair as (wc, bc) in a count-
able set of functionals A. See Appendix A.2 and B for
the proof and details. In the case where p and q are dis-
tributions, we may write this more succinctly as φ(p) =� �
max Ep[wc] + bc , where the expectation is taken with
respect to the subscript distribution p. Note that straight-
forward application of the calculus of variations reveals
that the functional derivative of φ(q) is simply wq ∗ , where R ∗ q = argmax [q(x)wc(x)dx + bc]. Consequently, thec
functional Bregman divergence between p and q can be
expressed as Dφ(p, q) =

�Z � �Z �

p(x)wp ∗ (x)dx+bp ∗ − p(x)wq ∗ (x)dx+bq ∗ . (1)

For distributions, this is more succinctly Dφ(p, q) =
(Ep[wp ∗] + bp ∗) − (Ep[wq ∗] + bq ∗).

This parameterization of the functional φ is now amenable
to learning a functional divergence given data. In particular,
we now parameterize a divergence by the corresponding
weight functions w1, ..., wK and biases b1, ..., bK . If we
assume that each of these weight functions are given by deep
neural networks, then it becomes natural to set up learning
problems where we aim to learn the underlying divergence
given data. The resulting deep Bregman divergences will be
shown to yield novel learning problems and strong empirical
performance on benchmark metric learning tasks. In the
next section we will detail our approach to extend deep
metric learning to this setting.

4. Learning Problems and Applications

In the previous section, we saw in the symmetric setting
how different choices of the functions related to a func-
tional Bregman divergence yield existing forms, as well as
how one may parameterize a general asymmetric functional
Bregman divergence using deep neural networks. Now we
connect the divergences discussed in the previous section
to particular learning problems. In particular, we describe
several novel applications and learning problems that arise
from learning deep Bregman divergences.

4.1. From Deep Metric Learning to Deep Divergence
Learning

Consider a learning problem where we aim to learn a deep
divergence given supervised data. As with deep metric learn-
ing, we will consider the case when p and q are empirical
distributions over single points x and y, respectively. We
saw in the previous section that we will parameterize our
deep divergence by weight functions w1, ..., wK and biases
b1, ..., bK . To make things simpler, let us encompass all of
these weight functions into a single large neural network
with weights W . The network will have K different outputs,
one for each weight function. Many possible architectures
are possible to capture this type of network; we consider an
architecture where several layers are shared in the network,
and then the network branches into K subnetworks, each
with its own independent set of weights. See Figure 2 for
the network that we employ in our benchmark experiments.

Now, suppose we pass x through the network. Each subnet-
work c produces a single output wc(x) + bc, and there are
K total outputs, one per subnetwork. The index of the max-

∗imum output is p . Similarly, pass y through the network;

Deep Divergence Learning

...

..
.

..
.

w1(x)+b1

w2(x)+b2

wk(x)+bk

..
.

1

2

kinput (x) conv layers
dense layers

split into k subnetworks

Figure 2. The general architecture we employ for deep Bregman
divergences on image data. For K functionals, we produce K
separate outputs, which are then used to compute the divergence
over pairs of inputs.

the index of the maximum output across the K subnetworks
∗is q . Then, by (1), the divergence is the difference be-

∗ ∗tween the output of x at p and the output of x at q . For
instance, suppose that each of the K outputs corresponds to
a different class. Then the divergence will be zero if both
points achieve a maximum value for the same class (i.e.,
they are both classified into the same class). The divergence
is non-zero if the points are assigned to different classes,
and the divergence grows as the two outputs become more
disparate.

One can now set up a divergence learning problem over
pairs or triples of points under this framework. Suppose we
are given triples of points (x, y, z), where x should have a
smaller divergence to y than to z. One can easily apply exist-
ing loss deep metric learning loss functions with the learned
divergence in place of the usual squared Euclidean distance.
The contrastive loss and triplet loss are the two most com-
mon ones with their definitions given below respectively:

1 � �
Lcont(x, y, z) = d(x, y) + max{m − d(x, z), 0}2 ,

2

Ltriplet(x, y, z) = max{d(x, y) − d(z, x) + m, 0},

where m is a margin value to impose a lower bound on
the distance between the dissimilar pairs for the contrastive
case and the difference between the relative distances for
the triplet case. Typically, the distance measured in both
loss functions, d, is the Euclidean distance; however, for
our loss functions, we replace the distance measure by our
learned deep Bregman divergence.

In experiments, we will compare existing deep metric learn-
ing approaches to the more general deep divergence learning
problem considered here, and we will see that we obtain
gains over the existing models on standard benchmarks.

4.2. Learning over Distributions
A key advantage to our framework is that we need not re-
strict ourselves only to divergences between single points.

As we saw earlier, we can also capture divergences between
distributions of points that are similar to what is used for the
MMD and the Wasserstein distance. Here we will discuss
applications involving learning divergences over distribu-
tions.

Data Generation. Consider the problem encountered in
many GAN applications: we aim to learn a generator
for data such that we minimize some distributional diver-
gence between the real and generated data distributions. In
existing GAN literature, divergences considered include
the Jensen-Shannon divergence (Goodfellow et al., 2014),
MMD distance (Li et al., 2015; 2017), and the Wasserstein
distance (Arjovsky et al., 2017).

Under the deep divergence framework, rather than employ-
ing a fixed divergence, we can learn one from data. In
this setting, we consider two distributions psynth and preal,
corresponding to distributions of generated and real data,
respectively. Assume that psynth is generated by passing
randomly-generated input data through a generator g, as is
standard with GAN models. As with GAN training, learn-
ing proceeds in an adversarial manner. We aim to learn a
generator to minimize Dφ(psynth, preal), while simultane-
ously we aim to learn weights of the underlying network
parameterizing Dφ to maximize Dφ(psynth, preal). As with
GANs, we alternate between gradient updates for these two
objectives.

We note that, in practice, it is useful to restrict our attention
to the case when K = 2, as it yields a particularly inter-
pretable model. In this case, we can think of one of the
two subnetworks as outputting a larger value on real data,
while the other subnetwork as outputting a larger value on
synthetic data. Thus, the network that parameterizes the di-
vergence is analogous to the discriminator in a GAN model.
When training the underlying weights of this network W ,
we can take pairs or triples of real and synthetic data and
utilize a triplet or contrastive loss to encourage the output on
the real data to be larger for one subnetwork and the output
on the synthetic data to be larger for the other subnetwork.
Similarly, when training the generator g, we use a loss that
encourages real and synthetic data to both have the same
maximal output.

Semi-Supervised Distributional Clustering.

As another application of learning divergences over distri-
butions, consider a scenario where instead of clustering a
set of data points, we aim to cluster a set of distributions. In
this setup, each distribution may correspond to an empirical
distribution over a set of points—for instance, we may have
a distribution of ratings for each item in an online store.
The goal is: given a set of such distributions, to cluster the
distributions together into a set of clusters.

Davis & Dhillon (2006) considered a version of this prob-

Deep Divergence Learning

Figure 3. (Left) Plot of the means of the n = 500 Gaussian distributions, color-coded by cluster identity. (Middle left) Plot of data after
generating 50 points from each Gaussian. (Middle right) Embedding learned by our method using contrastive loss with a moment-matching
function. (Right) Embedding learned by the baseline deep learning approach.

lem where each distribution was given by a multivariate
Gaussian. Since the KL-divergence between multivariate
Gaussians is itself a Bregman divergence, one can use prop-
erties of Bregman divergences to generalize the k-means
algorithm to this setting. Here, we will consider a version
of this problem that is both semi-supervised (so pairs of
distributions that should or should not be clustered together
are provided over a training set), and does not assume that
each distribution is a multivariate Gaussian. Our approach
also removes the implicit assumption that the means of the
distributions are linearly separable for each cluster.

Analogous to Davis and Dhillon, given a functional Breg-
man divergence defined over distributions, one can apply a
generalization of k-means to cluster the distributions. As
shown by Frigyik et al. (2008), the mean minimizes the
expected functional Bregman divergence over a set of dis-
tributions, analogous to the finite-dimensional case. Thus,
k-means can be generalized to a setting where the squared
Euclidean distance between vectors is replaced by the corre-
sponding functional Bregman divergence over distributions.

If we represent each distribution by an empirical distribution
over its underlying points, we can easily compute a param-
eterized functional Bregman divergence between pairs of
distributions. In our experiments, we will consider in par-
ticular learning a symmetric divergence on supervised data
using the moment-matching distance with a contrastive or
triplet loss. Then, once we have learned the divergence
from data, we replace the squared Euclidean distance in the
k-means algorithm with the learned divergence to directly
cluster data in the test set.

5. Experimental Results
We now empirically compare our proposed deep divergence
framework to existing models. Due to space considerations,
some further details and results are available in the supple-
mentary material.

5.1. Clustering

Clustering Multivariate Gaussian Distributions. To
begin, we consider a simple demonstration of the advantages
of our approach on synthetic data for the semi-supervised
distributional clustering problem. We generated n = 500
training points, each assigned to one of three clusters. Each
data point is represented by a multivariate Gaussian; the
means of these Gaussians were uniformly sampled over
rings of radius .2, .6, and 1 plus Gaussian noise, depending
on the cluster identity, and the covariance of each Gaussian
was .1 times the identity. See Figure 3 for a plot of sampled
means, along with data after generating from these Gaus-
sians. We also generated n = 200 test points in the same
manner.

We compare three approaches to cluster the data. Our first
baseline is the method of Davis & Dhillon (2006), which is
an unsupervised clustering algorithm designed specifically
to cluster multivariate Gaussian distributions. The second
baseline applies deep metric learning on all generated points
from all the Gaussians; we apply contrastive and triplet
losses separately and learn a 3-layer multilayer perceptron
(MLP) over the data in each case. The number of units in
each layer were set to 1000, 500, and 2, and standard ReLU
activation was used. The third approach is our method; we
apply the (empirical) moment-matching function from the
symmetric setting, treating each distribution as its own data
point, in conjunction with a contrastive and triplet losses to

Baseline Method Our Method Davis &
Metrics

Triplet Contrastive Triplet Contrastive Dhillon

Mean 0.638 0.639 0.997 0.999 0.550
RI

Std 0.005 0.005 0.003 0.003 0.009

Mean 0.197 0.198 0.993 0.997 0.005
ARI

Std 0.012 0.013 0.007 0.006 0.012

Table 2. Rand index and adjusted rand index scores for different
clustering experiments, where the baseline method treats each
training point independently.

Deep Divergence Learning

Datasets Baseline Method Our Method
Davis &
Dhillon

WHARF
RI

ARI

Mean
Std

Mean
Std

0.832
0.002
0.098
0.006

0.887

0.004
0.364

0.022

0.876
0.007
0.327
0.026

MHEALTH
RI

ARI

Mean
Std

Mean
Std

0.849
0.005
0.106
0.008

0.860

0.007
0.149

0.018

0.664
0.006
0.023
0.001

WISDM
RI

ARI

Mean
Std

Mean
Std

0.894
0.004
0.086
0.005

0.907

0.003
0.127

0.014

0.900
0.003
0.089
0.009

Table 3. Rand index and adjusted rand index scores for different
clustering experiments performed on real data, where the baseline
method treats each training point independently.

learn a 3-layer MLP with the same settings as the baseline
MLP. On the test set, we use the learned divergence in place
of the squared Euclidean distance in a k-means algorithm
for both the second and third method.

We compute the rand index and adjusted rand index scores
on the test set in each case, averaged over 10 runs for each
of the three methods. The results are given in Table 2. The
Davis & Dhillon method cannot cluster the multivariate
Gaussians, as their method is restricted to linear separability
of the means. The baseline deep metric learning method
fails due to the overlap of the generated data across clusters,
whereas the distributional divergence approach is able to
perfectly cluster the test data in most runs. We can also
visualize the embeddings learned by the second and third
method, where we see that our learned embeddings capture
the correct cluster structure, as pictured in Figure 3.

Human Activity Recognition Task. We next perform
further experiments on human activity recognition using
time-varying sensor data, in order to demonstrate the capa-
bilities of our distributional clustering method on real data.
We use WHARF (Bruno et al., 2014), MHEALTH (Banos
et al., 2014; 2015), and WISDM (Weiss et al., 2019) datasets
in our initial experiments. These datasets are collections of
multimodal body sensor recordings as test subjects perform
different activities of daily living (ADL), including but not
limited to sitting, standing, eating, walking, and jogging.

The experimental setup is the same as the previous task,
where we compute the rand index and adjusted rand index
scores on the test set in each experiment, averaged over 10
runs for each of the three methods. Results are given in
Table 3. We note that only experiments using contrastive
loss are reported here; though our distributional loss formula
has the potential to be applied directly here, we leave this as
future work.

We provide a visualization of the embeddings learned by

Euclidean Deep Bregman
Datasets

Triplet Contrastive Triplet Contrastive

MNIST 99.50 99.63 99.61 99.56

Fashion MNIST 93.24 93.57 94.90 94.00

SVHN 92.58 94.88 94.03 94.12

Cifar10 77.00 79.40 81.40 80.80

STL10 59.97 63.10 62.64 60.91

Table 4. K-nn classification accuracy results on the given datasets
(without data augmentation or using learned features). The bold
values indicate the best triplet loss (Bregman versus Euclidean)
and contrastive loss (Bregman versus Euclidean) results.

our method and the baseline method, where we see that our
learned embeddings capture the correct cluster structure, in
the appendix.

5.2. Deep Metric Learning Comparisons
Next we consider comparisons between our general deep
divergence learning framework and existing deep metric
learning models on standard benchmarks, to demonstrate
that our approach’s flexibility yields improved performance
on several datasets and tasks.

We compare standard deep metric learning approaches to
our proposed approach on the four benchmark datasets used
in the original triplet loss paper (Hoffer & Ailon, 2015)—
MNIST, Cifar10, SVHN, and STL10—as well as Fashion
MNIST. We use the same basic architecture for the deep
Bregman divergence network as shown in Figure 2; for the
Euclidean case we do not employ separate subnetworks
in the dense layers. We treat several architecture choices
as hyperparameters and validate over these hyperparame-
ters using Bayesian optimization (tuned separately for each
dataset); Table 5 lists the hyperparameters that we search
over, along with the ranges of values considered.

We consider separately both triplet loss and contrastive loss,
and report in bold the best values for each loss. For the
triplet loss, we consider all triplets in a batch when com-
puting the loss. We perform no data augmentation. Results

Model hyperparams Training hyperparams

layers 2 - 5 margin 0.1 - 2.0

conv filters 16 - 128 epochs 10 - 40

conv kernels 3 - 9 learning rate 10−5 - 10−1

conv biases T / F batch size 32-128

poolings T / F optimizer adam / sgd / rms

batchnorms T / F K in k-nn 5 - 10

dense units 50 - 300 normalization T / F

Table 5. Hyperparameter intervals used for tuning. First 100 itera-
tions are used to narrow down the space, then 200 more iterations
are run for each benchmark. T: True, F: False.

Deep Divergence Learning

Figure 4. Real and generated sample batches from CelebA (Top
row) and MNIST (Bottom row) datasets.

are shown in Table 4, where we see small but significant
gains in classification accuracy for the Bregman method as
compared to the standard deep metric learning approach,
particularly in the triplet loss case. On Fashion MNIST, we
outperform the current state-of-the-art for no data augmen-
tation (94.23% from Assunçao et al. (2018)), even though
we are not directly training a classifier. We also note that we
would expect further gains in performance with more sophis-
ticated architectures (e.g., ResNets and other more recent
architectures), perhaps yielding near state-of-the-art perfor-
mance on more datasets; however, the main goal of this
comparison is not to achieve state-of-the-art performance
but rather to present a fair comparison between the Bregman
and Euclidean approaches on standard benchmarks.

5.3. Unsupervised Data Generation
Finally, we consider some qualitative results where we show
that our approach can be used for generating data with sim-
ilar performance to GANs. We consider the problem dis-
cussed earlier, namely where we train a deep divergence
model to minimize a learned divergence between real and
synthetic data. We apply our approach on 28x28 MNIST
and CELEBA datasets, as is standard for GAN applications.
We adjust the strides to adapt the network for different input
sizes. We keep model structures close to standard in order to
show the effectiveness of the divergence formula we intro-
duced. We use a generator consisting of 4 deconvolutional
layers and a discriminator (i.e., the network parameterizing
the deep Bregman divergence) with 4 convolutional layers,
with a dropout rate of 0.5 in between the layers as well as
lrelu and tanh activations. In the discriminator network, the
convolutional layers are followed by two 2-layer subnet-
works (again similar to Figure 2, where K = 2 in this case).
For the discriminator, we use the contrastive loss with a
margin of 0.4, whereas the generator directly attempts to
minimize deep Bregman divergence between the real and
generated images. More hyperparameter details are given
in the appendix.

Some randomly chosen results are presented in Figure 4,
where we see that the distribution divergence learned by

our method is able to generate realistic-looking images with
no labeled supervision. We note that further theoretical
analysis and experimentation of these methods is required
to determine situations where our loss functions may be
more desirable than existing GAN approaches.

6. Conclusions

In this paper, we examined a novel generalization of both
Bregman divergence learning and deep metric learning,
which we call deep divergence learning. This framework
offers several appealing advantages: it unifies a number of
existing ideas in metric learning under a single framework,
it suggests a way to extend deep metric learning beyond the
Euclidean setting, and it naturally yields learning problems
involving divergences over distributions. Empirically we
have seen advantages of our approach compared to existing
deep metric learning methods.

7. Acknowledgements

This research was supported by NSF CAREER Award
1559558.

References

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein
GAN, 2017. arXiv:1701.07875.

Assunçao, F., Lourenço, N., Machado, P., and Ribeiro, B.
Denser: Deep evolutionary network structured represen-
tation. arXiv preprint arXiv:1801.01563, 2018.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. Clus-
tering with Bregman divergences. Journal of Machine
Learning Research, 6:1705–1749, 2005.

Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M.,
Pomares, H., Rojas, I., Saez, A., and Villalonga, C.
mhealthdroid: a novel framework for agile development
of mobile health applications. In International workshop
on ambient assisted living, pp. 91–98. Springer, 2014.

Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas,
M., Holgado-Terriza, J. A., Lee, S., Pomares, H., and
Rojas, I. Design, implementation and validation of a
novel open framework for agile development of mobile
health applications. Biomedical engineering online, 14
(2):S6, 2015.

Bauschke, H. H. and Borwein, J. M. Joint and separate con-
vexity of the Bregman distance. Studies in Computational
Mathematics, 8:23–36, 2001.

Bellet, A. and Habrard, A. Robustness and generalization for
metric learning. Neurocomputing, 151:259–267, 2015.

Deep Divergence Learning

Bellet, A., Habrard, A., and Sebban, M. Metric learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 9(1):1–151, 2015.

Bregman, L. M. The relxation method of finding the com-
mon points of convex sets and its application to the so-
lution of problems in convex programming. USSR Com-
putational Mathematics and Mathematical Physics, 7(3):
200–217, 1967.

Bruno, B., Mastrogiovanni, F., and Sgorbissa, A. A pub-
lic domain dataset for adl recognition using wrist-placed
accelerometers. In the 23rd IEEE International Sympo-
sium on Robot and Human Interactive Communication,
pp. 738–743. IEEE, 2014.

Cakir, F., He, K., Xide, X., Kulis, B., and Sclaroff, S. Deep
metric learning to rank. In Computer Visiona and Pattern
Recognition, 2019.

Cao, Q., Guo, Z.-C., and Ying, Y. Generalization bounds for
metric and similarity learning. Machine Learning, 102
(1):115–132, 2016.

Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P.,
and Kijsirikul, B. A new kernelization framework for Ma-
halanobis distance learning algorithms. Neurocomputing,
73(10–12):1570–1579, 2010.

Chopra, S., Hadsell, R., and LeCun, Y. Learning a similarity
metric discriminatively, with application to face verifica-
tion. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2005.

Davis, J. and Dhillon, I. S. Differential entropic cluster-
ing of multivariate Gaussians. In Advances in Neural
Information Processing Systems (NIPS), 2006.

Davis, J., Kulis, B., Jain, P., Sra, S., and Dhillon, I.
Information-theoretic metric learning. In Proc. 24th In-
ternational Conference on Machine Learning (ICML),
2007.

Frigyik, B. A., Srivastava, S., and Gupta, M. R. Functional
Bregman divergences and Bayesian estimation of distri-
butions. IEEE Transactions on Information Theory, 54
(11):5130–5139, 2008.

Globerson, A. and Roweis, S. Metric learning by collapsing
classes. In Advances in Neural Information Processing
Systems (NIPS), 2005.

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov,
R. Neighbourhood components analysis. In Advances in
Neural Information Processing Systems (NIPS), 2004.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.

Generative adversarial networks. In Advances in Neural
Information Processing Systems (NIPS), 2014.

Gretton, A. A Kernel Two-Sample Test. Journal of Machine
Learning Research, 13:723–773, 2012.

Hermans, A., Beyer, L., and Leibe, B. In Defense of the
Triplet Loss for Person Re-Identification. arXiv preprint
arXiv:1703.07737, 2017.

Hoffer, E. and Ailon, N. Deep metric learning using triplet
network. In International Workshop on Similarity-Based
Pattern Recognition, pp. 84–92. Springer, 2015.

Jain, P., Kulis, B., Dhillon, I., and Grauman, K. Online
metric learning and fast similarity search. In Advances in
Neural Information Processing Systems (NIPS), 2008.

Jain, P., Kulis, B., Davis, J., and Dhillon, I. Metric and
kernel learning using a linear transformation. Journal of
Machine Learning Research, 13:519–547, 2012.

Kulis, B. Metric learning: A survey. Foundations and
Trends R in Machine Learning, 5(4):287–364, 2013.

Kulis, B., Sustik, M., and Dhillon, I. Low-rank kernel
learning with Bregman matrix divergences. Journal of
Machine Learning Research, 10:341–376, 2009.

Li, C., Chang, W., Cheng, Y., Yang, Y., and Poczos, B.
MMD-GAN: Towards deeper understanding of moment
matching network. In Neural Information Processing
Systems, 2017.

Li, Y., Swersky, K., and Zemel, R. Generative moment
matching networks. In International Conference on Ma-
chine Learning, 2015.

Shalev-Shwartz, S., Singer, Y., and Ng, A. Y. Online and
batch learning of pseudo-metrics. In Proceedings of the
twenty-first international conference on Machine learn-
ing, pp. 94. ACM, 2004.

Siahkamari, A., Saligrama, V., Castanon, D., and Kulis, B.
Learning Bregman divergences, 2019. arXiv:1905.11545.

Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. Deep metric
learning with angular loss. In International Conference
on Computer Vision, 2017.

Weinberger, K. Q. and Saul, L. K. Distance metric learning
for large margin nearest neighbor classification. Journal
of Machine Learning Research, 10:207–244, 2009.

Weiss, G. M., Yoneda, K., and Hayajneh, T. Smartphone
and smartwatch-based biometrics using activities of daily
living. IEEE Access, 7:133190–133202, 2019.

Deep Divergence Learning

Wu, L., Jin, R., Hoi, S. C., Zhu, J., and Yu, N. Learning
Bregman distance functions and its application for semi-
supervised clustering. In Advances in neural information
processing systems, pp. 2089–2097, 2009.

Xing, E. P., Jordan, M. I., Russell, S. J., and Ng, A. Y.
Distance metric learning with application to clustering
with side-information. In Advances in neural information
processing systems, pp. 521–528, 2003.

