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Classical linear metric learning methods have re-
cently been extended along two distinct lines: 
deep metric learning methods for learning em-
beddings of the data using neural networks, and 
Bregman divergence learning approaches for ex-
tending learning Euclidean distances to more gen-
eral divergence measures such as divergences over 
distributions. In this paper, we introduce deep 
Bregman divergences, which are based on learn-
ing and parameterizing functional Bregman diver-
gences using neural networks, and which unify 
and extend these existing lines of work. We show 
in particular how deep metric learning formula-
tions, kernel metric learning, Mahalanobis met-
ric learning, and moment-matching functions for 
comparing distributions arise as special cases of 
these divergences in the symmetric setting. We 
then describe a deep learning framework for learn-
ing general functional Bregman divergences, and 
show in experiments that this method yields supe-
rior performance on benchmark datasets as com-
pared to existing deep metric learning approaches. 
We also discuss novel applications, including a 
semi-supervised distributional clustering problem, 
and a new loss function for unsupervised data 
generation. 

1. Introduction 

The goal of metric learning is to use supervised data in or-
der to learn a distance function (or more general divergence 
measure) that is tuned to the data and task at hand. Classical 
approaches to metric learning are generally focused on the 
linear regime, where one learns a linear mapping of the 
data and then applies the Euclidean distance in the mapped 
space for downstream tasks such as clustering, ranking, and 
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Goldberger et al., 2004). These methods, known as Ma-
halanobis metric learning approaches, have been analyzed 
theoretically, are scalable, and usually involve convex opti-
mization problems that can be solved globally (Kulis, 2013; 
Bellet et al., 2015). 

Classical metric learning methods have been extended along 
various axes; two important directions are deep metric learn-
ing and Bregman divergence learning. Deep metric learning 
approaches replace the linear mapping learned in Maha-
lanobis metric learning methods with more general map-
pings that are learned via neural networks (Hoffer & Ailon, 
2015; Chopra et al., 2005). On the other hand, Bregman 
divergence methods replace the squared Euclidean distance 
with arbitrary Bregman divergences (Bregman, 1967), and 
learn the underlying generating function of the Bregman 
divergence via piecewise linear approximators (Siahkamari 
et al., 2019) or convex combinations of existing basis func-
tions (Wu et al., 2009). These two extensions of classical 
metric learning are complementary and disjoint. For in-
stance, Bregman divergence approaches can be utilized in 
scenarios where one needs to compare distributions (the 
well-known KL-divergence arises as a special case), but the 
learning problems are not directly applicable to the deep 
learning setting. Similarly, deep metric learning methods 
still employ Euclidean distances, and are thus not directly 
amenable to problems where one needs to compare distribu-
tions. 

In this paper, we introduce a framework for studying Breg-
man divergences that can naturally be learned in the deep set-
ting. Figure 1 gives a high-level overview of our approach, 
which we term as deep Bregman divergences, in comparison 
to existing metric learning approaches. These divergences 
are based on functional Bregman divergences (Frigyik et al., 
2008), which were introduced as an extension of classical 
Bregman divergences but with functional inputs instead of 
vector inputs. In this functional setting, the underlying Breg-
man divergence is parameterized by a convex functional 
whose input itself is a function. 

We first perform an analysis for the symmetric divergence 
case. In this setting, we prove a result about the form for any 
functional Bregman divergence and observe that many exist-
ing metric learning models can be seen to arise from special 
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cases of this form. These include deep learning methods, 
classical linear metric learning methods, and kernel metric 
learning. There are also special cases that include moment-
matching functions, which yields connections to the Wasser-
stein distance (Arjovsky et al., 2017), maximum mean dis-
crepancy (MMD), and kernel MMD (Gretton, 2012). 

We then turn our attention to the strictly more general case, 
where the divergences need not be symmetric; the KL-
divergence is a classical example of such an asymmetric 
Bregman divergence. In this setting, we describe a frame-
work for learning an arbitrary deep Bregman divergence. 
Our approach is based on appropriately parameterizing the 
convex functional governing the underlying Bregman di-
vergence with a neural network, and learning the resulting 
parameters of that network. 

We describe several applications of our proposed deep Breg-
man divergence framework. First, we can extend existing 
deep metric learning formulations to learn more general 
deep Bregman divergences. Second, since our divergences 
can naturally be applied to compare distributions on data, 
another application is in unsupervised generative learning, 
where the goal is to minimize a learned distributional diver-
gence between real and generated data. In particular, we dis-
cuss connections to GAN models and describe some novel 
algorithms for unsupervised data generation. Third, we de-
scribe a semi-supervised distributional clustering problem. 
Here, the problem is to cluster data where each data point is 
represented as a distribution—for example, a movie’s rating 
may be represented as a distribution over user scores—using 
training data where we know whether pairs of distributions 
should be clustered together or not. 

In all three of the above settings, we show empirical results 
that highlight the benefits of our framework. In particular, 
we show that learning asymmetric divergences offers perfor-
mance gains over existing symmetric models on benchmark 
data, and achieve state-of-the-art classification performance 
in some settings. We also show that our clustering algorithm 
outperforms existing baselines on a simple proof-of-concept 
dataset as well as several human activity sensor data sets, 
and that our data generation results suggest that there may 
be value in further developing and studying new learned 
distributional divergence measures. Our code is available at 
https://github.com/kubrac/Deep_Bregman. 

2. Related Work 

Much of the early work on metric learning focused on the 
linear setting, often referred to as Mahalanobis metric learn-
ing. In this setting, the goal is to learn a global linear trans-
formation of the data and apply standard distances such as 
the Euclidean distance on top of the learned transformation. 
This is often expressed as learning a distance function of the 
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Figure 1. Overview of our framework in comparison to existing 
metric learning approaches. Deep Bregman divergences feature 
both the ability to learn divergences beyond Euclidean (such as 
divergences over distributions) while encompassing parameteriza-
tions that are amenable to deep learning architectures. 

form dA(x, y) = (x − y)T A(x − y), where A is a positive 
semi-definite matrix. This is equivalent to learning a lin-
ear transformation G, where A = GT G, since dA(x, y) = 
(x−y)T GT G(x−y) = kGx−Gyk22. Examples of this ap-
proach to metric learning include MMC (Xing et al., 2003), 
MCML (Globerson & Roweis, 2005), LMNN (Weinberger 
& Saul, 2009), ITML (Davis et al., 2007), POLA (Shalev-
Shwartz et al., 2004), LEGO (Jain et al., 2008), and others. 
See the surveys by Kulis (2013) and Bellet et al. (2015) for 
further references and details on some of these approaches. 
Note that one of the advantages of the linear approach is 
that one can often provide performance guarantees—for in-
stance, a significant amount of work has gone into proving 
regret bounds in the online setting (Shalev-Shwartz et al., 
2004), as well as generalization bounds (Bellet & Habrard, 
2015; Cao et al., 2016) for some Mahalanobis metric learn-
ing models. 

While linear methods are simpler and can often be analyzed 
theoretically, in practice it is often useful to learn other, non-
linear, approaches to metric learning. For instance, one can 
show that many linear models can be appropriately adapted 
to run in kernel space (Jain et al., 2012; Chatpatanasiri et al., 
2010). Another more recent approach to moving beyond 
linear metric learning is the Bregman divergence learning 
framework discussed in the introduction (Siahkamari et al., 
2019; Wu et al., 2009). Here we move beyond learning 
Mahalanobis metrics, but instead focus on a strictly larger 
class of divergences that includes asymmetric divergences 
such as the KL-divergence, Itakura-Saito divergence, and 
others. These may be considered as non-linear approaches 
(since the resulting divergence does not involve linear trans-
formations in general). The Bregman learning framework is 
thus more powerful than linear approaches but also remains 
well-principled: one can prove generalization bounds in this 
framework. 

https://github.com/kubrac/Deep_Bregman
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The third, and by far the most well-studied, approach to 
non-linear metric learning is known as deep metric learning, 
and involves learning a neural network to embed data into 
some new space, where standard distances such as Euclidean 
distance are used. If f is a function that maps an input x 
to an embedding f(x), then the resulting learned metric is 
typically kf(x) − f(y)k22. Several popular loss functions 
have been proposed to learn such a metric—the two main 
ones are the contrastive loss (Chopra et al., 2005) and the 
triplet loss (Hoffer & Ailon, 2015). Both utilize supervision 
(pairwise for the contrastive loss and relative constraints for 
the triplet loss) and use the learned distance kf(x)−f(y)k22. 
Moreover, there has been considerable follow-up work that 
explores how best to choose pairs or triples of points from 
a training set to achieve the best results (Hermans et al., 
2017). There has also been work on deep metric learning 
using other losses, such as the angular loss (Wang et al., 
2017) or the average precision for deep metric learning to 
rank (Cakir et al., 2019). 

Our work also has ties to methods involving comparing 
distributions. Examples of such measures that are relevant 
to our work include the maximum mean discrepancy met-
ric (also known as the integral probability metric) (Gretton, 
2012), the kernel MMD, and the Wasserstein distance (Ar-
jovsky et al., 2017). Several notions of divergences over 
distributions have been used for unsupervised data gener-
ation in GAN-type models, including the Jensen-Shannon 
divergence (Goodfellow et al., 2014), the Wasserstein dis-
tance (Arjovsky et al., 2017), and the MMD (Li et al., 2015; 
2017). 

3. Deep Bregman Divergences 

We now turn our attention to functional Bregman diver-
gences, the main tool for our learning problems. Our goal is 
two-fold: we first prove a result that characterizes the form 
for a symmetric functional Bregman divergence and show 
connections between this form and existing metric learn-
ing models. Second, we consider a parameterization for 
arbitrary functional Bregman divergences that will permit 
learning via neural networks. 

3.1. Bregman Divergences and Functional Bregman 
Divergences 

A Bregman divergence is a generalized measure of distance 
between objects, parameterized by a strictly convex function 
φ (Bregman, 1967). Let φ : Ω → R, where Ω is a closed, 
convex set. The Bregman divergence with respect to φ (for 
vector inputs) is defined as 

Dφ(x, y) = φ(x) − φ(y) − (x − y)T rφ(y). 

Note that the last term represents the derivative of φ in the 
direction of x − y. Examples of Bregman divergences in-

clude the squared Euclidean distance, parameterized by 
1φ(x) = kxk22; the KL-divergence, parameterized by P2 

φ(x) = i xi log xi; and the Itakura-Saito distance, pa-P 
rameterized by φ(x) = − log xi.i 

Bregman divergences arise in many settings in machine 
learning and related areas. In the study of exponential fam-
ily distributions, there is a bijection between the class of 
regular Bregman divergences and regular exponential fami-
lies (see Banerjee et al. (2005)). In optimization, Bregman 
divergences arise frequently; for instance, mirror descent 
utilizes Bregman divergences, and Bregman divergences 
were originally proposed as part of constrained optimiza-
tion (Bregman, 1967). In the study of clustering, Bregman 
divergences offer a straightforward way to extend the k-
means algorithm beyond the use of the squared Euclidean 
distance (Banerjee et al., 2005). A consequence of this is a 
way to cluster multivariate Gaussians in a k-means frame-
work (Davis & Dhillon, 2006); we will use this algorithm 
as a baseline later in the paper. 

More recently, Frigyik et al. (2008) proposed and studied 
an extension to standard Bregman divergences called func-
tional Bregman divergences, where instead of vector inputs, 
we compute a divergence between pairs of functions (or 
distributions). In this case, given two functions p and q, and 
a strictly convex functional φ whose input space is a convex 
set of functions and whose output is in R, the corresponding 
Bregman divergence is Z 
Dφ(p, q) = φ(p) − φ(q) − [p(x) − q(x)]δφ(q)(x)dx. 

Here δφ(q) is the functional derivative of φ at q and the 
integral term calculates this derivative in the direction of 
p − q.1 An example of a functional Bregman divergenceR 
arises when we choose φ(p) = p(x)2dx; in this case, one 
can work out that the functional derivative of φ at p is 2pR 
and that the resulting functional divergence is [p(x) − 
q(x)]2dx. 

3.2. The Symmetric Setting 
Our first goal is to relate functional Bregman divergences 
back to concepts in metric learning and other related learn-
ing models. To do this, let us define a symmetric functional 
Bregman divergence as a functional Bregman divergence 
such that Dφ(p, q) = Dφ(q, p) for all p and q. 

Our first result characterizes the form of an arbitrary sym-
metric functional Bregman divergence. This result can be 
stated as follows: 

Theorem 3.1. A functional Bregman divergence Dφ(p, q) 
is a symmetric functional Bregman divergence if and only if 

1Note that Frigyik et al. (2008) utilize the more general Fréchet 
derivative. Also, for simplicity, we limit ourselves to Riemann 
integrals unless otherwise noted. See Appendix for more details. 
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it has the following form: ZZ 
Dφ(p, q) = (p(x) − q(x))(p(y) − q(y))ψ(x, y)dxdy, 

where ψ(x, y) is some symmetric positive semi-definite func-
tion. 

For instance, the example from above, where φ(p) =R 
p(x)2dx, can be seen as a special case where ψ(x, y) = 1 

if x = y and 0 otherwise. The proof of the theorem appears 
in the appendix. In essence, this result extends an anal-
ogous result known from the vector setting, which states 
that any symmetric Bregman divergence must be a Maha-
lanobis distance, namely Dφ(x, y) = (x−y)T A(x−y) for 
some positive semi-definite matrix A (Bauschke & Borwein, 
2001). 

Next we must show that, for particular choices of the 
symmetric positive semi-definite function ψ, as well as 
restrictions on p and q, the resulting divergence yields 
familiar forms. 

Deep Metric Learning and Moment-Matching. Let us 
consider ψ(x, y) = fW (x)

T fW (y), where fW (x) is an 
embedding given by a neural network parameterized by 
weights W . This is clearly a positive semi-definite function, 
as it is an inner product between embedded data points. 
Further, assume p and q are distributions. 

First, from Fubini’s theorem, observe that we can re-write 
the functional Bregman divergence in this special case as 

Dφ(p, q) = kEp[fW ] − Eq[fW ]k2 . 

This is a moment-matching type of metric. Note the similar-
ity to the Wasserstein distance (Arjovsky et al., 2017) and 
the maximum mean discrepancy (Gretton, 2012). (In those 
cases, one further takes a supremum over the function fW , 
which we would also do when performing optimization to 
learn fW .) 

This general form of the divergence is typically difficult to 
compute. We can consider the case when we have finite 
samples or, equivalently, we let p and q be given by empiri-
cal distributions over sets of points P and Q, respectively. 
In this case, the resulting divergence simplifies to 

2X X1 1 
Dφ(p, q) = fW (x) − fW (y) . 

|P | |Q|
x∈P y∈Q 

This yields a divergence measure between distributions p 
and q that matches the first moment, similar to how MMD 
operates. 

To make connections to deep metric learning, consider the 
case where P and Q are of size one, namely Dirac delta 

functions at points x and y, respectively. Then the diver-
gence is simply 

Dφ(p, q) = kfW (x) − fW (y)k2 , 

or just the squared Euclidean distance after embedding the 
data via a neural network. This form is precisely what 
nearly all deep metric learning methods employ: they learn a 
neural network to embed data, apply the (squared) Euclidean 
distance in the mapped space, and then apply a loss function 
such as a contrastive or triplet loss on top of this mapped 
distance (Chopra et al., 2005; Hoffer & Ailon, 2015). 

Linear Metric Learning. If we replace the integral in the 
functional Bregman divergence with a Lebesgue integral (as 
it was defined in the original functional Bregman divergence 
paper), then use the counting measure for integration, the 
integral in the functional Bregman divergence simply be-
comes a sum over the elements in the measure space. In this 
case, ψ(x, y) is then replaced by a positive semi-definite 
matrix A, and function inputs to the divergence are replaced 
by vectors x and y. Then the resulting divergence is the 
usual Mahalanobis distance 

Dφ(x, y) = (x − y)T A(x − y). 

Thus, we can recover the usual Mahalanobis metric used in 
linear metric learning under our framework. 

Kernel Metric Learning. We can also recover familiar 
kernel forms of the preceding functions. In the case of a 
kernel function ψ(x, y) = κ(x, y), the divergence recovers 
the moment-matching objective but with the norm induced 
by the kernel’s reproducing kernel Hilbert space, similar 
to kernel MMD (Gretton, 2012). Further, in the case of 
a kernel function κ(x, y) = g(x)T Ag(x), where g(x) is 
an embedding to a reproducing kernel Hilbert space, and 
A is a positive-definite operator, the resulting divergence 
in the single-sample case yields the divergence studied for 
Mahalanobis metric learning in kernel space (Kulis et al., 
2009). 

A summary of some of the special cases described in this 
section appear in Table 3.2. 

3.3. The General Setting 
Next we consider the more general setting, i.e., when the 
functional divergence may not be symmetric. Here our goal 
is to introduce a parameterization of the functional diver-
gences that are amenable to learning via neural networks. 
We term the resulting divergences as deep Bregman diver-
gences. 

A key insight of Siahkamari et al. (2019) was that one can 
approximate a strictly convex function arbitrarily well with 
a piecewise linear function. In particular, they chose to 
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Case Integral Setting ψ(x, y) Inputs to Dφ Dφ 

Mahalanobis Distance Lebesgue + Count. Meas. A � 0 Vectors x, y (x − y)T A(x − y) 
Deep Metric Learning Riemann fW (x)

T fW (y) Dirac Deltas at x, y kfW (x) − fW (y)k2 

Moment Matching Riemann fW (x)
T fW (y) Distributions p, q kEp[fW ] − Eq [fW ]k2 

Table 1. Some of the special cases of Dφ(p, q) for the symmetric divergence setting. 

parameterize the generating function φ of a vector Bregman 
divergence by the following max-affine function: 

Tφ(x) = max(x wc + bc). 
c 

Here c ranges from 1 to K, where K is the number of hyper-
planes used to approximate the underlying strictly convex 
function. Such functions can be used to approximate any 
vector Bregman divergence arbitrarily well. Thus, learning 
a Bregman divergence amounts to learning the weights wi 

and biases bi given appropriate supervision. 

We can perform an analogous parameterization in the func-
tional divergence setting. By generalizing the piecewise 
linear functions of Siahkamari et al, we can define a convex 
generating functional. The following theorem demonstrates 
that every convex generating functional can be expressed 
in terms of linear functionals, thus justifying our choice of 
parameterization: 

Theorem 3.2. Let φ(p) be a convex generating functional 
corresponding to a functional Bregman divergence Dφ. 
Then φ can be formulated as Z 

φ(p) = sup p(x)w(x)dx + bw, 
(w,bw )∈A 

where A is a set of affine functionals in which each member 
is characterized by w and bw. 

For our parameterization, we replace supremum with maxi-
mum, and denote each function pair as (wc, bc) in a count-
able set of functionals A. See Appendix A.2 and B for 
the proof and details. In the case where p and q are dis-
tributions, we may write this more succinctly as φ(p) =� � 
max Ep[wc] + bc , where the expectation is taken with 
respect to the subscript distribution p. Note that straight-
forward application of the calculus of variations reveals 
that the functional derivative of φ(q) is simply wq ∗ , where R ∗ q = argmax [ q(x)wc(x)dx + bc]. Consequently, thec 
functional Bregman divergence between p and q can be 
expressed as Dφ(p, q) = 

�Z � �Z � 

p(x)wp ∗ (x)dx+bp ∗ − p(x)wq ∗ (x)dx+bq ∗ . (1) 

For distributions, this is more succinctly Dφ(p, q) = 
(Ep[wp ∗ ] + bp ∗ ) − (Ep[wq ∗ ] + bq ∗ ). 

This parameterization of the functional φ is now amenable 
to learning a functional divergence given data. In particular, 
we now parameterize a divergence by the corresponding 
weight functions w1, ..., wK and biases b1, ..., bK . If we 
assume that each of these weight functions are given by deep 
neural networks, then it becomes natural to set up learning 
problems where we aim to learn the underlying divergence 
given data. The resulting deep Bregman divergences will be 
shown to yield novel learning problems and strong empirical 
performance on benchmark metric learning tasks. In the 
next section we will detail our approach to extend deep 
metric learning to this setting. 

4. Learning Problems and Applications 

In the previous section, we saw in the symmetric setting 
how different choices of the functions related to a func-
tional Bregman divergence yield existing forms, as well as 
how one may parameterize a general asymmetric functional 
Bregman divergence using deep neural networks. Now we 
connect the divergences discussed in the previous section 
to particular learning problems. In particular, we describe 
several novel applications and learning problems that arise 
from learning deep Bregman divergences. 

4.1. From Deep Metric Learning to Deep Divergence 
Learning 

Consider a learning problem where we aim to learn a deep 
divergence given supervised data. As with deep metric learn-
ing, we will consider the case when p and q are empirical 
distributions over single points x and y, respectively. We 
saw in the previous section that we will parameterize our 
deep divergence by weight functions w1, ..., wK and biases 
b1, ..., bK . To make things simpler, let us encompass all of 
these weight functions into a single large neural network 
with weights W . The network will have K different outputs, 
one for each weight function. Many possible architectures 
are possible to capture this type of network; we consider an 
architecture where several layers are shared in the network, 
and then the network branches into K subnetworks, each 
with its own independent set of weights. See Figure 2 for 
the network that we employ in our benchmark experiments. 

Now, suppose we pass x through the network. Each subnet-
work c produces a single output wc(x) + bc, and there are 
K total outputs, one per subnetwork. The index of the max-

∗imum output is p . Similarly, pass y through the network; 
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kinput (x) conv layers
dense layers

split into k subnetworks

Figure 2. The general architecture we employ for deep Bregman 
divergences on image data. For K functionals, we produce K 
separate outputs, which are then used to compute the divergence 
over pairs of inputs. 

the index of the maximum output across the K subnetworks 
∗is q . Then, by (1), the divergence is the difference be-

∗ ∗tween the output of x at p and the output of x at q . For 
instance, suppose that each of the K outputs corresponds to 
a different class. Then the divergence will be zero if both 
points achieve a maximum value for the same class (i.e., 
they are both classified into the same class). The divergence 
is non-zero if the points are assigned to different classes, 
and the divergence grows as the two outputs become more 
disparate. 

One can now set up a divergence learning problem over 
pairs or triples of points under this framework. Suppose we 
are given triples of points (x, y, z), where x should have a 
smaller divergence to y than to z. One can easily apply exist-
ing loss deep metric learning loss functions with the learned 
divergence in place of the usual squared Euclidean distance. 
The contrastive loss and triplet loss are the two most com-
mon ones with their definitions given below respectively: 

1 � � 
Lcont(x, y, z) = d(x, y) + max{m − d(x, z), 0}2 ,

2 

Ltriplet(x, y, z) = max{d(x, y) − d(z, x) + m, 0}, 

where m is a margin value to impose a lower bound on 
the distance between the dissimilar pairs for the contrastive 
case and the difference between the relative distances for 
the triplet case. Typically, the distance measured in both 
loss functions, d, is the Euclidean distance; however, for 
our loss functions, we replace the distance measure by our 
learned deep Bregman divergence. 

In experiments, we will compare existing deep metric learn-
ing approaches to the more general deep divergence learning 
problem considered here, and we will see that we obtain 
gains over the existing models on standard benchmarks. 

4.2. Learning over Distributions 
A key advantage to our framework is that we need not re-
strict ourselves only to divergences between single points. 

As we saw earlier, we can also capture divergences between 
distributions of points that are similar to what is used for the 
MMD and the Wasserstein distance. Here we will discuss 
applications involving learning divergences over distribu-
tions. 

Data Generation. Consider the problem encountered in 
many GAN applications: we aim to learn a generator 
for data such that we minimize some distributional diver-
gence between the real and generated data distributions. In 
existing GAN literature, divergences considered include 
the Jensen-Shannon divergence (Goodfellow et al., 2014), 
MMD distance (Li et al., 2015; 2017), and the Wasserstein 
distance (Arjovsky et al., 2017). 

Under the deep divergence framework, rather than employ-
ing a fixed divergence, we can learn one from data. In 
this setting, we consider two distributions psynth and preal, 
corresponding to distributions of generated and real data, 
respectively. Assume that psynth is generated by passing 
randomly-generated input data through a generator g, as is 
standard with GAN models. As with GAN training, learn-
ing proceeds in an adversarial manner. We aim to learn a 
generator to minimize Dφ(psynth, preal), while simultane-
ously we aim to learn weights of the underlying network 
parameterizing Dφ to maximize Dφ(psynth, preal). As with 
GANs, we alternate between gradient updates for these two 
objectives. 

We note that, in practice, it is useful to restrict our attention 
to the case when K = 2, as it yields a particularly inter-
pretable model. In this case, we can think of one of the 
two subnetworks as outputting a larger value on real data, 
while the other subnetwork as outputting a larger value on 
synthetic data. Thus, the network that parameterizes the di-
vergence is analogous to the discriminator in a GAN model. 
When training the underlying weights of this network W , 
we can take pairs or triples of real and synthetic data and 
utilize a triplet or contrastive loss to encourage the output on 
the real data to be larger for one subnetwork and the output 
on the synthetic data to be larger for the other subnetwork. 
Similarly, when training the generator g, we use a loss that 
encourages real and synthetic data to both have the same 
maximal output. 

Semi-Supervised Distributional Clustering. 

As another application of learning divergences over distri-
butions, consider a scenario where instead of clustering a 
set of data points, we aim to cluster a set of distributions. In 
this setup, each distribution may correspond to an empirical 
distribution over a set of points—for instance, we may have 
a distribution of ratings for each item in an online store. 
The goal is: given a set of such distributions, to cluster the 
distributions together into a set of clusters. 

Davis & Dhillon (2006) considered a version of this prob-
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Figure 3. (Left) Plot of the means of the n = 500 Gaussian distributions, color-coded by cluster identity. (Middle left) Plot of data after 
generating 50 points from each Gaussian. (Middle right) Embedding learned by our method using contrastive loss with a moment-matching 
function. (Right) Embedding learned by the baseline deep learning approach. 

lem where each distribution was given by a multivariate 
Gaussian. Since the KL-divergence between multivariate 
Gaussians is itself a Bregman divergence, one can use prop-
erties of Bregman divergences to generalize the k-means 
algorithm to this setting. Here, we will consider a version 
of this problem that is both semi-supervised (so pairs of 
distributions that should or should not be clustered together 
are provided over a training set), and does not assume that 
each distribution is a multivariate Gaussian. Our approach 
also removes the implicit assumption that the means of the 
distributions are linearly separable for each cluster. 

Analogous to Davis and Dhillon, given a functional Breg-
man divergence defined over distributions, one can apply a 
generalization of k-means to cluster the distributions. As 
shown by Frigyik et al. (2008), the mean minimizes the 
expected functional Bregman divergence over a set of dis-
tributions, analogous to the finite-dimensional case. Thus, 
k-means can be generalized to a setting where the squared 
Euclidean distance between vectors is replaced by the corre-
sponding functional Bregman divergence over distributions. 

If we represent each distribution by an empirical distribution 
over its underlying points, we can easily compute a param-
eterized functional Bregman divergence between pairs of 
distributions. In our experiments, we will consider in par-
ticular learning a symmetric divergence on supervised data 
using the moment-matching distance with a contrastive or 
triplet loss. Then, once we have learned the divergence 
from data, we replace the squared Euclidean distance in the 
k-means algorithm with the learned divergence to directly 
cluster data in the test set. 

5. Experimental Results 
We now empirically compare our proposed deep divergence 
framework to existing models. Due to space considerations, 
some further details and results are available in the supple-
mentary material. 

5.1. Clustering 

Clustering Multivariate Gaussian Distributions. To 
begin, we consider a simple demonstration of the advantages 
of our approach on synthetic data for the semi-supervised 
distributional clustering problem. We generated n = 500 
training points, each assigned to one of three clusters. Each 
data point is represented by a multivariate Gaussian; the 
means of these Gaussians were uniformly sampled over 
rings of radius .2, .6, and 1 plus Gaussian noise, depending 
on the cluster identity, and the covariance of each Gaussian 
was .1 times the identity. See Figure 3 for a plot of sampled 
means, along with data after generating from these Gaus-
sians. We also generated n = 200 test points in the same 
manner. 

We compare three approaches to cluster the data. Our first 
baseline is the method of Davis & Dhillon (2006), which is 
an unsupervised clustering algorithm designed specifically 
to cluster multivariate Gaussian distributions. The second 
baseline applies deep metric learning on all generated points 
from all the Gaussians; we apply contrastive and triplet 
losses separately and learn a 3-layer multilayer perceptron 
(MLP) over the data in each case. The number of units in 
each layer were set to 1000, 500, and 2, and standard ReLU 
activation was used. The third approach is our method; we 
apply the (empirical) moment-matching function from the 
symmetric setting, treating each distribution as its own data 
point, in conjunction with a contrastive and triplet losses to 

Baseline Method Our Method Davis & 
Metrics 

Triplet Contrastive Triplet Contrastive Dhillon 

Mean 0.638 0.639 0.997 0.999 0.550 
RI 

Std 0.005 0.005 0.003 0.003 0.009 

Mean 0.197 0.198 0.993 0.997 0.005 
ARI 

Std 0.012 0.013 0.007 0.006 0.012 

Table 2. Rand index and adjusted rand index scores for different 
clustering experiments, where the baseline method treats each 
training point independently. 
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Datasets Baseline Method Our Method 
Davis & 
Dhillon 

WHARF 
RI 

ARI 

Mean 
Std 

Mean 
Std 

0.832 
0.002 
0.098 
0.006 

0.887 

0.004 
0.364 

0.022 

0.876 
0.007 
0.327 
0.026 

MHEALTH 
RI 

ARI 

Mean 
Std 

Mean 
Std 

0.849 
0.005 
0.106 
0.008 

0.860 

0.007 
0.149 

0.018 

0.664 
0.006 
0.023 
0.001 

WISDM 
RI 

ARI 

Mean 
Std 

Mean 
Std 

0.894 
0.004 
0.086 
0.005 

0.907 

0.003 
0.127 

0.014 

0.900 
0.003 
0.089 
0.009 

Table 3. Rand index and adjusted rand index scores for different 
clustering experiments performed on real data, where the baseline 
method treats each training point independently. 

learn a 3-layer MLP with the same settings as the baseline 
MLP. On the test set, we use the learned divergence in place 
of the squared Euclidean distance in a k-means algorithm 
for both the second and third method. 

We compute the rand index and adjusted rand index scores 
on the test set in each case, averaged over 10 runs for each 
of the three methods. The results are given in Table 2. The 
Davis & Dhillon method cannot cluster the multivariate 
Gaussians, as their method is restricted to linear separability 
of the means. The baseline deep metric learning method 
fails due to the overlap of the generated data across clusters, 
whereas the distributional divergence approach is able to 
perfectly cluster the test data in most runs. We can also 
visualize the embeddings learned by the second and third 
method, where we see that our learned embeddings capture 
the correct cluster structure, as pictured in Figure 3. 

Human Activity Recognition Task. We next perform 
further experiments on human activity recognition using 
time-varying sensor data, in order to demonstrate the capa-
bilities of our distributional clustering method on real data. 
We use WHARF (Bruno et al., 2014), MHEALTH (Banos 
et al., 2014; 2015), and WISDM (Weiss et al., 2019) datasets 
in our initial experiments. These datasets are collections of 
multimodal body sensor recordings as test subjects perform 
different activities of daily living (ADL), including but not 
limited to sitting, standing, eating, walking, and jogging. 

The experimental setup is the same as the previous task, 
where we compute the rand index and adjusted rand index 
scores on the test set in each experiment, averaged over 10 
runs for each of the three methods. Results are given in 
Table 3. We note that only experiments using contrastive 
loss are reported here; though our distributional loss formula 
has the potential to be applied directly here, we leave this as 
future work. 

We provide a visualization of the embeddings learned by 

Euclidean Deep Bregman 
Datasets 

Triplet Contrastive Triplet Contrastive 

MNIST 99.50 99.63 99.61 99.56 

Fashion MNIST 93.24 93.57 94.90 94.00 

SVHN 92.58 94.88 94.03 94.12 

Cifar10 77.00 79.40 81.40 80.80 

STL10 59.97 63.10 62.64 60.91 

Table 4. K-nn classification accuracy results on the given datasets 
(without data augmentation or using learned features). The bold 
values indicate the best triplet loss (Bregman versus Euclidean) 
and contrastive loss (Bregman versus Euclidean) results. 

our method and the baseline method, where we see that our 
learned embeddings capture the correct cluster structure, in 
the appendix. 

5.2. Deep Metric Learning Comparisons 
Next we consider comparisons between our general deep 
divergence learning framework and existing deep metric 
learning models on standard benchmarks, to demonstrate 
that our approach’s flexibility yields improved performance 
on several datasets and tasks. 

We compare standard deep metric learning approaches to 
our proposed approach on the four benchmark datasets used 
in the original triplet loss paper (Hoffer & Ailon, 2015)— 
MNIST, Cifar10, SVHN, and STL10—as well as Fashion 
MNIST. We use the same basic architecture for the deep 
Bregman divergence network as shown in Figure 2; for the 
Euclidean case we do not employ separate subnetworks 
in the dense layers. We treat several architecture choices 
as hyperparameters and validate over these hyperparame-
ters using Bayesian optimization (tuned separately for each 
dataset); Table 5 lists the hyperparameters that we search 
over, along with the ranges of values considered. 

We consider separately both triplet loss and contrastive loss, 
and report in bold the best values for each loss. For the 
triplet loss, we consider all triplets in a batch when com-
puting the loss. We perform no data augmentation. Results 

Model hyperparams Training hyperparams 

layers 2 - 5 margin 0.1 - 2.0 

conv filters 16 - 128 epochs 10 - 40 

conv kernels 3 - 9 learning rate 10−5 - 10−1 

conv biases T / F batch size 32-128 

poolings T / F optimizer adam / sgd / rms 

batchnorms T / F K in k-nn 5 - 10 

dense units 50 - 300 normalization T / F 

Table 5. Hyperparameter intervals used for tuning. First 100 itera-
tions are used to narrow down the space, then 200 more iterations 
are run for each benchmark. T: True, F: False. 
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Figure 4. Real and generated sample batches from CelebA (Top 
row) and MNIST (Bottom row) datasets. 

are shown in Table 4, where we see small but significant 
gains in classification accuracy for the Bregman method as 
compared to the standard deep metric learning approach, 
particularly in the triplet loss case. On Fashion MNIST, we 
outperform the current state-of-the-art for no data augmen-
tation (94.23% from Assunçao et al. (2018)), even though 
we are not directly training a classifier. We also note that we 
would expect further gains in performance with more sophis-
ticated architectures (e.g., ResNets and other more recent 
architectures), perhaps yielding near state-of-the-art perfor-
mance on more datasets; however, the main goal of this 
comparison is not to achieve state-of-the-art performance 
but rather to present a fair comparison between the Bregman 
and Euclidean approaches on standard benchmarks. 

5.3. Unsupervised Data Generation 
Finally, we consider some qualitative results where we show 
that our approach can be used for generating data with sim-
ilar performance to GANs. We consider the problem dis-
cussed earlier, namely where we train a deep divergence 
model to minimize a learned divergence between real and 
synthetic data. We apply our approach on 28x28 MNIST 
and CELEBA datasets, as is standard for GAN applications. 
We adjust the strides to adapt the network for different input 
sizes. We keep model structures close to standard in order to 
show the effectiveness of the divergence formula we intro-
duced. We use a generator consisting of 4 deconvolutional 
layers and a discriminator (i.e., the network parameterizing 
the deep Bregman divergence) with 4 convolutional layers, 
with a dropout rate of 0.5 in between the layers as well as 
lrelu and tanh activations. In the discriminator network, the 
convolutional layers are followed by two 2-layer subnet-
works (again similar to Figure 2, where K = 2 in this case). 
For the discriminator, we use the contrastive loss with a 
margin of 0.4, whereas the generator directly attempts to 
minimize deep Bregman divergence between the real and 
generated images. More hyperparameter details are given 
in the appendix. 

Some randomly chosen results are presented in Figure 4, 
where we see that the distribution divergence learned by 

our method is able to generate realistic-looking images with 
no labeled supervision. We note that further theoretical 
analysis and experimentation of these methods is required 
to determine situations where our loss functions may be 
more desirable than existing GAN approaches. 

6. Conclusions 

In this paper, we examined a novel generalization of both 
Bregman divergence learning and deep metric learning, 
which we call deep divergence learning. This framework 
offers several appealing advantages: it unifies a number of 
existing ideas in metric learning under a single framework, 
it suggests a way to extend deep metric learning beyond the 
Euclidean setting, and it naturally yields learning problems 
involving divergences over distributions. Empirically we 
have seen advantages of our approach compared to existing 
deep metric learning methods. 
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