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Appendices 
A. Notation and Definitions 
In this section, we introduce basic concepts from functional 
analysis and the notation used for extending vector spaces 
to function spaces, which will be used for our proofs. 

A.1. Assumptions and definitions from functional 
analysis 

We first present basic notation from functional analysis, 
since we extend vector spaces to function spaces to derive 
this formulation. 

Assume we have a finite measure space (χ, Σ, µ) which is 
Lebesgue-measurable, and χ ∈ Rd . Note that we mainly 
consider a set of distributions in this paper, which is a special 
case that uses a Radon measure and a bounded Borel set. 
Consider a set of measurable functions F ⊆ Lp, defined as 
F = {f ∈ F | f : χ → R, ||f ||p ≤ C1 < ∞ and f ≥ 0}, 
where C1 is a constant and 1 ≤ p ≤ ∞. The restriction 
that f ≥ 0 is not limiting, since it can be easily satisfied 
by using its equivalence class obtained by only applying an 
affine transformation (Frigyik et al., 2008). 

Assume W ⊆ Lp is a compact set of functions. All bounded 
continuous linear functionals have an integral representa-
tion with respect to our focus of measure space (Gierz, 
1987), with a corresponding function w ∈ W, w : χ → R. 
Similarly, we can characterize affine functionals by their 
function and constant pairs A = {(w, bw) | w ∈ W, bw ∈ 
R and |bw| ≤ C2}, with C2 a constant. 

For a convex functional φ, we denote its Fréchet deriva-
tive as δφ(p) and the epigraph of φ as epi φ; with their 
definitions briefly given below (Gelfand et al., 2000) : 

Fréchet derivative of φ. If for every h ∈ W , there exists 
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δφ(f) s.t. 

φ(f + h) − φ(f) − δφ(f)[h]
lim = 0, 

||h||p →0 ||h||p 

then φ(f) is Fr´ echetechet differentiable and δφ(f) is the Fr´ 
derivative of φ at f . 

Directional Fr´ The derivative of aechet derivative of φ. 
functional φ at f in the direction of a function g is defined 
as: 

Z 
δφ[f ; g] = δφ(f)(x)g(x)dx. 

Epigraph of φ. The epigraph of a functional φ is defined 
as: 

epi φ := {(c, f) ∈ R × F | φ(f) ≤ c}. 

B. Proof of Theorem 3.1 
Proof. To prove the result, we can generalize a known 
symmetry result for standard Bregman divergences seen in 
Bauschke & Borwein, Lemma 3.16 (Bauschke & Borwein, 
2001), or this Mathematics Stack Exchange discussion1. 

We start by establishing that any symmetric functional Breg-
man divergence has the form given in the statement of the 
theorem. Let 0f be the zero-function (given, for example 
by the function p − p for any p). We can assume without 
loss of generality that φ(0f ) = 0 and δφ(0f ) = 0—we can 
always add a constant to φ to ensure the first property, and R 
we can subtract p(x)δφ(0f )dx from φ to ensure the sec-
ond property, both without changing the resulting Bregman 
divergence. 

Next, if Dφ(p, q) = Dφ(q, p) for all p, q, then writing out 
the Bregman divergences and equating them yields Z 

φ(p) − φ(q) − (p(x) − q(x))δφ(q)(x)dx Z 
= φ(q) − φ(p) − (q(x) − p(x))δφ(p)(x)dx. (1) 

1https://math.stackexchange.com/questions/2242980/bregman-
divergence-symmetric-iff-function-is-quadratic 
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Letting p = 0f and simplifying the above equation (and 
using φ(0f ) = 0 and δφ(0f ) = 0), we obtain the following: Z 

2φ(q) = q(x)δφ(q)(x)dx. 

Note that this equation holds for any q. Plugging this equa-
tion (along with the same equation where p has replaced q) 
into (1), we obtain the following identity: Z Z 

p(x)δφ(q)(x)dx = q(x)δφ(p)(x)dx. (2) 

This can be used to establish that δφ is linear. For example, 
to establish that δφ is homogeneous, we must show that 
δφ(αp) = αδφ(p), for non-zero α. Using (2) twice (first 
and third line), we can establish the following for any p and 
q: Z Z 

q(z)δφ(αp)(z)dz = αp(z)δφ(q)(z)dz Z 
= α p(z)δφ(q)(z)dz Z 
= α q(z)δφ(p)(z)dz. 

This can then be used to show that δφ(αp) = αδφ(p): for 
any point x, suppose p is a Dirac delta function at x. Then 
the above equation establishes that δφ(αp) equals αδφ(p) 
at x. Since the equation is true for all p, then δφ(αp) equals 
αδφ(p) for all points. 

A similar argument can be used to establish that δφ(p+q) =R 
δφ(p) + δφ(q). In particular, r(z)δφ(p + q)(z)dz Z 

= (p(z) + q(z))δφ(r)(z) Z Z 
= p(z)δφ(r)(z) + q(z)δφ(r)(z)dz Z Z 
= r(z)δφ(p)(z)dz + r(z)δφ(q)(z)dz 

for all r, establishes that δφ(p + q) = δφ(p) + δφ(q) and 
choosing r as Dirac delta functions ensures this equality for 
all points. 

In the case of functions, if a gradient function δφ is linear, 
then the function φ must be quadratic; this is because we 
take an anti-derivative of a linear function and obtain a 
quadratic function. In the functional case, this means that φ 
must have the following form: ZZ 

φ(p) = p(x)p(y)ψ(x, y)dxdy, 

where ψ is a symmetric, positive semi-definite function. 
(In the vector setting, φ(x) = xT Ax for a positive semi-
definite matrix A, so this is a generalization to the functional 

setting.) One can verify that the gradient δφ is of the form Z 
δφ(p)(y) = 2 p(x)ψ(x, y)dx, 

which is indeed a linear function. Given this form for φ, the 
final step is to plug φ into the definition for the functional 
divergence and to simplify the resulting divergence. After 
simplification using the definition of φ and its derivative, 
along with the fact that ψ(x, y) = ψ(y, x), we obtain ZZ 
Dφ(p, q) = (p(x) − q(x))(p(y) − q(y))ψ(x, y)dxdy. 

Now that we have established one direction of the theorem, 
we can establish the other. This direction is considerably 
simpler. We must show that a divergence that has the form ZZ 
Dφ(p, q) = (p(x) − q(x))(p(y) − q(y))ψ(x, y)dxdy 

is in fact a symmetric functional Bregman divergence. The 
fact that it is symmetric follows directly. The fact that 
it is a functional Bregman divergence follows from the 
fact that choosing the strictly convex functional φ(p) =RR 

p(x)p(y)ψ(x, y)dxdy yields the resulting divergence. 

C. Proof of Theorem 3.2 
In this section, we show that our convex generating func-
tional form is justified in that any convex functional can be 
represented as a supremum over linear functionals. 

Up to this point, we notated convex functionals as φ(p), in 
terms of only their input functions. Here we will use the 
notation φ(x; p(x)) for convex functionals, where x refers 
to the input of the function p. 

Proof. (⊇) We first show that the right hand side is indeed 
a convex functional. 

We will use the standard definition of convexity since it 
directly extends to the functional case. The domain of the 
functionals is a convex subset since for all λ ∈ [0, 1], and 
p, q ∈ Lp, ||λp + (1 − λq)||p < ∞, so λp + (1 − λ)q ∈ Lp 

naturally. 

For an arbitrary pair (w, bw), and p, q ∈ F we have: Z 
(λp(x) + (1 − λ)q(x))w(x)dx + bw ≤ (3) � Z � � Z � 

λ p(x)w(x)dx + bw + (1 − λ) q(x)w(x)dx + bw 

= λφp(x; p(x)) + (1 − λ)φq(x; q(x)) 

≤ λφ ∗ (x; p(x)) + (1 − λ)φ ∗ (x; q(x)), 
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where φ∗ represents the supremum attained for the right-R 
hand side of (3), and φa(b) = b(x)a(x)dx + ba . Since 
the inequalities hold for all (w, bw), we can take the sup of 
the first line and obtain: 

φ ∗ (λp + (1 − λ)q(x)) ≤ λφ ∗ (x; p(x)) 

+ (1 − λ)φ ∗ (x; q(x)). 

(⊆) We now show that for a given convex functional 
φ(x; p(x)), we can find a set of affine functionals to write it 
as (3). 

Assume δφ(x; p(x)) is the Frechet derivative of φ at func-
tion p ∈ W . Then δφ(x; p(x)) is a linear operator. 
Since φ is continuous and bounded, we can find r(x) =R 
arg inff δφ(x; p(x))f(x)dx2. Define δ 

0 
(x; p(x)) :=φ 

δφ(x; p(x)) + φ(x; r(x)) ≥ 0. This positive functional 
can be represented in an integral form by Riesz-Markov-
Kakutani representation theorem on the measure d(δ 

0 
(x))φ 

(Fréchet, 1907). Note that we can always add or substract 
properly scaled constant terms and preserve the informa-

0tion since these transformations are linear. For a given p , 
applying Riesz theorem gives us the representation below: Z 

δφ(x; p 0(x)) = δφ0(x; p 0(x))p 0(x)dx, 

with a support function Z 
lφp 
(x; p(x)) = δφ0(x; p 0(x))p(x)dx0 

+ φ(x; p 0(x)) − δφ(x; p 0(x)). 

We also have lφ p 
(x; p(x)) ≤ epi φ(x; p(x)) for all0 

0p, p ∈ W , since φ is a convex functional. lp0 (x; p(x)) ≤ 
φ(x; p(x)) for all p since we are on a compact domain and 
φ is continuous and convex. Now for a given convex func-S 
tional φ(x; p(x)), consider lφ 0 (x; p(x)) as a set of p0∈W p 

affine functionals, further denoted by Lφ for convenience. 
Define: Z 

ψ(x; p(x)) = sup l(x)p(x)dx + bl. 
l∈Lφ 

ψ is a convex functional by the first part of the proof. 
0Since φ is convex, for all p 6= p we have φ(x; p 

0 
(x)) − 

lφ(x; p 
0 
(x)) ≥ 0, so for an arbitrary p, ψ(x; p(x)) = 

lφ(x; p(x)). This concludes ψ(x; p(x)) forms a set of func-
tionals to construct φ. 

Note that if we restrict our space to a set of n distributions, 
then all we need to know is at most n corresponding maxi-
mizing affine functionals; in this case the supremum can be 
replaced by the maximum as we did in the paper. 

2 r(x) also can be constructed from the �-subdifferentials of φ 
to ensure existence. 
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Figure 1. The discriminator (left) and generator (right) losses dur-
ing training for CelebA. Each epoch is split into 25 averaged batch 
losses. The window size is 2 for the moving average. 
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Figure 2. (Left) Embedding of the WHARF dataset learned by our 
method using contrastive loss with a moment-matching function. 
(Right) Embedding learned by the baseline deep learning approach. 

D. Applications Details 
D.1. Additional GAN Model Details 

In this section, we present more training details related to our 
GAN model. We use RMSprop optimizer with a momentum 
value of 0.99, and set the learning rates to 10−3 for the 
discriminator and 3×10−3 for the generator. The minibatch 
size is chosen as 64. Our main model has convolutional 
layers with kernel sizes equal to 5 and filter sizes equal to 
64. The strides are halved towards the final layers. Stride 
sizes are determined based on the input image dimensions. 

In our experiments, we incorporate contrastive loss into deep 
Bregman learning in order to supervise the discriminator. 
However, our distributional loss formula has the potential 
to be directly used in the GAN setting, which we leave as a 
future work. 

We provide the loss plots for the generator and the discrim-
inator through the training phase below in Figure 1. We 
observe that the discriminator first learns the metric, then 
the training preserves the balance between the two networks. 
We note that image quality still improves for a while after 
the losses become saturated, due to the nature of contrastive 
loss. 
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k 5 20 50 100 200 500 1000 

acc 71.9 77.8 79.4 80.0 77.4 74.1 70.8 

Table 1. Accuracy on Cifar10 when varying the number of subnet-
works (k). 

D.2. Additional K-nn Classification Details 

Here we provide more details regarding our K-nn exper-
iments between deep Bregman and Euclidean cases. All 
factors in our experimental settings are created by very stan-
dard choices for a fair comparison. The batches are chosen 
randomly from the relevant dataset, and then the pairs are 
created within that batch at each iteration. We use a vali-
dation set ratio of 20%. Once the training is complete, we 
obtain test embeddings and run the K-nn algorithm on these 
embeddings. 

We choose k, the number of subnetworks, to be equal to the 
number of classes. Additionally, we run a small experiment 
over varying k from 5 to 1000 and reported the results in 
Table 1. The results indicate that performance improves to a 
point, and then the model starts to overfit. This suggests that 
an optimal k can be found by adding it as a hyperparameter 
in the experiments. 
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