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Abstract

Machine Teaching studies how efficiently a
Teacher can guide a Learner to a target hypoth-
esis. We focus on the model of Machine Teach-
ing with a black box learner introduced in [Das-
gupta et al., ICML 2019], where the teaching is
done interactively without having any knowledge
of the Learner’s algorithm and class of hypothe-
ses, apart from the fact that it contains the tar-
get hypothesis ~A*. We first refine some existing
results for this model and, then, we study new
variants of it. Motivated by the realistic possi-
bility that ~A* is not available to the learner, we
consider the case where the teacher can only aim
at having the learner converge to a best available
approximation of h*. We also consider weaker
black box learners, where, in each round, the
choice of the consistent hypothesis returned to
the Teacher is not adversarial, and in particular,
we show that better provable bounds can be ob-
tained for a type of Learner that moves to the
next hypothesis smoothly, preferring hypotheses
that are close to the current one; and for another
type of Learner that can provide to the Teacher
hypotheses chosen at random among those con-
sistent with the examples received so far. Finally,
we present an empirical evaluation of our basic
interactive teacher on real datasets.

1. Introduction

Machine Teaching studies how efficiently a Teacher can
teach a target hypothesis to a Learner. The classic works
(Shinohara, 1991; Goldman & Kearns, 1995) consider the
setting where the Teacher sends in one shot a set of labeled
examples to the Learner, which then has to output the cor-
rect target hypothesis. In more recent works, the focus has
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been on the interactive setting (Liu et al., 2017; Chen et al.,
2018; Liu et al., 2018; Dasgupta et al., 2019) — where the
Teacher and Leaner interact over multiple rounds. In each
round, the Teacher sends examples to the Learner, which
returns | some feedback; this process continues until the
Learner reaches the target hypothesis (or a good approxi-
mation of it).

Machine teaching models have proved useful in several
contexts, e.g., crowd sourcing (Johns et al., 2015; Zhou
et al., 2018), intelligent tutoring systems (Rafferty et al.,
2016; Zhu et al., 2018), analysis of training set attacks (Mei
& Zhu, 2015). Moreover, commercial tools are under de-
velopment by the Microsoft Machine Teaching Group, as
detailed on their web page, which are based on, or employ,
the paradigm of machine teaching, e.g., PICL, which lever-
ages the selection of examples that maximize the training
value of the interaction with the teacher; LUIS for natu-
ral language understanding; and other projects on building
models for autonomous systems.

Most of the above works assume that the Teacher has sig-
nificant knowledge about the Learner, e.g., its hypothesis
class and the specific procedure employed for learning a
hypothesis from labeled examples. However, this assump-
tion excludes many important situations as human teach-
ing and automatic learners with black box behaviour (e.g.
Deep Nets). Thus, recent work in the field has focused
on analysing scenarios in which the Teacher’s knowledge
about the Learner is limited (Liu et al., 2018; Dasgupta
etal., 2019).

In particular, (Dasgupta et al., 2019) addressed machine
teaching with a black box learner, where the only knowl-
edge of the Teacher about the Learner is that its hypoth-
esis class contains the target. They considered a model of
interaction where at each round the Teacher sends labelled
examples to the Learner and it provides a hypothesis that
is consistent with all the examples received so far. The au-
thors provide bounds on the number of examples required
to teach the target hypothesis to worst-case learners.

Here, we refine some existing results for the model of

machine teaching with a black box learners considered in

"Unless specified, we will tacitly assume that Learner and
Teacher are machines, hence we use neutral pronouns.
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(Dasgupta et al., 2019) and also introduce and analyse new
variants of it. We are motivated, on the one hand, by the
realistic scenario in which ‘exact teaching’ is not possible
(the target does not belong to Learner’s hypothesis class)
and, on the other hand, by the fact that the Learner may
not be adversarial to the Teacher.

1.1. Notation and Model

Before precisely stating our contributions we set some no-
tation and explain the teaching model in more detail. There
is a set X’ of examples, and a finite set ) of possible labels
for each example. By a hypothesis we mean a function that
maps each example in X" to a label in ). We assume that:

Teacher: has a target hypothesis A* : X — ), unknown
to Learner (h*(e) is the correct label for e).

Learner: has a hypothesis class H C Y%, unknown to
Teacher

In each round the Teacher sends the Learner a set of la-
beled examples (e, h*(e)), then the Learner returns a hy-
pothesis from its class with minimum number of errors in
the examples received thus far. The goal of the Teacher is
to send a minimum number of examples so as to make the
Learner return a hypothesis from # with the smallest total
number of errors in the whole dataset X’ (in the realizable
case h* € H, this means returning the correct hypothesis
h*). In the basic setting the Teacher does not have ad-
ditional information on the learning algorithm used by the
Learner to select among its minimum error hypotheses.

A fundamental notion in machine teaching is that of a
teaching set for h* (Goldman & Kearns, 1995), which is
a set of examples X C X that distinguishes hA* from ev-
ery other hypothesis in H, that is, for every h # h* there
is an example e € X for which h(e) # h*(e). We use
TS(H, h*) to denote the size of the smallest teaching set
for h*. When (#, h*) is clear from the context we use 7S
as a shorthand. We use m = |X'| and n = |H| to denote the
size of the sets of examples and hypotheses, respectively,
and use wrong(h) to denote the set of examples in which
h fails (differs from h*).

1.2. Contributions and Related Work

Our first contribution is a teaching algorithm Ay, that
with high probability guarantees convergence to the target
hypothesis h* using O(7 S logmlogn) examples (Theo-
rems 1 and 2). Its correctness relies on a novel analysis of
the on-line set cover algorithm proposed by (Alon et al.,
2009). The main obstacle to derive this analysis is han-
dling the non-trivial dependence between the Teacher’s
and the Learner’s actions over time. We rely on martingale
techniques and arguments reminiscent of decoupling (de la
Pefia & Giné, 1999) to overcome this difficulty.

(Dasgupta et al., 2019) present interesting results for black
box learners and one of them is also a teaching algorithm
based on a (different) adaptation of the on line set cover al-
gorithm from (Alon et al., 2009). Their analysis guarantees
bounds similar to ours, although it is based on the knowl-
edge of an upper bound on n. However, some relevant sub-
tleties arising from the interdependence between Teacher
and Learner were not addressed in the proofs from (Das-
gupta et al., 2019). In this respect, we understand that an
additional contribution of our analysis is to clarify and for-
malize (via an application of our Lemma 2) the validity of
a key statement in their argument (Lemma 5 of (Dasgupta
etal., 2019)). Details are presented in Suppl. Material, Ap-
pendix A. That said, we would like to emphasize that the
algorithm and the statements from (Dasgupta et al., 2019)
are correct.

We also use our algorithm Ay, as a basis for both im-
proved results and extension to other variants of the prob-
lem. In Section 2.2, we propose a modified algorithm that
obtains a stronger bound that depends on the (unknown)
distribution of the number of errors among the hypotheses
in ‘H (Theorem 3). In Section 2.3, we generalize the above
bound to the non-realizable case, where the Teacher can-
not assume that the Learner’s class contains the target hy-
pothesis. Our algorithm guarantees that the Learner con-
verges to the hypothesis & that is the closest to A* in its hy-
pothesis class, after receiving O(T Sy, log mlog(m + n))
examples, where T Sy, is a lower bound on the number of
examples needed for this task.

These results are valid for the worst-case Learner model
(Shinohara, 1991; Goldman & Kearns, 1995), where no as-
sumption is made on which hypothesis the Learner selects
among those of minimum error in the examples received
thus far. Different models for the Learner’s behavior have
been recently considered (Zilles et al., 2011; Gao et al.,
2017; Chen et al., 2018; Mansouri et al., 2019; Kirkpatrick
et al., 2019). The assumption that the Learner smoothly
navigates over its hypothesis class, always updating its cur-
rent hypothesis to one that is ‘close’ to it, was used to moti-
vate the local preference model introduced in (Chen et al.,
2018) and extended in (Mansouri et al., 2019). For this
type of Learner, when the closeness is measured in terms
of Hamming distance, we present a teaching algorithm
that with high probability sends O(7 S logn(logerr; +
loglogn)) examples, where err; is the number of errors
of the first hypothesis provided by the Learner (Theorems
5 and 6) . Thus, this teaching algorithm benefits from a
Learner that starts close to the target hypothesis. It is pos-
sible to show that this bound is not achievable by efficient

>We remark that this result holds if n = || is redefined as
the number of non-equivalent hypotheses in H w.r.t. h*, where
two hypotheses are equivalent if they agree with A" in exactly the
same examples of X’; hence, n < 2™ and loglogn < logm.
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algorithms, in the worst-case model, through a simple mod-
ification of a lower bound presented in (Korman, 2004).

We also obtain improved bounds for the model where the
Teacher can ask the Learner for a batch of random hy-
potheses consistent with the examples presented thus far.
We propose a teaching algorithm that, with high probabil-
ity, teaches h* by sending in total O(7 S log(n+m)) exam-
ples and requesting O(7 S log(m + n)) random hypothe-
ses per round (Theorem 7). For the relevant case where
the number of hypotheses n is larger than the number of
examples m, the bound on the number of examples is the
best possible for poly-time algorithms under the assump-
tion P # NP, even when the Teacher knows the class of
hypotheses ‘H (Raz & Safra, 1997).

We note that our non-adversarial models for learners are
related to models that have already been considered (Chen
et al., 2018; Balbach & Zeugmann, 2011; Singla et al.,
2014; Angluin & Dohrn, 2020). In fact, the model of
smooth transitions can be seen as an instance of the local
preference model from (Chen et al., 2018), where hypothe-
ses close to the current one, in terms of the Hamming dis-
tance, are preferred. Moreover, learners that return a ran-
dom hypothesis have been considered in (Balbach & Zeug-
mann, 2011; Singla et al., 2014). However, in these works,
in contrast to ours, the Teacher is aware of the Learner’s
hypothesis class. An analogous result, in a different con-
text of teaching, where separation is proved between worst
case and random adversary is (Angluin & Dohrn, 2020).

Although the teaching algorithms mentioned so far aim at
obtaining a small teaching set, they may end up producing
a non-minimal one (w.r.t. example deletion). In Section 4
we show that with a limited amount of extra interactions
the Teacher is able to construct a minimal teaching set.
This result may be useful when the main goal is to obtain a
compressed training set.

Finally, to complement our theoretical results, we present
in Section 5 experiments with 12 real datasets that show
that our basic Teacher (the A, from Section 2) sends
significantly fewer examples, to reach a given level of ac-
curacy, than a Teacher that does not interact with the
Learner.

2. Teaching with Worst-case Learner

Recall the teaching model from Section 1.1. In this sec-
tion we consider worst-case learners that can return any
hypothesis h € H that has smallest number of errors on
the examples received thus far.

2.1. Realizable Hypothesis Case

We first consider the realizable case when the target hy-
pothesis h* belongs to the learner’s class H. Notice that
in this case the Learner always sends a hypothesis that is
correct on all examples seen thus far.

As in (Dasgupta et al., 2019), we leverage the connection
between teaching and set cover. We say that an example
e € X covers hypothesis h € H if the latter makes a
mistake in this example, namely h(e) # h*(e). Notice
that covered hypotheses are out of consideration from the
Learner, namely it never sends a hypothesis that is covered
by the examples it has received. Thus, after the examples
sent by the Teacher cover all hypotheses other than h* the
Learner must send back the correct hypothesis A*, achiev-
ing the learning goal. This means that one can reduce the
problem of teaching to that of online set cover: in the be-
ginning of each round, the Teacher receives a hypothesis
from Learner and sends examples that cover this hypoth-
esis (and hopefully other unknown hypotheses), in a way
that the total number of examples sent is small.

Our proposed teaching algorithm Ay, uses the online set
cover algorithm of (Alon et al., 2009), and can be described
as follows (see Figure 1). It maintains weights W! over the
examples e € X for each round ¢t. When a new hypothesis
h comes from the Learner (so it is not covered by the ex-
amples thus far), the Teacher first verifies whether h = h*.
If so, it accepts h. Otherwise, it increases in exponential
fashion the weights of the examples where h is wrong until
the sum of these weights becomes at least 1; then it ran-
domly sends examples to Learner with probability propor-
tional to the increase of the weights of the examples in this
round. If A is neither accepted nor covered (i.e., no exam-
ple is sent) by the end of the round, the algorithm returns
FAIL.

While our algorithm is based on (Alon et al., 2009) the
main novelty is in its analysis: the hypotheses (“elements”
to be covered) depend on the examples (“sets”) sent, and
not only the analysis in (Alon et al., 2009) does not allow
such dependencies but it also known that m examples are
required for more general dependencies [(Korman, 2004),
Theorem 2.1.3]. However, the dependencies that arise in
this context of teaching are just so that we can handle them
using martingale techniques.

Theorem 1. Consider teaching a worst-case learner. In
the realizable case h* € H, algorithm A (in Fig.
1) initialized with N > n and w = m always sends
O(T Slog N logm) examples, and returns the correct hy-
pothesis h* with probability at least 1 — %

Proof of Theorem 1. The first important observation
is that the algorithm terminates in at most O(7 S logw)
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Algorithm Ap,s.

1. Initialize weights W2 = i for all examples e € X

2. Foreachroundt =1,2,...:
* Receive hypothesis H; € H from the Learner

if H is not wrong on €)

* If no examples were sent, return FAIL

Input: Examples X, (guess of) the number of Learner’s hypotheses NV, initial weight_ parameter w > 0

o If H, is correct in all examples (i.e., H; = h™), stop and return H;
* (Weight update) Double the weights of all wrong examples until their weight adds up to at least 1. That is, define

28wt
W‘f = { wi-1

where £ is the smallest non-negative integer such that W*(H;) := > ... .. o(Hy) Wi>1

+ (Sending examples) For every example e, let D’ := W} — W/ ™! be the weight increase of example e (note D’ = 0

Repeat 4 log N times: sample at most one example so that e is sampled with probability D%, and send it to Learner
together with its correct label (note that H; is wrong on this example)

, if e € wrong(H¢)
, if e ¢ wrong(Hy),

Figure 1. Teacher’s algorithm for teaching a realizable hypothesis

rounds [(Alon et al., 2009), Lemma 1]. In addition, since in
each round the Teacher sends at most O(log V) examples
we get the following.

Lemma 1. Ay, sends O(TSlogwlog N) examples.

So we only need to upper bound the probability that the al-
gorithm returns FAIL. Let W*(h) = 3\, ona(n) We be
the weight of h at the end of round ¢, and let D*(h) :=
Wt(h) — W1(h) be the increase of this weight at round
t. The intuition why the failure probability should be low
is the following: If the algorithm fails on a hypothesis h
it means that its weight is at least 1 by the end of the
interaction and no example that covers h was sent. Let
X, be an indicator variable that is equal to 0 if no exam-
ples that cover h are sent at round ¢. We have Pr[X; =
0] = (1 — D!(h))*!°8 N 5o the failure probability should
be about [,(1 — Di(h))*108N ~ e~(4lea N) 3, D'(h) <
e~21°8 N — 1 /N2 where the last inequality holds because,
at the beginning, the weight of & is at most 1/2 and by
the end of the algorithm is at least 1. By taking the union
bound over all hypotheses h € H we would conclude that
the failure probability is at most 1/N.

The problem is that this argument ignores crucial stochas-
tic dependencies: the actual examples sent affect (through
the Learner’s response) the evolution of the weight of A,
so that the set of random variables {X;} are not indepen-
dent and, hence, we cannot take the product of probabil-
ities as above. To handle this situation we abstract it as
a sequence of dependent Bernoulli random variables X;’s
whose biases (corresponding to 1 — (1 — D*(h))*!°8 ™) de-
pend on the history. Our main technical lemma shows that,
regardless of the correlations, the probability that none of

the indicators X; is active is what we expect.

Lemma 2 (Adaptive Bernoullis). Consider a finite prob-
ability space with filtration F1 C Fy C ... and
let X',...,X" € {0,1} be an adapted sequence of
Bernoulli random variables, possibly correlated. Let Z* :=
Pr(X" = 0 | Fi—1) be the conditional probability that X,
is 0. Then for any stopping time T w.r.t. F and o > 0

Pr(Xlz...:XTzo and HZtSa)ga.

t<t

Proof. We can assume without loss of generality that there
is no stopping time (i.e., 7 always equals n): we can apply
the result to the variables X* := 1(7 > t) - X" and B! :=
(1—-1(r > t))- 2t = Pr(X* = 0 | F;_1) to obtain the
result in the stopped case.

In this specific proof we use bold for vectors and capital
letters for random variables, respectively. Moreover, for a
vector v = (vl,... ,v")and t < n, we use v=? (resp. v<%)
to denote the vector (vl,... v%) (resp. (vl,...,vt71)).
The same notation is employed to restrict a sequence of

random variables to its ¢ first elements.

Let X = (X5L,X2%...,X") and let Z =
(Z1,7Z2%,...,Z"). Peeling off the variables in or-
der Z',X',72,X?% ... we have that for any fixing
z = (2%, 21,...,2™) (without any independence assump-

tion)

f(t7z) : Hg(tvz)

Pr(X =0and Z = z) =
1 t=1

n n

t
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where
f(tvz = Pr(Xt:()‘ th:ZSt7X<t:O)7
g(t,z) = Pr(Z75 = 5t | Z<t = g<t X<t = 0).

For any history o € F;_1 up to time t — 1 where Z! = 2z
we have Pr(X* = 0 | o) = 2!, which implies Pr(X* =
0| Z=st = z=t, X<t = 0) = 2!. So we obtain Pr(X =
0and Z = z) = prod(z) - [[,_, 2", where

n

prod(z) = Hg(t,z).

t=1

Letting € be the set of all z’s such that [, z* < a we
have

Pr (X =0 and HZt < a) < aZprod(z)

t=1 z€eC)

< aZ...med(z),

where the sum ) _, ranges over all possible values of Z*
(recall that we assumed the probability space to be finite).
Finally, we claim that the sum in the RHS equals 1: by
using the definition of prod(z) we get that

Z . Zprod(z)
= Z . Zprod(z<") -g(n,z)

=> ... ) prod(z=") (Z g(n,Z)>

2

= Z . Z prod(z<"),

zn—l

Zn—1

Iterating this argument n — 1 times gives that

Z...Zprod(z) = X:Pr(Z1 =N =1,

n

which concludes the proof. O

With this we can bound the failure probability of the algo-
rithm, concluding its analysis.

Lemma 3. A, withw > m and N > n returns FAIL
with probability at most %

Proof. Fix a hypothesis i € H. By taking a union bound
over all hypotheses, it suffices to show that the probability
that Apase fails upon receiving hypothesis A is at most ﬁ

Notice that & is received at most once by Ap,se: after re-
ceiving h for the first time, the algorithm either sends an

example that covers h (so the Learner never resends h)
or returns FAIL. So let 7 be the time when h is received,
ie., H. = h (let 7 be the last round if A is never re-
ceived), and let X? be the indicator that at time ¢ an ex-
ample covering h was sent to Learner by the algorithm.
As mentioned before, by the weight update of the algo-
rithm, at round 7 we have weight W7 (h) = W7 (H,) > 1.
Since w > m, the initial weights satisfies W9(h) < %
and hence the weight increments up to round 7 satisfy
> i<, D'(h) > 3. Moreover, if the algorithm fails on h
we have X! = ... = X7 =0, thus

1
Pr(fails on h) < Pr (Xt =0,vt <, and ZDt(h) > 2).
t<t

(D

Let F;_; be the o-algebra generated by the history up to
round ¢ — 1 plus the hypothesis at round ¢. By the sampling
procedure, the conditional probability Z! := Pr(X? = 0 |
Fi—1) that no example covering h was added in round ¢ is

Tt — (1 o Dt(h))4logN < e—4(logN)D"(h)’ 2)

recalling that (1—) < e~ forall . Then -, D*(h) >
1 implies 1<, 7t < e7?loeN = L and the RHS of (1)
can be upper bounded

1
Pr(fails on h) < Pr (Xt =0,Vt < 7and H 7t < N?>

t<rt

From Lemma 2 this can be further upper bounded by just
#, and hence Pr(fails on h) < ﬁ This concludes the
proof. O

Making the algorithm agnostic to the size of /. In The-
orem 1 we assume that the Teacher knows the number of
hypotheses n = || of Learner. However, a guess and
double strategy can be used to overcome this limitation.
More concretely, let A,gn, be a teaching algorithm that im-
plements a sequence of calls to Ay, where in the i-th call
the parameter NN is set to 22" while w is set to m. Moreover,
for ¢ > 1, the initial hypothesis for the i-th call is the one
that failed in the call + — 1. The procedure ends as soon as
some call to Ay, accepts h*.

Let t = [loglogn]. At the t-th call of Ap,e the pa-
rameter N is not smaller than n. Thus, it follows from
Theorem 1 that this call sends O(TS - logm - 2) ex-
amples and returns h* with probability at least 1 — 1/n.
Moreover, by Lemma 1 the previous calls to Ay, send
Z:} O(TSlogm - 2%) = O(TSlogmlogn) examples.
Therefore, we have the following result.

Theorem 2. Consider teaching a worst-case learner in the
realizable case h* € H. The algorithm Aggp,, with proba-
bility at least 1 — %, returns the correct hypothesis h* and
sends at most O(T S logmlogn) examples.
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2.2. Improved Guarantee Based on the Quality of the
Hypotheses

The next theorem shows that it is possible to obtain an im-
proved bound when the distribution of the number of errors
of the hypotheses in H is taken into account. For instance if
only O(1) hypotheses make a non-constant number of er-
rors, then the bound on the number of examples sent is im-
proved from O(7 S log mlogn) to O(T S(log n+logm)).

Theorem 3. Consider teaching a worst-case learner in the
realizable case h* € H. Let n; be the number of hypothe-
ses in H whose number of errors is between [22', 22" ) for
i > 1, and let ny be the number of hypotheses with error
in [1,4). Then there is an algorithm for the Teacher that
with probability at least % returns a correct hypothesis h*
and the number of examples sent is

loglogm
O(TS(H)) - <logm + Z 2 log(n; + 1))

=0
In particular, this is O(TS(H) log mlog(max; n; + 1)).

The starting point is to notice that if we run Ay, ini-
tialized with w being the maximum number of errors of
a hypothesis in the class, say err, then it sends at most
O(TS logerr - logn) examples. Then the idea of the al-
gorithm of Theorem 3 is the following: Instantiate copies
Ai, ..., Aloglog m Of the algorithm Ay, where A; is ini-
tialized with w = 22". Then when a hypothesis h comes
from Learner, we see in which bucket [22,22""") its num-
ber of errors falls into, and send the hypothesis to algorithm

A;.

Since the size of smallest teaching set for the hypotheses
that fall in the same bucket is no larger than TS(H, h*),
we can compose the guarantees from the algorithms A4;’s
to get the above guarantee (Details in Appendix B).

2.3. Non-realizable Case

We now consider the non-realizable case where the correct
hypothesis 2* may not be in the Learner’s class H. Recall
that in this case in each round the Learner sends a hypoth-
esis in H with the smallest number of errors in the exam-
ples received so far, and the Teacher’s goal is to make the
Learner return a hypothesis in 7 with the smallest number
of total errors over the whole set of examples X.

We first need a generalization of the notion of teaching set.
Informally, if the best hypothesis in # has & errors in X,
to isolate it the Teacher should send examples that certify
that the other hypotheses have at least k + 1 errors. We say
that a set of examples X’ C X is a k-extended teaching set
with respect to h* if for each hypothesis h € H with more
than k errors there are at least k + 1 examples in X’ where
h is wrong (differs from h*). We let TSy = TSk (H, h*)

denote the size of the smallest k-extended teaching set w.r.t.
h*.

Notice that after the Learner receives a set of labeled ex-
amples that contain a k-extended teaching set, it returns a
hypothesis with at most £ total errors since such hypothe-
ses have at most £ errors in the examples received, while
all other hypotheses have at least £ + 1 errors in them. If
k is set to be the number of errors of the best hypothesis in
‘H, the Learner then returns an optimal hypothesis.

Theorem 4. Consider teaching a worst-case learner where
h* may not belong to H. Let k be the smallest num-
ber of errors of a hypothesis in H. Then there is a
Teacher’s algorithm that with probability at least 1 — %
returns a hypothesis that makes k errors and sends at most
O(T Sy, logmlog(m + n)) examples.

The high-level idea of the algorithm is the same as in the
realizable case: it tries to compute in an online fashion a
k-extended teaching set of small size, but now based on
an online generalized set cover algorithm (Buchbinder &
Naor, 2009), where elements may need to be covered mul-
tiple times. However, since the minimum number of errors
k is unknown, the algorithm also needs to keep a lower
bound on k that is given by the number of errors of the last
received hypothesis over the examples already sent. The
algorithm stops when it receives from the Learner a hy-
pothesis whose total number of errors matches this lower
bound. Details are provided in Appendix C.

3. Other Learner Models

In this section we show that better bounds are possible un-
der reasonable assumptions on the way the Learner can
choose the consistent hypotheses to return. We address the
realizable case where h* € H and, here, we use H; C H
to denote the set of hypotheses consistent with all the ex-
amples sent by the Teacher in the rounds 1,...,¢t — 1 (so
H; is the set of possible hypotheses that Learner can send
in this round ¢).

3.1. Smooth Transition Learners

We first consider the smooth transition model where we fur-
ther assume that the Learner sends a hypothesis “close” to
the one sent in the previous round. Concretely, we use the
number of disagreements between hypotheses d(h, h’) =
H{z € X | h(xz) # h/(x)}| as measure of closeness, and
assume the hypothesis h; that Learner sends at round ¢ is
one in H; with (1 + «)-approximate minimum distance to
the hypothesis h;_; sent in the previous round, namely

< i .
d(ht, ht—l) S (1 + O[) }{Iel}}-r[lf d(h, ht—l)

We provide an algorithm A% . for this model whose guar-

(o7
close
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antee depends on the number of errors err; of the first
hypothesis sent by the Learner. That means that if the
Learner has a good guess for the right hypothesis, fewer
examples are needed to complete the teaching. Algorithm
AG e s obtained from Ay, via two simple modifications:
The starting weights of the examples W2 are set to 1/2err;
instead of 1/2m, and the number of examples sampled per
round is 1f52a log N instead of 4log N. This algorithm has
the following guarantee.

Theorem 5. Consider the smooth transition model with
o € [0,3%) in the realizable case h* € H. Let erry be
the number of errors over X of the initial hypothesis sent
by Learner. Then algorithm A, set with N > n sends
O(T‘S‘ﬁ log erry log N') examples and with probability

1

~ Teturns the correct hypothesis h*.

at least 1 —

The main observation for obtaining a guarantee that de-
pends on err; is that in the smooth transition model the
number of errors of the hypotheses sent by the Learner
cannot increase rapidly. We have the following.

Lemmad. Let h, h' be the hypotheses returned by Learner
at rounds t — 1 and t respectively. Then:

a) |wrong(h')| < 2 |wrong(h") N wrong(h)| + o |wrong(h)
b) |wrong(h')| < (4 + 2a) erry.

Proof. We first prove item (a). Let wrong(h \ h’) (resp.
wrong(h' \ h)) be the set of examples where only / (resp.
h') is wrong. In addition, let DIFF (resp. E(Q) be the
number of examples that both & and A’ are wrong but give
give different (resp. equal) classification. In formulae,

DIFF = {e € wrong(h) Nwrong(h') | h(e) # h'(e)}
EQ = {e € wrong(h) Nwrong(h') | h(e) = h'(e)}.

The number of disagreements between these hypotheses is
d(h,h") = |wrong(h \ h')| + |wrong(h' \ h)| + DIFF
d(h,h*) = |wrong(h \ h')| + DIFF + EQ

The smooth transition model guarantees that d(h,h’) <
(1 + @) d(h,h*) so that [wrong(h' \ h)| < a|wrong(h' \
h)| + (1 + «) [wrong(h) N wrong(h)|, and hence

|wrong(h')| = |wrong(h'\ h)|+ |wrong(h) Nwrong(h')]
< a|wrong(h \ h')|
+ (2 + «) |wrong(h) N wrong(h')]
= « |wrong(h)| + 2|wrong(h) N wrong(h')],
which establishes item (a).
Proof of item [b]. If h' is the first hypothesis, the result

clearly holds because the first hypothesis makes err; mis-
takes.

Thus, let ¢ > 1 be the round in which b’ is received and let
h be hypothesis received at the round ¢ — 1. We have that
|wrong(h)| < 2errq, for otherwise h would have weight at
least 1 by the beginning of round ¢ — 1 and, hence, ¢t — 1
would be the last round of the interaction. Thus, it fol-
lows from item (a) and from |wrong(h) N wrong(h') <
|wrong(h)| that [wrong(h')| < (4 4 2a)erry. O

Proof of Theorem 5. The bound on the number of exam-
ples follows directly from Lemma 1, since AJ .. behaves
as Apase initialized with w = errq, but sending times

as many examples per round.

11—

The proof that the probability of returning the correct hy-
pothesis is at least 1 — % is similar to that of Lemma 3:
we need to show that if the algorithm receives hypothe-
sis &’ on round 7 then >, D'(h’), the total increase of
the weights of the wrong examples of a hypothesis A’ is
“large”. That is enough since the concentration arguments
following inequality (1), then, guarantee that the probabil-
ity of failing at this point (i.e., no examples covering A’
were sent) is small. More precisely, it suffices to show

LR — 3)

- 4
t<t

We note that in Lemma 3 we have the stronger lower bound
with RHS %; the difference is compensated by the extra
number of examples sent in each round by A We prove
inequality (3) by considering two cases:

(o7
close*

Case 1. |wrong(h')| < erry. In this case Y, D*(h') is
at least > 1=2% since the initial weight of /' is at most
% and its final weight is at least 1 by the weight update step

of the algorithm.

Case 2. |wrong(h')| > erry. It follows from item (a) of
Lemma 4 that the hypothesis received at round 7 — 1, say
h, shares at least (|wrong(h')|—« |wrong(h)|)/2 wrong ex-
amples with h’. Moreover, we have |wrong(h)| < 2err;:
otherwise the starting weight of this hypothesis W°(h) is
already at least 1, so the algorithm fails on round 7 — 1,
contradicting that it fails on round 7. Together with the as-
sumption from being in Case 2, this gives |wrong(h)| <
2|wrong(h’)| and hence the number of common wrong
examples between h and 7' is at least =2 [wrong(h')|.
Since the weight of each of these common examples was
increased by at least 1/2erry in round 7 — 1 (weights are
doubled and start at 1/2err), we have that

1 -2« 1 1 -2«
E Dt h/ > D‘f‘—l hl > . . )
— (n) 2 (W) = 2 e 2erry 4

This proves (3) and concludes the proof of Theorem 5.
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Making the algorithm agnostic to the size of 7{. To ob-
tain an algorithm agnostic to the size of H we proceed as
in Section 2.1 but performing a sequence of calls to A4
rather than to Apge.

«
close?

The only different issue that arises in the analysis of this
algorithm is how to bound the number of errors erry ; made
by the first hypothesis of ith call of AS ... By using the
fact that this hypothesis is exactly the last one returned by
the previous call together with item (b) of Lemma 4, we
get that erry ; < (4 + 2a) erry;—1 and, hence, erry; <
(442a)*~! erry ;. This observation together with the same
arguments employed in the analysis of A,g, allows us to
establish the following theorem:

Theorem 6. Under the same assumptions as in Theorem
5, there is a teacher’s algorithm agnostic to the number of
hypothesis n that sends O(TS logn (log erry +loglogn))
examples and with probability at least 1 — % returns the
correct hypothesis h*.

Note that in the worst-case learner model this bound is not
achievable by poly-time algorithms unless NP C BPP.
This is shown through a simple modification of a lower
bound from (Korman, 2004) [See Appendix D]

3.2. The Random Learner Model

We assume that in each round the Learner sends a batch of
random i.i.d. hypotheses from the ones that are consistent
with the examples received thus far.

We show that in this situation the Teacher can exploit the
randomness of the Learner’s choice in order to estimate
the example that covers (i.e., falsifies) the highest num-
ber of hypotheses (which are consistent with the examples
seen so far). With this knowledge, the Teacher can resort
to algorithms for the offline set cover problem and signifi-
cantly improve the number of examples used: we show that
Teacher sends with high probability O(7'S log(n + m))
examples, which is the best bound achievable in polytime,
under the assumption that P # NP, for the relevant case
where the number of hypotheses 7 is larger than the num-
ber of examples m (Raz & Safra, 1997).

Algorithm A;ng (Figure 2) runs the greedy approximation
algorithm for offline set cover over the empirical process:
At each round ¢ the Teacher requests a batch H; of T ran-
dom hypotheses from the set H; of hypotheses consistent
with the examples sent thus far, and sends to Learner an
example ¢ that covers the largest number of hypotheses
from H;. The size T of the requested batch ideally depends
on the size of the smallest teaching set TS(H,h*), but
since this quantity is unknown the algorithm also employs
a guess-and-double approach: In phase i ituses 7 = 2 as a
guess for 7'S and runs the greedy procedure for 27" rounds.
If within these rounds the algorithm does not terminate, the

phase is concluded and phase 7 + 1 is started.

Algorithm A4
Input: Examples X
1. Initialize round counter t = 0
2. Foreachphase:=1,2,...:
« Update the teaching set size guess T’ = 2°
 For 27 rounds
— Update round counter t = ¢ + 1
— Receive batch 7T£t of T" random hypotheses from H.
— If all hypotheses in H, equal h”, then Return (¥)
- Send é = argmax, |{h € H; | e € wrong(h)}|

Figure 2. Teacher Ay

The following theorem is the main result of this section.

Theorem 7. Consider the random learner model in the
realizable case h* € H. With probability at least 1 —
O(1/m), Ayana satisfies the following: (i) it accepts the tar-
get hypothesis h* (line (*) of Arana); (ii) it sends O(TS -
log(n+m)) examples and (iii) it receives O(TS -log(n+
m)) hypotheses per round.

We note that without the bound on the number of hypothe-
ses received per round the result would be straightforward
since the Teacher could request infinitely many hypothe-
ses to acquire a very accurate knowledge of the class H and
then resort to the off-line greedy set cover algorithm.

To prove Theorem 7, given a set of hypotheses H' C H
let ¢*(#H') be the maximum number of hypotheses from #’
that can be covered by a single example in X'. We rely
on two lemmas whose proofs can be found in Appendix E.
The first shows that with high probability the example that
covers the largest number of hypotheses in the empirical
set H; also covers a large number of hypotheses from 7.

Lemma S. Let € be an example that covers the largest

number of hypotheses in Hy and let cz be the number of

hypotheses covered by € in Hy. If |H:| > 40T S Inm then,
2

—.

1
Pr (Cé < 120*(7—&,)) < —

The second lemma gives an upper bound on the number of
rounds executed by an approximate version of the greedy
offline set cover algorithm.

Lemma 6. Consider 0 < o < 1 and A,, be any teacher’s
algorithm that at each round t sends to Learner an exam-
ple that covers at least ov-c*(Hy) hypotheses from H.. Then
Aq executes O(LTSInn) = O(TS Inn) rounds before
the only consistent hypothesis is h*, i.e., H; = {h*}.

Proof of Theorem 7. Let o = 1/12 and let 7 be the first
phase where T’ = 2" is at least 7S - max{ < Inn, 40 Inm}.
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Since the previous ¢ — 1 phases send E;;ll 29 =
O(TSIn(m + n)) examples and each of them requests
O(T S In(n+m)) hypotheses per round, it suffices to anal-
yse phase i onwards.

We say that an example is bad for round ¢ if it does not
cover ac*(H;) hypothesis of H;. Due to Lemma 5 every
round ¢ that occurs after the beginning of phase 7 sends
a bad example with probability at most 2/m*. Thus, it
follows from the union bound that a bad example is sent
during the iT Slogn first rounds of phase ¢ with proba-
bility at most (227 Slogn)/m* < 24/m, where the in-
equality holds because TS < m and n < |Y|™ < m™.
Hence, it follows by Lemma 6 that, with probability at least
1—0(1/m), the only consistent hypothesis that remains af-
ter these round is ~A*. Since each of these rounds requests
O(T S log(n+m)) hypotheses, the theorem is proved. [

4. Non-redundant Teaching Sets

We say that a teaching set X is redundant if it contains a
redundant example, that is, an example e such that X \ {e}
is still a teaching set. The algorithms discussed so far may
construct teaching sets that are redundant. We show that
| X - (J¥] — 1) additional rounds suffice to obtain a non-
redundant teaching set from a teaching set X w.r.t. (h*, H),
where ) is the set of possible labels for the examples.

For that we consider a more general interaction model
where at each round Teacher sends a set of labelled ex-
amples to Learner and the latter returns a hypothesis that
makes the smallest number of errors in this set (ignoring the
examples received at previous rounds). Differently from
the previous sections, here the Teacher may send an ex-
ample e with label different from h*(e).

The following proposition gives a simple condition for de-
ciding whether e is redundant for teaching set X.

Proposition 1. Let X be a teaching set for (H,h*). If
there exists a hypothesis h € H with h(e') = h*(¢’) for
every e’ € X \ {e} and h(e) # h*(e), then the example e
is non-redundant for the set X, and also for any teaching
set contained in X. Otherwise, e is redundant for X.

Given this observation, the algorithm for obtaining a non-
redundant teaching set from X is straightforward: It scans
the examples in X and for each e € X verifies whether e
is redundant (w.r.t. the set of examples that have not been
removed from X) or not; if it is, the example is removed
from X and the scan continues over the examples that have
not been tested yet. To verify whether e is redundant the
Teacher interacts with the Learner in |Y| — 1 rounds
testing the existence of a label y # h*(e) for which the
Learner returns a hypothesis consistent with the labelled
set of examples D, = {(¢/, h*(¢/)) | ¢/ € X \e}U{(e,y)}.

Table 1. Percentage of the size of the full dataset required by each
Teacher-Learner to achieve an accuracy larger than 2% (with
z € {90,95,99}) of that achieved by the Learner when it is
trained and tested in the full dataset.

Teacher-Learner | 90% | 95% | 99%

Agno-Random Forest | 10.1% [ 14.7% | 20.6 %
NIT-Random Forest | 14.7% | 30.4% | 59.9%
Augno-LGBM 28% | 57% | 89%
NIT-LGBM 34% | 78% | 28.0%

If such label does not exist then the algorithm concludes
that e is redundant. It is clear that the overall number of
rounds is at most | X | - (|[Y] — 1).

In simulations on synthetic data (Appendix F) this method
significantly reduced the teaching sets found by A,gno.

5. Computational Experiments

Although our work is mainly theoretical we performed ex-
periments to understand how our Teacher A, compares
with a non interactive one over real datasets.

The non interactive teacher, denoted by NIT, receives
an integer ¢ and then sends to the Learner ¢ randomly
selected examples. We compared the number of examples
that both Ajuen, and NIT need to send in order to attain
a certain level of accuracy. For our evaluation we used
Random Forest and Light Gradient Boosting Machine
(LGBM) as learners, and conducted experiments on 12
datasets: mnist and 11 others from the UCI reposi-
tory (mushroom, avila, bank-marketing, car,
Credit Card, Firm_Teacher, crowdsourced,
Electrical_grid, HTRU, nursery and
Sensorless_drive).

Table 1 shows the number of examples (relative to the size
of the full dataset) required by each pair Teacher-Learner
to attain an accuracy over the full dataset larger than 2% of
that obtained when the Learner is trained/tested over the
full dataset. Each numeric entry of this table is an average
of 12 values, where each of them corresponds to a distinct
dataset. More details are presented in Appendix G.

The results provide evidence that A,g, requires signifi-
cantly fewer examples than NIT (e.g. a factor of 3 for the
target 99%). Furthermore, an interesting observation is that
the advantage of A,y increases as the level of accuracy re-
quested gets higher. A reasonable explanation is that when
little is known (low accuracy in our setting), most of the
examples are useful (hence, random sampling also works
well); however, when a certain level of knowledge has al-
ready been reached, more specific examples, as those pro-
vided by A,gno, are needed to further increase it.



Teaching with Limited Information on the Learner’s Behaviour

Acknowledgements

We would like to thank the anonymous reviewers for their
useful comments including also some pointers to very re-
cent related literature. We would also like to thank Daniel
dos Santos Marques for the fruitful discussions about ap-
plications of machine teaching and to Sanjoy Dasgupta
for clarifications about the paper “Teaching a black-box
learner”.

This study was financed in part by the Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES) - Finance Code 001.

The work of the third author is partially supported by CNPq
under grant 307572/2017- 0 and by FAPERJ, grant Cien-
tista do Nosso Estado E- 26/202.823/2018.

The work of the of the fourth author is supported by CNPq
grants Universal #431480/2016-8 and Bolsa de Produtivi-
dade 35 em Pesquisa #4310516/2017-0, FAPERJ grant
Jovem Cientista do Nosso Estado.

References

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and
Naor, J. The online set cover problem. SIAM J. Com-
put, 39(2):361-370, 2009.

Angluin, D. and Dohrn, T. The power of random coun-
terexamples. Theor. Comput. Sci., 808:2—13, 2020.

Balbach, F. J. and Zeugmann, T. Teaching randomized
learners with feedback. Inf. Comput, 209(3):296-319,
2011.

Buchbinder, N. and Naor, J. S. Online primal-dual al-
gorithms for covering and packing. Math. Oper. Res.,
34(2):270-286, May 2009. ISSN 0364-765X. doi:
10.1287/moor.1080.0363. URL https://doi.org/
10.1287/moor.1080.0363.

Chen, Y., Singla, A., Mac Aodha, O., Perona, P., and Yue,
Y. Understanding the role of adaptivity in machine teach-
ing: The case of version space learners. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 31, pp. 1476-1486.
2018.

Dasgupta, S., Hsu, D., Poulis, S., and Zhu, X. Teaching a
black-box learner. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 1547-1555. PMLR,
2019. URL http://proceedings.mlr.press/
v97/.

de la Pefia, V. H. and Giné, E. Decoupling: From De-
pendence to Independence. Probability and Its Applica-
tions. Springer New York, 1999. ISBN 9780387986166.
URL https://books.google.hu/books?id=
DHVfJrvTRvcC.

Gao, Z., Ries, C., Simon, H. U., and Zilles, S. Preference-
based teaching. J. Mach. Learn. Res, 18:31:1-31:32,
2017. URL http://jmlr.org/papers/v18/
16-460.html.

Goldman, S. A. and Kearns, M. J. On the complexity of
teaching. J. Comput. Syst. Sci, 50(1):20-31, 1995.

Johns, E., Aodha, O. M., and Brostow, G. J. Be-
coming the expert - interactive multi-class ma-
chine teaching. In CVPR, pp. 2616-2624. 1IEEE
Computer Society, 2015. ISBN 978-1-4673-6964-
0. URL http://ieeexplore.ieee.org/xpl/
mostRecentIssue. jsp?punumber=7293313.

Kirkpatrick, D., Simon, H. U., and Zilles, S. Opti-
mal collusion-free teaching. In Garivier, A. and Kale,
S. (eds.), Proceedings of the 30th International Con-
ference on Algorithmic Learning Theory, volume 98
of Proceedings of Machine Learning Research, pp.
506-528, Chicago, Illinois, 22-24 Mar 2019. PMLR.
URL http://proceedings.mlr.press/v98/
kirkpatrickl9a.html.

Korman, S. On the Use of Randomization in the Online
Set Cover Problem. PhD thesis, Department of Com-
puter Science and Applied Mathematics, The Weizmann
Institute of Science, Israel, 2004.

Liu, W., Dai, B., Humayun, A., Tay, C., Yu, C., Smith,
L. B, Rehg, J. M., and Song, L. Iterative machine
teaching. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pp. 2149-2158. PMLR, 2017. URL
http://proceedings.mlr.press/v70/.

Liu, W, Dai, B., Li, X., Liu, Z., Rehg, J. M., and Song,
L. Towards black-box iterative machine teaching. In
Dy, J. G. and 0001, A. K. (eds.), ICML, volume 80 of
Proceedings of Machine Learning Research, pp. 3147—
3155. PMLR, 2018. URL http://proceedings.
mlr.press/v80/.

Mansouri, F., Chen, Y., Vartanian, A., Zhu, J., and Singla,
A. Preference-based batch and sequential teaching: To-
wards a unified view of models. In Advances in Neu-
ral Information Processing Systems 32, pp. 9195-9205.
Curran Associates, Inc., 2019.



Teaching with Limited Information on the Learner’s Behaviour

Mei, S. and Zhu, X. Using machine teaching to identify
optimal training-set attacks on machine learners. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence, AAAI?1S, pp. 287172877. AAAI
Press, 2015. ISBN 0262511290.

Rafferty, A. N., Brunskill, E., Griffiths, T. L., and Shafto, P.
Faster teaching via pomdp planning. Cognitive Science,
40(6):1290-1332, 2016.

Raz and Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability PCP character-
ization of NP. In STOC: ACM Symposium on Theory of
Computing (STOC), 1997.

Shinohara, A. Teachability in computational learning. New
Generation Comput, 8(4):337-347, 1991.

Singla, A., Bogunovic, 1., Barték, G., Karbasi, A., and
Krause, A. Near-optimally teaching the crowd to clas-
sify. In ICML, volume 32 of JMLR Workshop and
Conference Proceedings, pp. 154-162. IMLR.org, 2014.
URL http://proceedings.mlr.press/v32/.

Zhou, Y., Nelakurthi, A. R., and He, J. Unlearn what you
have learned: Adaptive crowd teaching with exponen-
tially decayed memory learners. In Guo, Y. and Farooq,
F. (eds.), KDD, pp. 2817-2826. ACM, 2018.

Zhu, X., Singla, A., Zilles, S., and Rafferty, A. N. An
overview of machine teaching. CoRR, abs/1801.05927,
2018. URL http://arxiv.org/abs/1801.
05927.

Zilles, S., Lange, S., Holte, R., and Zinkevich, M. Models
of cooperative teaching and learning. J. Mach. Learn.
Res, 12:349-384, 2011. URL http://portal.
acm.org/citation.cfm?id=1953059.



