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Abstract

Machine Teaching studies how efficiently a Teacher can guide a Learner to a target
hypothesis. We focus on the model of Machine Teaching with a black box learner introduced
in [Dasgupta et al., ICML 2019], where the teaching is done interactively without having
any knowledge of the Learner’s algorithm and class of hypotheses, apart from the fact that
it contains the target hypothesis h*. We first refine some existing results for this model
and, then, we study new variants of it. Motivated by the realistic possibility that A* is not
available to the learner, we consider the case where the teacher can only aim at having the
learner converge to a best available approximation of h*. We also consider weaker black box
learners, where, in each round, the choice of the consistent hypothesis returned to the Teacher
is not adversarial, and in particular, we show that better provable bounds can be obtained
for a type of Learner that moves to the next hypothesis smoothly, preferring hypotheses
that are close to the current one; and for another type of Learner that can provide to the
Teacher hypotheses chosen at random among those consistent with the examples received
so far. Finally, we present an empirical evaluation of our basic interactive teacher on real
datasets.

1 Introduction

Machine Teaching studies how efficiently a Teacher can teach a target hypothesis to a Learner.
The classic works [22, 11] consider the setting where the Teacher sends in one shot a set of
labeled examples to the Learner, which then has to output the correct target hypothesis. In
more recent works, the focus has been on the interactive setting [15, 6, 16, 7] — where the
Teacher and Leaner interact over multiple rounds. In each round, the Teacher sends examples
to the Learner, which returns ! some feedback; this process continues until the Learner reaches
the target hypothesis (or a good approximation of it).

Machine teaching models have proved useful in several contexts, e.g., crowd sourcing [12, 24],
intelligent tutoring systems [20, 25|, analysis of training set attacks [18]. Moreover, commercial
tools are under development by the Microsoft Machine Teaching Group, as detailed on their
web page, which are based on, or employ, the paradigm of machine teaching, e.g., PICL, which
leverages the selection of examples that maximize the training value of the interaction with the
teacher; LUIS for natural language understanding; and other projects on building models for
autonomous systems.

Most of the above works assume that the Teacher has significant knowledge about the
Learner, e.g., its hypothesis class and the specific procedure employed for learning a hypothesis

1Unless specified, we will tacitly assume that Learner and Teacher are machines, hence we use neutral pronouns.



from labeled examples. However, this assumption excludes many important situations as human
teaching and automatic learners with black box behaviour (e.g. Deep Nets). Thus, recent work
in the field has focused on analysing scenarios in which the Teacher’s knowledge about the
Learner is limited [16, 7].

In particular, [7] addressed machine teaching with a black boz learner, where the only knowl-
edge of the Teacher about the Learner is that its hypothesis class contains the target. They
considered a model of interaction where at each round the Teacher sends labelled examples to
the Learner and it provides a hypothesis that is consistent with all the examples received so far.
The authors provide bounds on the number of examples required to teach the target hypothesis
to worst-case learners.

Here, we refine some existing results for the model of machine teaching with a black box
learners considered in [7] and also introduce and analyse new variants of it. We are motivated,
on the one hand, by the realistic scenario in which ‘exact teaching’ is not possible (the target
does not belong to Learner’s hypothesis class) and, on the other hand, by the fact that the
Learner may not be adversarial to the Teacher.

1.1 Notation and Model

Before precisely stating our contributions we set some notation and explain the teaching model
in more detail. There is a set X of examples, and a finite set ) of possible labels for each
example. By a hypothesis we mean a function that maps each example in X’ to a label in ).
We assume that:

Teacher: has a target hypothesis h* : X — ), unknown to Learner (h*(e) is the correct label
for e).

Learner: has a hypothesis class H C V¥, unknown to Teacher

In each round the Teacher sends the Learner a set of labeled examples (e, h*(e)), then the
Learner returns a hypothesis from its class with minimum number of errors in the examples
received thus far. The goal of the Teacher is to send a minimum number of examples so as to
make the Learner return a hypothesis from H with the smallest total number of errors in the
whole dataset X" (in the realizable case h* € H, this means returning the correct hypothesis h*).
In the basic setting the Teacher does not have additional information on the learning algorithm
used by the Learner to select among its minimum error hypotheses.

A fundamental notion in machine teaching is that of a teaching set for h* [11], which is a
set of examples X C X that distinguishes h* from every other hypothesis in H, that is, for
every h # h* there is an example e € X for which h(e) # h*(e). We use TS(H,h*) to denote
the size of the smallest teaching set for h*. When (H,h*) is clear from the context we use
TS as a shorthand. We use m = |X| and n = |H| to denote the size of the sets of examples
and hypotheses, respectively, and use wrong(h) to denote the set of examples in which & fails
(differs from h*).

1.2 Contributions and Related Work

Our first contribution is a teaching algorithm Ayp,s. that with high probability guarantees con-
vergence to the target hypothesis h* using O(7Slogmlogn) examples (Theorems 1 and 2).
Its correctness relies on a novel analysis of the on-line set cover algorithm proposed by [1].
The main obstacle to derive this analysis is handling the non-trivial dependence between the
Teacher’s and the Learner’s actions over time. We rely on martingale techniques and arguments
reminiscent of decoupling [8] to overcome this difficulty.

[7] present interesting results for black box learners and one of them is also a teaching al-
gorithm based on a (different) adaptation of the on line set cover algorithm from [1]. Their



analysis guarantees bounds similar to ours, although it is based on the knowledge of an up-
per bound on n. However, some relevant subtleties arising from the interdependence between
Teacher and Learner were not addressed in the proofs from [7]. In this respect, we understand
that an additional contribution of our analysis is to clarify and formalize (via an application
of our Lemma 2) the validity of a key statement in their argument (Lemma 5 of [7]). Details
are presented in Suppl. Material, Appendix A. That said, we would like to emphasize that the
algorithm and the statements from [7] are correct.

We also use our algorithm Ayp.s. as a basis for both improved results and extension to
other variants of the problem. In Section 2.2, we propose a modified algorithm that obtains
a stronger bound that depends on the (unknown) distribution of the number of errors among
the hypotheses in H (Theorem 3). In Section 2.3, we generalize the above bound to the non-
realizable case, where the Teacher cannot assume that the Learner’s class contains the target
hypothesis. Our algorithm guarantees that the Learner converges to the hypothesis h that is the
closest to h* in its hypothesis class, after receiving O(7 Sy logmlog(m + n)) examples, where
TS} is a lower bound on the number of examples needed for this task.

These results are valid for the worst-case Learner model [22, 11], where no assumption is
made on which hypothesis the Learner selects among those of minimum error in the examples
received thus far. Different models for the Learner’s behavior have been recently considered
[26, 10, 6, 17, 13]. The assumption that the Learner smoothly navigates over its hypothesis
class, always updating its current hypothesis to one that is ‘close’ to it, was used to motivate
the local preference model introduced in [6] and extended in [17]. For this type of Learner,
when the closeness is measured in terms of Hamming distance, we present a teaching algorithm
that with high probability sends O(7S logn(logerr; + loglogn)) examples, where err; is the
number of errors of the first hypothesis provided by the Learner (Theorems 5 and 6)? . Thus,
this teaching algorithm benefits from a Learner that starts close to the target hypothesis. It
is possible to show that this bound is not achievable by efficient algorithms, in the worst-case
model, through a simple modification of a lower bound presented in [14].

We also obtain improved bounds for the model where the Teacher can ask the Learner for
a batch of random hypotheses consistent with the examples presented thus far. We propose a
teaching algorithm that, with high probability, teaches h* by sending in total O(7 S log(n+m))
examples and requesting O(7 S log(m + n)) random hypotheses per round (Theorem 7). For
the relevant case where the number of hypotheses n is larger than the number of examples m,
the bound on the number of examples is the best possible for poly-time algorithms under the
assumption P # NP, even when the Teacher knows the class of hypotheses H [21].

We note that our non-adversarial models for learners are related to models that have already
been considered [6, 4, 23, 2]. In fact, the model of smooth transitions can be seen as an instance
of the local preference model from [6], where hypotheses close to the current one, in terms of
the Hamming distance, are preferred. Moreover, learners that return a random hypothesis have
been considered in [4, 23]. However, in these works, in contrast to ours, the Teacher is aware
of the Learner’s hypothesis class. An analogous result, in a different context of teaching, where
separation is proved between worst case and random adversary is [2].

Although the teaching algorithms mentioned so far aim at obtaining a small teaching set,
they may end up producing a non-minimal one (w.r.t. example deletion). In Section 4 we show
that with a limited amount of extra interactions the Teacher is able to construct a minimal
teaching set. This result may be useful when the main goal is to obtain a compressed training
set.

*We remark that this result holds if n = |#| is redefined as the number of non-equivalent hypotheses in H
w.r.t. h*, where two hypotheses are equivalent if they agree with h* in exactly the same examples of X’; hence,
n < 2™ and loglogn < logm.



Finally, to complement our theoretical results, we present in Section 5 experiments with 12
real datasets that show that our basic Teacher (the Aagno from Section 2) sends significantly
fewer examples, to reach a given level of accuracy, than a Teacher that does not interact with
the Learner.

2 Teaching with Worst-case Learner

Recall the teaching model from Section 1.1. In this section we consider worst-case learners that
can return any hypothesis h € H that has smallest number of errors on the examples received
thus far.

2.1 Realizable Hypothesis Case

We first consider the realizable case when the target hypothesis A* belongs to the learner’s class
‘H. Notice that in this case the Learner always sends a hypothesis that is correct on all examples
seen thus far.

As in [7], we leverage the connection between teaching and set cover. We say that an
example e € X covers hypothesis h € H if the latter makes a mistake in this example, namely
h(e) # h*(e). Notice that covered hypotheses are out of consideration from the Learner, namely
it never sends a hypothesis that is covered by the examples it has received. Thus, after the
examples sent by the Teacher cover all hypotheses other than h* the Learner must send back the
correct hypothesis h*, achieving the learning goal. This means that one can reduce the problem
of teaching to that of online set cover: in the beginning of each round, the Teacher receives
a hypothesis from Learner and sends examples that cover this hypothesis (and hopefully other
unknown hypotheses), in a way that the total number of examples sent is small.

Our proposed teaching algorithm Ap,se uses the online set cover algorithm of [1], and can be
described as follows (see Figure 1). It maintains weights W! over the examples e € X for each
round t. When a new hypothesis h comes from the Learner (so it is not covered by the examples
thus far), the Teacher first verifies whether h = h*. If so, it accepts h. Otherwise, it increases in
exponential fashion the weights of the examples where h is wrong until the sum of these weights
becomes at least 1; then it randomly sends examples to Learner with probability proportional
to the increase of the weights of the examples in this round. If & is neither accepted nor covered
(i.e., no example is sent) by the end of the round, the algorithm returns FAIL.

While our algorithm is based on [1] the main novelty is in its analysis: the hypotheses
(“elements” to be covered) depend on the examples (“sets”) sent, and not only the analysis
in [1] does not allow such dependencies but it also known that m examples are required for
more general dependencies [[14], Theorem 2.1.3]. However, the dependencies that arise in this
context of teaching are just so that we can handle them using martingale techniques.

Theorem 1. Consider teaching a worst-case learner. In the realizable case h* € H, algorithm
Apase (in Fig. 1) initialized with N > n and w = m always sends O(TSlog N logm) examples,
and returns the correct hypothesis h* with probability at least 1 — %

Proof of Theorem 1. The first important observation is that the algorithm terminates in at
most O(7 S logw) rounds [[1], Lemma 1]. In addition, since in each round the Teacher sends at
most O(log N) examples we get the following.

Lemma 1. Ay sends O(TSlogwlog N) examples.



Algorithm Ay,
Input: Examples X, (guess of) the number of Learner’s hypotheses NV, initial weight_ parameter
w >0
1. Initialize weights W0 = % for all examples e € X

2. For each round t =1,2,.. .
e Receive hypothesis H; € H from the Learner

e If H; is correct in all examples (i.e., H; = h*), stop and return Hy

e (Weight update) Double the weights of all wrong examples until their weight adds
up to at least 1. That is, define

Wt 26 Wi=1 | if e € wrong(Hy)
e wi-t , if e ¢ wrong(Hy),
where / is the smallest non-negative integer such that W*(H;) := > yWe>1

ecwrong(H:

¢ (Sending examples) For every example e, let D! := W!—W!~! be the weight increase
of example e (note DY = 0 if H; is not wrong on e)
Repeat 41log N times: sample at most one example so that e is sampled with probability

D!, and send it to Learner together with its correct label (note that H; is wrong on this
example)

e If no examples were sent, return FAIL

Figure 1: Teacher’s algorithm for teaching a realizable hypothesis

So we only need to upper bound the probability that the algorithm returns FAIL. Let
Wt(h) = > eewrong(h) W be the weight of h at the end of round ¢, and let D!(h) := W(h) —
W=1(h) be the increase of this weight at round ¢. The intuition why the failure probability
should be low is the following: If the algorithm fails on a hypothesis A it means that its
weight is at least 1 by the end of the interaction and no example that covers h was sent.
Let X; be an indicator variable that is equal to 0 if no examples that cover h are sent at
round ¢t. We have Pr[X; = 0] = (1 — D!(h))*"°e" so the failure probability should be about
[1,(1 — Di(h))*osN ~ e=(4log N) 5, D'(h) < ¢—2l0gN — 1 /N2 where the last inequality holds
because, at the beginning, the weight of h is at most 1/2 and by the end of the algorithm is
at least 1. By taking the union bound over all hypotheses h € ‘H we would conclude that the
failure probability is at most 1/N.

The problem is that this argument ignores crucial stochastic dependencies: the actual ex-
amples sent affect (through the Learner’s response) the evolution of the weight of h, so that
the set of random variables {X;} are not independent and, hence, we cannot take the product
of probabilities as above. To handle this situation we abstract it as a sequence of dependent
Bernoulli random variables X;’s whose biases (corresponding to 1 — (1 —D*(h))*1°8") depend on
the history. Our main technical lemma shows that, regardless of the correlations, the probability
that none of the indicators X; is active is what we expect.

Lemma 2 (Adaptive Bernoullis). Consider a finite probability space with filtration Fy C Fa C

cand let X',..., X" € {0,1} be an adapted sequence of Bernoulli random variables, possibly
correlated. Let Z' := Pr(X' = 0 | F;—1) be the conditional probability that X; is 0. Then for
any stopping time T w.r.t. F and o >0

Pr(Xl—...—XT—O and HZt§a> < .

t<rt



Proof. We can assume without loss of generality that there is no stopping time (i.e., 7 always
equals n): we can apply the result to the variables X* := 1(7 > t)- X" and B* := (1 - 1(7 >
t)) - Z! = Pr(X' = 0| F;—1) to obtain the result in the stopped case.

In this specific proof we use bold for vectors and capital letters for random variables, respec-

tively. Moreover, for a vector v = (v!,...,v") and t < n, we use v=! (resp. v<!) to denote the

vector (v',...,v?) (resp. (v!,...,v'"1)). The same notation is employed to restrict a sequence

of random variables to its ¢ first elements.

Let X = (X', X2,...,X") and let Z = (Z',Z2,...,Z"). Peeling off the variables in order
ZY X1 7% X2 ... we have that for any fixing z = (2°,2!,...,2") (without any independence
assumption)

Pr <X = 0 and Z = z) = ﬁf(t, z) - ﬁg(t,z)

t=1 t=1
where
flt,z) = Pr(X'=0]Z% =25 X" =0),
g(t,z) = Pr(Z' =22 =2~ X< =0).
For any history o € F;_1 up to time t — 1 where Z! = 2! we have Pr(X! = 0 | o) = 2,
which implies Pr(X? = 0 | Z<t = 2=t X<! = 0) = 2!. So we obtain Pr(X =0 and Z = z) =
prod(z) - [}, 2%, where

prod(z) = Hg(t,z).
t=1

Letting © be the set of all z’s such that []}; 2* < a we have

Pr <X =0 and HZt < a> < aZprod(z)
t=1

zeQ)

<« prod(z),
>+ prod(z)
z1 z"

where the sum ), ranges over all possible values of Z' (recall that we assumed the probability
space to be finite). Finally, we claim that the sum in the RHS equals 1: by using the definition
of prod(z) we get that

Z . Zprod(Z)
— Z . Zprod(z<”) -g(n,z)

= Z . Z prod(z<") (Z g(n, Z))

Zn—1

= Z e Z prod(z<"),

Zn—1

Iterating this argument n — 1 times gives that

which concludes the proof. O



With this we can bound the failure probability of the algorithm, concluding its analysis.
Lemma 3. Ay, with w > m and N > n returns FAIL with probability at most %

Proof. Fix a hypothesis h € H. By taking a union bound over all hypotheses, it suffices to show
that the probability that Apage fails upon receiving hypothesis h is at most ﬁ

Notice that h is received at most once by Apase: after receiving h for the first time, the
algorithm either sends an example that covers h (so the Learner never resends h) or returns
FAIL. So let 7 be the time when h is received, i.e., H; = h (let 7 be the last round if h is never
received), and let X* be the indicator that at time ¢ an example covering h was sent to Learner
by the algorithm. As mentioned before, by the weight update of the algorithm, at round 7 we
have weight W7 (h) = W7(H,) > 1. Since w > m, the initial weights satisfies W°(h) <  and
hence the weight increments up to round 7 satisfy >, D'(h) > % Moreover, if the algorithm
fails on h we have X' = ... = X” = 0, thus -

1
Pr(fails on h) < Pr (Xt =0,vt <7, and »_ D'(h) > 2). (1)
t<t

Let F;—1 be the g-algebra generated by the history up to round ¢t — 1 plus the hypothesis at
round t. By the sampling procedure, the conditional probability Z! := Pr(X* =0 | F;_1) that
no example covering h was added in round t is

Tt — (1— Dt(h))4logN < 6—4(logN)Dt(h)’ (2)

recalling that (1 — ) < e~* for all #. Then ), D'(h) >
and the RHS of (1) can be upper bounded

1. o t « ,—2logN _ _1
7 implies [[,, Z" < e™ 28 = <5,

1
Pr(faﬂs on h) < Pr (Xt = O,Vt <rT and HZt < ]\72>

t<t
From Lemma 2 this can be further upper bounded by just ﬁ, and hence Pr(fails on h) < #
This concludes the proof. ]

Making the algorithm agnostic to the size of H. In Theorem 1 we assume that the Teacher
knows the number of hypotheses n = |H| of Learner. However, a guess and double strategy can
be used to overcome this limitation. More concretely, let Aagno be a teaching algorithm that
implements a sequence of calls to Apase, Where in the i-th call the parameter N is set to 2%
while w is set to m. Moreover, for ¢ > 1, the initial hypothesis for the i-th call is the one that
failed in the call ¢ — 1. The procedure ends as soon as some call to Ap,se accepts h*.

Let t = [loglogn]. At the t-th call of Apagse the parameter N is not smaller than n. Thus,
it follows from Theorem 1 that this call sends O(TS - logm - 2') examples and returns h*
with probability at least 1 — 1/n. Moreover, by Lemma 1 the previous calls to Apase send
Zf;} O(TSlogm -2") = O(TSlogmlogn) examples. Therefore, we have the following result.

Theorem 2. Consider teaching a worst-case learner in the realizable case h* € H. The algo-
rithm Aagno, with probability at least 1 — %, returns the correct hypothesis h* and sends at most
O(T Slogmlogn) examples.



2.2 Improved Guarantee Based on the Quality of the Hypotheses

The next theorem shows that it is possible to obtain an improved bound when the distribution
of the number of errors of the hypotheses in H is taken into account. For instance if only O(1)
hypotheses make a non-constant number of errors, then the bound on the number of examples
sent is improved from O(TSlogmlogn) to O(TS(logn + logm)).

Theorem 3. Consider teaching a worst-case learner in the realizable case h* € H. Let n; be
the number of hypotheses in H whose number of errors is between [221, 22#1) fori>1, and let
ng be the number of hypotheses with error in [1,4). Then there is an algorithm for the Teacher
that with probability at least % returns a correct hypothesis h* and the number of examples sent
18

loglogm A
O(TS(H)) - <logm + Z 2'log(n; + 1)>

i=0
In particular, this is O(TS(H) log mlog(max; n; + 1)).

The starting point is to notice that if we run Ay, initialized with w being the maximum
number of errors of a hypothesis in the class, say err, then it sends at most O(7'S logerr-logn)
examples. Then the idea of the algorithm of Theorem 3 is the following: Instantiate copies
At, ..., Aloglogm of the algorithm Apaee, where A; is initialized with w = 22", Then when a
hypothesis h comes from Learner, we see in which bucket [22',22™") its number of errors falls
into, and send the hypothesis to algorithm A;.

Since the size of smallest teaching set for the hypotheses that fall in the same bucket is
no larger than 7S(H, h*), we can compose the guarantees from the algorithms A;’s to get the

above guarantee (Details in Appendix B).

2.3 Non-realizable Case

We now consider the non-realizable case where the correct hypothesis A* may not be in the
Learner’s class ‘H. Recall that in this case in each round the Learner sends a hypothesis in H
with the smallest number of errors in the examples received so far, and the Teacher’s goal is to
make the Learner return a hypothesis in H with the smallest number of total errors over the
whole set of examples X.

We first need a generalization of the notion of teaching set. Informally, if the best hypothesis
in H has k errors in X, to isolate it the Teacher should send examples that certify that the other
hypotheses have at least k + 1 errors. We say that a set of examples X’ C X is a k-extended
teaching set with respect to h* if for each hypothesis A € H with more than k errors there are
at least k + 1 examples in X’ where h is wrong (differs from h*). We let TSy = TSk(H, h*)
denote the size of the smallest k-extended teaching set w.r.t. h*.

Notice that after the Learner receives a set of labeled examples that contain a k-extended
teaching set, it returns a hypothesis with at most k total errors since such hypotheses have at
most k errors in the examples received, while all other hypotheses have at least k + 1 errors
in them. If k is set to be the number of errors of the best hypothesis in H, the Learner then
returns an optimal hypothesis.

Theorem 4. Consider teaching a worst-case learner where h* may not belong to H. Let k
be the smallest number of errors of a hypothesis in H. Then there is a Teacher’s algorithm
that with probability at least 1 — % returns a hypothesis that makes k errors and sends at most
O(T Sk, logmlog(m + n)) examples.



The high-level idea of the algorithm is the same as in the realizable case: it tries to compute in
an online fashion a k-extended teaching set of small size, but now based on an online generalized
set cover algorithm [5], where elements may need to be covered multiple times. However, since
the minimum number of errors k£ is unknown, the algorithm also needs to keep a lower bound
on k that is given by the number of errors of the last received hypothesis over the examples
already sent. The algorithm stops when it receives from the Learner a hypothesis whose total
number of errors matches this lower bound. Details are provided in Appendix C.

3 Other Learner Models

In this section we show that better bounds are possible under reasonable assumptions on the
way the Learner can choose the consistent hypotheses to return. We address the realizable case
where h* € ‘H and, here, we use H; C H to denote the set of hypotheses consistent with all the
examples sent by the Teacher in the rounds 1,...,¢ —1 (so H; is the set of possible hypotheses
that Learner can send in this round t).

3.1 Smooth Transition Learners

We first consider the smooth transition model where we further assume that the Learner sends
a hypothesis “close” to the one sent in the previous round. Concretely, we use the number of
disagreements between hypotheses d(h,h') = [{x € X | h(xz) # h/(z)}| as measure of closeness,
and assume the hypothesis h; that Learner sends at round ¢ is one in H; with (1+«)-approximate
minimum distance to the hypothesis h;—; sent in the previous round, namely

d(he,hi—1) < (1 4+ «) mind(h, hs_1).
(t tl)_( )hth< tl)

We provide an algorithm A& .. for this model whose guarantee depends on the number
of errors erry of the first hypothesis sent by the Learner. That means that if the Learner has
a good guess for the right hypothesis, fewer examples are needed to complete the teaching.
Algorithm A . is obtained from Apase via two simple modifications: The starting weights of

the examples W2 are set to 1/2err; instead of 1/2m, and the number of examples sampled per
round is % log N instead of 4log N. This algorithm has the following guarantee.

Theorem 5. Consider the smooth transition model with o € [0, %) in the realizable case h* € H.

Let erry be the number of errors over X of the initial hypothesis sent by Learner. Then algorithm
A set with N > n sends O(TSﬁlog errilog N) examples and with probability at least
1-— % returns the correct hypothesis h*.

«
close

The main observation for obtaining a guarantee that depends on err; is that in the smooth
transition model the number of errors of the hypotheses sent by the Learner cannot increase
rapidly. We have the following.

Lemma 4. Let h,h' be the hypotheses returned by Learner at rounds t — 1 and t respectively.
Then:
a) |wrong(h')|
b) lwrong(h)|

2 |wrong(h’) N wrong(h)| + a|wrong(h)

<
< (44 2a)err;.

Proof. We first prove item (a). Let wrong(h \ k') (resp. wrong(h’\ h)) be the set of examples
where only h (resp. h') is wrong. In addition, let DIFF (resp. EQ) be the number of examples



that both h and b’ are wrong but give give different (resp. equal) classification. In formulae,

DIFF = {e € wrong(h) Nwrong(h') | h(e) # h'(e)}
EQ = {e € wrong(h) N'wrong(h') | h(e) = h'(e)}.

The number of disagreements between these hypotheses is
d(h,h') = |wrong(h \ )| + |wrong(h' \ h)| + DIFF

d(h,h*) = |wrong(h \ )| + DIFF + EQ

The smooth transition model guarantees that d(h, h’') < (14+«) d(h, h*) so that |wrong(h'\h)| <
a|wrong(h’ \ h)| + (1 + «) |wrong(h) N wrong(h’)|, and hence

|wrong(h')| = |wrong(h' \ h)| + |wrong(h) N wrong(h)|
< a|wrong(h \ &)
+ (2 + «) |wrong(h) N wrong(h')|
= «a|wrong(h)| + 2|wrong(h) N wrong(h')|,

which establishes item (a).

Proof of item [b]. If b’ is the first hypothesis, the result clearly holds because the first hypothesis
makes err; mistakes.

Thus, let ¢ > 1 be the round in which A’ is received and let h be hypothesis received
at the round ¢ — 1. We have that |wrong(h)| < 2erry, for otherwise h would have weight
at least 1 by the beginning of round ¢t — 1 and, hence, t — 1 would be the last round of the
interaction. Thus, it follows from item (a) and from |wrong(h) N wrong(h') < |wrong(h)| that
|wrong(h')| < (4 + 2a)erry. O

Proof of Theorem 5. The bound on the number of examples follows directly from Lemma 1,

since Ag .. behaves as Ap,ge initialized with w = erry, but sending % times as many examples
per round.
The proof that the probability of returning the correct hypothesis is at least 1 — % is similar

to that of Lemma 3: we need to show that if the algorithm receives hypothesis A" on round
7 then Y, D'(R'), the total increase of the weights of the wrong examples of a hypothesis
h' is “large”. That is enough since the concentration arguments following inequality (1), then,
guarantee that the probability of failing at this point (i.e., no examples covering h’ were sent)
is small. More precisely, it suffices to show

S D) > ! _420‘. (3)

t<t

We note that in Lemma 3 we have the stronger lower bound with RHS %; the difference is
compensated by the extra number of examples sent in each round by A We prove inequality
(3) by considering two cases:

a
close*

Case 1. |wrong(h')| < erri. In this case Y, D'(h') is at least 1 > 1222 since the initial
weight of A/ is at most % and its final weight is at least 1 by the weight update step of the

algorithm.

Case 2. |wrong(h')| > erry. It follows from item (a) of Lemma 4 that the hypothesis received
at round 7 — 1, say h, shares at least (Jwrong(h’)| — o |wrong(h)|)/2 wrong examples with h'.
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Moreover, we have |wrong(h)| < 2erri: otherwise the starting weight of this hypothesis W°(h)
is already at least 1, so the algorithm fails on round 7 — 1, contradicting that it fails on round 7.
Together with the assumption from being in Case 2, this gives |wrong(h)| < 2|wrong(h')| and
hence the number of common wrong examples between h and h' is at least 1=2% [wrong(h')|.
Since the weight of each of these common examples was increased by at least 1/2err; in round

7 — 1 (weights are doubled and start at 1/2err;), we have that

1 -2« 1 1 -2«
-erry - = .
2 ! 2erry 4

ZDt(h/) > DT—l(h/) >

t<rt

This proves (3) and concludes the proof of Theorem 5.

Making the algorithm agnostic to the size of H. To obtain an algorithm agnostic to the
size of H we proceed as in Section 2.1 but performing a sequence of calls to A rather than
to Abase'

The only different issue that arises in the analysis of this algorithm is how to bound the
number of errors erry; made by the first hypothesis of 7th call of AJ ... By using the fact that
this hypothesis is exactly the last one returned by the previous call together with item (b) of
Lemma 4, we get that err;; < (44 2a)erry ;-1 and, hence, erry; < (4 + 20))1 erry,1. This
observation together with the same arguments employed in the analysis of Aagn, allows us to
establish the following theorem:

a
close?

Theorem 6. Under the same assumptions as in Theorem &, there is a teacher’s algorithm
agnostic to the number of hypothesis n that sends O(TS logn (logerry + loglogn)) examples
and with probability at least 1 — % returns the correct hypothesis h*.

Note that in the worst-case learner model this bound is not achievable by poly-time algo-
rithms unless NP C BPP. This is shown through a simple modification of a lower bound from
[14] [See Appendix D]

3.2 The Random Learner Model

We assume that in each round the Learner sends a batch of random i.i.d. hypotheses from the
ones that are consistent with the examples received thus far.

We show that in this situation the Teacher can exploit the randomness of the Learner’s choice
in order to estimate the example that covers (i.e., falsifies) the highest number of hypotheses
(which are consistent with the examples seen so far). With this knowledge, the Teacher can
resort to algorithms for the offline set cover problem and significantly improve the number of
examples used: we show that Teacher sends with high probability O(T'S log(n +m)) examples,
which is the best bound achievable in polytime, under the assumption that P # NP, for the
relevant case where the number of hypotheses n is larger than the number of examples m [21].

Algorithm Apang (Figure 2) runs the greedy approximation algorithm for offline set cover
over the empirical process: At each round t the Teacher requests a batch H; of T random
hypotheses from the set H; of hypotheses consistent with the examples sent thus far, and sends
to Learner an example é that covers the largest number of hypotheses from ;. The size T of the
requested batch ideally depends on the size of the smallest teaching set 7S(H,h*), but since
this quantity is unknown the algorithm also employs a guess-and-double approach: In phase 4
it uses T = 2% as a guess for 7S and runs the greedy procedure for 27" rounds. If within these

rounds the algorithm does not terminate, the ?hase is concluded and phase i + 1 is started.
The following theorem is the main result of this section.
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Algorithm A, ,,q
Input: Examples X
1. Initialize round counter ¢ = 0
2. For each phase : =1,2,...:
e Update the teaching set size guess T = 2¢
e For 2T rounds
— Update round counter ¢t =t + 1
— Receive batch 7T[t of T random hypotheses from H,
If all hypotheses in H, equal h*, then Return ™)
Send é = argmax, |{h € H, | e € wrong(h)}|

Figure 2: Teacher A;anq

Theorem 7. Consider the random learner model in the realizable case h* € H. With probability
at least 1 — O(1/m), Ayanag satisfies the following: (i) it accepts the target hypothesis h* (line
(*) of Arana); (ii) it sends O(TS -log(n+m)) examples and (iii) it receives O(TS -log(n+m))
hypotheses per round.

We note that without the bound on the number of hypotheses received per round the result
would be straightforward since the Teacher could request infinitely many hypotheses to acquire a
very accurate knowledge of the class H and then resort to the off-line greedy set cover algorithm.

To prove Theorem 7, given a set of hypotheses H' C H let ¢*(H') be the maximum number of
hypotheses from H’ that can be covered by a single example in X. We rely on two lemmas whose
proofs can be found in Appendix E. The first shows that with high probability the example
that covers the largest number of hypotheses in the empirical set H; also covers a large number
of hypotheses from H;.

Lemma 5. Let € be an example that covers the largest number of hypotheses in H, and let cs
be the number of hypotheses covered by € in Hy. If |H| > 40T S Inm then,

1, 2
Pr <Cé < ﬁc (Ht)) < m

The second lemma gives an upper bound on the number of rounds executed by an approxi-
mate version of the greedy offline set cover algorithm.

Lemma 6. Consider 0 < o < 1 and A,, be any teacher’s algorithm that at each round t sends
to Learner an example that covers at least o - ¢*(H;) hypotheses from Hi. Then A, ezecutes
O(2TSInn) = O(TS Inn) rounds before the only consistent hypothesis is h*, i.e., Hy = {h*}.

Proof of Theorem 7. Let a = 1/12 and let i be the first phase where T = 20 is at least

7S - max{1Inn,40lnm}. Since the previous i — 1 phases send Zé;l 27 = O(TSIn(m + n))
examples and each of them requests O(7 S In(n+m)) hypotheses per round, it suffices to analyse
phase i onwards.

We say that an example is bad for round ¢ if it does not cover ac*(H;) hypothesis of H;. Due
to Lemma 5 every round ¢ that occurs after the beginning of phase 7 sends a bad example with
probability at most 2/m*. Thus, it follows from the union bound that a bad example is sent
during the 1 7S logn first rounds of phase i with probability at most (21T Slogn)/m* < 24/m,
where the inequality holds because TS < m and n < |Y|™ < m™. Hence, it follows by Lemma

6 that, with probability at least 1 — O(1/m), the only consistent hypothesis that remains after
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these round is h*. Since each of these rounds requests O(7 S log(n+m)) hypotheses, the theorem
is proved. O

4 Non-redundant Teaching Sets

We say that a teaching set X is redundant if it contains a redundant example, that is, an example
e such that X'\ {e} is still a teaching set. The algorithms discussed so far may construct teaching
sets that are redundant. We show that |X|- (|| — 1) additional rounds suffice to obtain a non-
redundant teaching set from a teaching set X w.r.t. (h*,H), where ) is the set of possible
labels for the examples.

For that we consider a more general interaction model where at each round Teacher sends a
set of labelled examples to Learner and the latter returns a hypothesis that makes the smallest
number of errors in this set (ignoring the examples received at previous rounds). Differently
from the previous sections, here the Teacher may send an example e with label different from
h*(e).

The following proposition gives a simple condition for deciding whether e is redundant for
teaching set X.

Proposition 1. Let X be a teaching set for (H,h*). If there exists a hypothesis h € H with
h(e') = h*(e') for every ¢’ € X \ {e} and h(e) # h*(e), then the example e is non-redundant for
the set X, and also for any teaching set contained in X . Otherwise, e is redundant for X.

Given this observation, the algorithm for obtaining a non-redundant teaching set from X is
straightforward: It scans the examples in X and for each e € X verifies whether e is redundant
(w.r.t. the set of examples that have not been removed from X) or not; if it is, the example is
removed from X and the scan continues over the examples that have not been tested yet. To
verify whether e is redundant the Teacher interacts with the Learner in |))| — 1 rounds testing
the existence of a label y # h*(e) for which the Learner returns a hypothesis consistent with the
labelled set of examples Dy = {(¢/,h*(¢/)) | ¢’ € X \ e} U{(e,y)}. If such label does not exist
then the algorithm concludes that e is redundant. It is clear that the overall number of rounds
is at most | X|- (|Y|—1).

In simulations on synthetic data (Appendix F') this method significantly reduced the teaching
sets found by Aagno-

5 Computational Experiments

Although our work is mainly theoretical we performed experiments to understand how our
Teacher Agn, compares with a non interactive one over real datasets.

The non interactive teacher, denoted by NIT, receives an integer ¢ and then sends to the
Learner £ randomly selected examples. We compared the number of examples that both Agno
and NIT need to send in order to attain a certain level of accuracy. For our evaluation we used
Random Forest and Light Gradient Boosting Machine (LGBM) as learners, and conducted
experiments on 12 datasets: mnist and 11 others from the UCI repository (mushroom, avila,
bank marketing, car, Credit Card, Firm Teacher, crowdsourced, Electrical_grid, HTRU,
nursery and Sensorless_drive).

Table 1 shows the number of examples (relative to the size of the full dataset) required by
each pair Teacher-Learner to attain an accuracy over the full dataset larger than z% of that
obtained when the Learner is trained/tested over the full dataset. Each numeric entry of this
table is an average of 12 values, where each of them corresponds to a distinct dataset. More
details are presented in Appendix G.
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Table 1: Percentage of the size of the full dataset required by each Teacher-Learner to achieve
an accuracy larger than z% (with z € {90,95,99}) of that achieved by the Learner when it is
trained and tested in the full dataset.

Teacher-Learner ‘ 90% ‘ 95% ‘ 99%
Aagno-Random Forest | 10.1% | 14.7% | 20.6 %
NIT-Random Forest | 14.7% | 30.4% | 59.9%
Aagno-LGBM 28 % | 5.7% | 89 %
NIT-LGBM 34% | 7.8% | 28.0%

The results provide evidence that Augn, requires significantly fewer examples than NIT (e.g.
a factor of 3 for the target 99%). Furthermore, an interesting observation is that the advantage
of Aagno increases as the level of accuracy requested gets higher. A reasonable explanation is
that when little is known (low accuracy in our setting), most of the examples are useful (hence,
random sampling also works well); however, when a certain level of knowledge has already been
reached, more specific examples, as those provided by Aagno, are needed to further increase it.
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Appendix

A On the Proof of Lemma 5 from [7]

The teaching algorithm of [7] is similar to algorithm Ap.s presented in Section 2, the only
difference being in the sampling step: the former sends example x to the learner when its
weight crosses a random threshold 7). that is sampled at the beginning of the algorithm from
an exponential distribution with rate A = In(/N/J), where N is an upper bound on |#| and the
parameter ¢ is the failure probability of the algorithm.

The Lemma 5 of [7] states that the failure probability of their algorithm is at most 6. The
proof fixes a hypothesis h and then considers the first point in time where its weight is at least
1. Then, the proof claims that

Prihis not covered | weight of h> 1] =[] Priuw(s) <7.] = ()
zewrong(h)
6
H efcp(_)\w(ai)) < exp(—)\) = N (5)
z€wrong(h)

Finally, the proof takes the union bound over all hypotheses to obtain the bound §.

First, it was not clear whether the weights w(x) are deterministic or stochastic in the above
equations. Moreover, in either case it is also not clear how the first equality of (4) could
be obtained. In particular, if the weights are deterministic, which makes more sense given
the following equalities, (4) seems to be ignoring the fact that the conditioning (weight of
h > 1) affects the distribution probability of the thresholds and, apparently, is also assuming
an independence among events that does not seem to be valid.

As kindly explained in [3], for the sake of analysis, one should take into account that the
probability of not sending example = in round ¢ is given by

Pr(T, > WHT, > Wi = Pr[T, > W — Wi = Pr[T, > D] = exp(—\- D.).

Although this insight is indeed very useful to clarify how the algorithm could be analysed,
it does not help to overcome the issue about the lack of independence among rounds discussed
right after Lemma 1.

In this sense, by using this insight and our technical lemma about adapted Bernoulli’s
(Lemma 2) we explain how to derive a formal proof for Lemma 5 from [7].

A proof similar to that of Lemma 3 can be used to establish Lemma 5, with the only
difference being on how the bound on Z! = Pr[X* = 0|F;_1], given by inequality (2), is derived.

In what follows we prove that

Pr[X" = 0|F—1] < exp(—X- D'(h)).
First note that
Z' = Pr[X" = 0|F;_1] = Pr[W! < T, for all € wrong(h)|F;_1]

Recall that no example in wrong(h) is sent during history F;—;. Thus, if a point t =
(T1,...,Ty,) in the thresholds’ probability space leads to history F;_1 then T, > W!™! for all
x € wrong(h), where W!~! is the weight of example 2 by the end of history F;_ 1. Moreover,
assuming a deterministic learner, every point t' = (77, ...,7,,) simultaneously satisfying:

o T/ > W for all € wrong(h)
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o 1) =T, for all z ¢ wrong(h)
leads to the same history. Therefore,
Pr[We < T, for all x € wrong(h)|F;—1] =
Pr[Wk < T, for all x € wrong(h)|W:™t < T, for all € wrong(h)] <
[T eap(=x- (Wi = W) = eap(=A- D'(h))

x€wrong(h)

B Improved guarantee based on the quality of the hypotheses

Let Apase(N,w) denote the teacher’s algorithm from Figure 1, making its inputs explicit. To
obtain the guarantee of Theorem 3 we refine this base algorithm in a couple of steps.

First, Lemmas 1 and 3 actually give the following guarantee for Apase(N,w), even in the
case when H does not contain a correct hypothesis, i.e., h* ¢ H. Notice that this case the
interaction between the Learner and Apase(IN,w) stops because of one of two events:

1. Apase(N,w) returns FAIL

2. The Learner stops sending hypotheses, because there are no hypotheses H consistent with
the examples provided by the Teacher

In contrast, when there is a correct hypothesis in H the interaction stops when Apase(N,w)
returns either FAIL or a correct hypothesis.

Theorem 8. Consider a hypothesis class H and examples X, possibly with no hypothesis in the
class that is correct on all examples. Suppose all hypotheses in H have at most w errors. Then
the Teacher’s algorithm Apgse(N,w) always sends at most

TS(H) - O(logwlog N)
examples. Moreover, if N > |H| then with probability at least 1 — %:

e [f there is a classifier in H that is correct in all examples X, Apgse(IN,w) returns one such
classifier

e [Llse, the interaction between the Learner and Apqse(N,w) stops because the former stopped
sending hypotheses

Algorithm agnostic to the number of hypotheses. The next step in the construction
of our final algorithm is to convert the algorithm Ap.s.(N,w) into one that does not need an
explicit estimate N of the number of hypotheses in the class H; this is done using a simple
“guess-and-double” approach. Actually it will be convenient to be able to provide a “starting
estimate” N to ensure that the algorithm fails with probability at most ﬁ (instead of ﬁ),
regardless of the size of H.

Theorem 9. Consider the assumptions from Theorem 8. Consider NO > 1 and let n :=
max{|H|, N°}. There is an event G that holds with probability at least 1 — 1 such that under G
the Teacher’s algorithm Aagno(NO,w) sends at most

TS(H) - O(logwlogn)

examples. Moreover, if there is a hypothesis in H that is correct in all examples X, under G
the algorithm returns one such hypothesis.
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Algorithm A,z

Input: Examples X, starting estimate N > 1 of the number of hypothesis, initial weight w > 0
Let 79 be the smallest integer ¢ such that 22" > NO

For phases i = ig,70 + 1,...

e Interact with the Learner by executing Abase(22i,w) until the interaction stops

o If Abase(22i,w) returned FAIL, move to the next phase

o If .Abase(QQi,w) returned a correct classifier, then simply return it

e If the interaction stopped because the Learner did not send any additional hypotheses, return
NO CORRECT HYPOTHESIS

Figure 3: Algorithm Aagno

Proof. Let 7 be the smallest integer i such that 22° > 7, and let G be the event that Aagno
stops by phase 4. If Aagno reaches phase i, it runs Apase (N, w) with N > 7 > |H| and hence the
guarantee from Theorem 8 holds. In this case, with probability at least 1 — % the algorithm
Aagno(N?, w) stops in this phase 4, either by returning a correct hypothesis in H (if one exists),
or otherwise by returning NO CORRECT HYPOTHESIS. Thus, the event GG of stopping by phase
i happens with probability at least 1 — 1.

To bound the number of examples sent by Aagno under the event G we use Theorem 8 in
each phase i < i to obtain

ZTS O(log wlog 2% ) =O(TS(H) logw) ZQi < O(TS(H)logwlogn),
i<i i<i
as desired.

Finally, when there is a correct hypothesis in H the algorithm does not return NO CORRECT
HYPOTHESIS and hence under G it returns a correct hypothesis (by phase 7). This concludes
the proof. O

Improved algorithm. We can now finally present algorithm that gives Theorem 3. We

assume WLOG that loglogm is an integer, otherwise we simply pad the input with additional

dummy examples. Define the intervals By = [1,2) and B; = [22171,221) fori =1,...,loglogm.
We show that this algorithm satisfies the guarantees of Theorem 3.

Proof of Theorem 3. Let E be the event that the bound from Theorem 9 holds for all algorithms
Ao, ..., Aloglogm- By a union bound, the probability that £ does not hold is at most

mf’”l 1 mli 1 1 i1 11
LN T & 7= 10 ~P T 106 5

Thus, it suffices to show that whenever F holds the algorithm Ae;; returns a correct hypothesis
and the number of examples sent is upper bounded by the desired quantity.

For that, let H; be the set of hypotheses in H whose number of errors belongs to the
interval B; and let T; be the set of time steps where a hypothesis was sent to algorithm A,.
Restricting to the rounds in T;, we have an execution of A; over an adaptive sequence of
hypothesis in H;. By definition, none of the H;’s contains a correct classifier. Therefore, under
the event E Theorem 9 guarantees that the execution of each A; stops after it sends at most
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Algorithm A,
Input: Examples X

1. Define the values N? := 10(loglogm — i + 1)?
2. Initialize algorithms Ag = Aagno(NY,2) and A; = Aagno(NY, 22i) for ¢ =
.,1loglogm
3. For each time step:
e Receive hypothesis h from Learner. If i has no errors, return it

e Let i be such that |wrong(h)| € B;

e Send hypothesis h to A;, and receive a set of examples in X' (If receives FAIL,
return FAIL)

o Send the set of examples to Learner

Figure 4: Algorithm Ae,

O(TS(H;) log 2% log n;) examples, because the learner does not send any more hypotheses from
H; (where 7i; := max{|H;|, NO}). Let I C {0,...,loglogm} be the set of i’s such that H; is
non-empty, and notice that for indices i ¢ I the algorithm A; is never evoked. Thus, under E,
after at most

> O(TS(Mi) - 2'log ny) (6)
i€l
examples the Learner must send a hypothesis in H\ (), H;, namely a correct hypothesis, in which
case the algorithm A, will return it.
To conclude the proof we just need to perform some algebraic manipulations to further

upper bound (6). To simplify the notation let n; := |H;|. Since the function x — log(z + 1) is
subadditive over the non-negative reals, we have that for every ¢ > 0 and b > 1

subadd
log(max{a,b}) <log(a+ (b—1)+1) < log(a+ 1)+ logb.

Applying this to log7i; and using the monotonicity of the teaching set, which gives TS(H;) <
TS(H), the number of examples under E given by (6) is at most

O(TS(H ZQZlog n;+1) + Z2ilogNiO . (7)

el el

Expanding the second summation we have (letting ¢ := loglog m to simplify the notation)

; ; log (10(¢ — i+ 1)?
22 log N < ZQ log (10(¢ — i + 1)%) = 212 Z YT ) < 0(2"%) = O(logm),
icl =0

log(10z2)
2m

where the last inequality follows form the fact that the series > .- converges. Using

this observation on (7) we get

#examples sent under £ = O(TS(H)) - (logm + Z 2 log(n; + 1))
i€l

This concludes the proof of Theorem 3. O
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C Teaching in the non-realizable case

In this section we provide the Teacher’s algorithm for the case where the best hypothesis in H
has k£ > 0 errors and prove Theorem 4. The algorithm makes use of an algorithm for online
fractional generalized set cover [5], which is our starting point.

C.1 Online fractional generalized set cover

The offline version of this problem is that of finding an optimal solution to the following covering
problem

st {ah,w)>b VE=1,...,¢ (8)

where the vectors a' have 0/1 entries. This can be interpreted as follows: There is a ground set
of ¢ elements and m sets (a! is 1 iff the set i contains the element ¢), and the goal is to find a
small fractional selection w of the sets so as to cover each element ¢ at least b; times.

In the online version of the problem the constraints (a',w) > by, (%, w) > bo, ..., (a*,w) >
by are only revealed one-by-one, and the algorithm needs to maintain a sequence of feasible frac-
tional solutions w! < w? < ... < w’ that is pointwise non-decreasing (i.e., the algorithm cannot
de-select items). More precisely, in the beginning of the game the algorithm has no information,
and at round t the adversary reveals the constraint (a’,w) > b;. Using only information seen
thus far, the algorithm need to find a solution w! € [0,1]™ that is pointwise w’ > w!~! and
satisfies this new constraint (monotonicity guarantees that the previous constraints are also
satisfied). The goal is to minimize the size of the solution in the last round, namely ), wﬁ.

Several variations and generalizations of this problem have been studied, but for us it suffices
that [5] gave an O(log m)-approximation for this problem, namely the cost >__ @ of the returned
sequence (")) is always at most O(logm) times the cost of the optimal solution w* for the
offline problem (8).

C.2 Algorithm and analysis

The main idea behind the algorithm is the equivalence between k-extended teaching sets and
integral solutions to (8). To see this, recall that £ is the minimum number of errors of a
hypothesis in H, and let Hp,q € H be the hypotheses with more than k errors. Recall that
selection X’ of examples is a k-extended teaching set if for all h € Hp,q the set X’ contains at
least k£ 4 1 examples where h is wrong.

But if we let a(h) € {0,1}* be the indicator vector of the examples where hypothesis h is
wrong, then k-extended teaching sets correspond precisely to 0/1 solutions w € {0,1}™ of the
problem (8) with constraints (a(h),w) > k + 1 for all h € Hpag.

Since the Teacher does not known the hypotheses H, the idea is to:

1. Construct the online version of the instance by adding the constraints (a(H;),w) >k +1
one-by-one as hypotheses are received from the Learner

2. Use the algorithm from [5] to compute the fractional selections W', W2 ... € [0,1]* of
examples for each time step

3. Use W' as a weighting to sample the examples, which are then sent to the Learner.
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The additional element is that the minimum number of errors k£ is not known a priori. To
handle this, the algorithm keeps a lower bound & of k, initialized at 0. By definition our Learner
always returns a hypothesis that makes the smallest possible number of errors over the examples
sent thus far. Hence, if it sends a hypothesis H; with err errors on the examples sent thus far,
then we know that err is also a lower bound on k, and is used to update .

The final algorithm is presented in Figure 5. (We will use Wt e {0,1}™ to denote the
incidence vector of the examples sent by the end of time ¢, an hence (a(h), W?) is the number
of examples sent thus far where h is wrong.)

Input: Examples X', number of Learner’s hypotheses n = |H|, estimate N of n
Initialize lower bound x = 0 on k (and let W9 = 0)
For each time step t =1,2,...

1. Receive hypothesis H; from Learner

2. (Lower bound update) Set  to be the maximum between its current value and the number
of examples sent thus far where H; is wrong, i.e. k + max{s, (a(H;), Wi=1)}

3. If the total number of errors of H; is x (which is < k), return H,

4. (Weight update) Send constraint (a(H;), w) > x+ 1 to the fractional generalized set cover
algorithm of [5], and receive from it an updated fractional solution W*

5. (Sampling) Let D! = W! — W!=!. For each example e, flip a coin with bias min{D? -
10log(Nm), 1}, and send this example to Learner in case of heads

6. Let W' = {0,1}* be the indicator vector of the examples sent thus far
7. If (a(H,),W?') < k + 1, return FAIL

Figure 5: Teacher’s algorithm for teaching a non-realizable hypothesis

Main analysis. We start collecting some simple observations about the algorithm.
Lemma 7. Regardless of the estimate N, the algorithm from Figure 5 satisfies:
1. k is always at most k

2. If the algorithm returns in Step 3, it returns a classifier with the minimum number of total
errors k

3. The algorithm terminates in at most (k+ 1)n + 1 time steps.

Proof. The first item was already discussed above, and the second item follows directly from
the first.

To prove the third item, call a phase the sequence of time steps that had the same x after
the update in Step 2. Since x increases by at least 1 when we start a new phase there are at
most k+ 1 phases. To get the desired upper bound on the number of time steps, it then suffices
to argue that if a hypothesis h appears twice in the same phase, then the algorithm returns
in this second appearance. For that, consider a time ¢ in a phase k. Because of the k update
step, in the beginning of time ¢ the hypothesis H; is wrong in at most K examples sent thus far,
namely (a(Hy), VNVt_1> < k. However, by the end of of time ¢, after sending the new examples,
either this number increases to at least & + 1 (i.e., (a(H;), W) > i+ 1), or the algorithm exits.
Either way, this means that this same hypothesis H; cannot appear in a later time step in the
same phase. This concludes the proof. O
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To conclude the analysis we need to show that with high probability the algorithm indeed
returns in Step 3 and also sends a small number of examples. This requires the rather technical
concentration inequality from Lemma 10 that handles all the correlations in the process. To
improve readability we postpone the statement and proof of this lemma to Section C.3.

Lemma 8. Regardless of the estimate N, with probability at least 1 — # the number of

2m2N
examples sent by the algorithm is O(T Sy logm -log Nm).

Proof. Let 7 be a random variable denoting the last time step of the algorithm. First we
claim that ), W7 < O(TSjlogm), that is, the total number of examples that are fractionally
selected is at most O(7T Sk logm). To see this, fix any scenario and notice that the generalized
fractional set cover instance sent to the algorithm of [5] is

min E We

ecX
s.it. (a(Hy),w) > ke +1 VE=1,...,7 9)
w € [0,1)F

where k; denotes the value of k in Step 4 at time ¢. Since from the previous lemma all x;’s are
at most k, we see that any k-extended teaching set gives an (integral) feasible solution for this
problem, and thus its optimal value is at most 7Sy. The guarantee of the algorithm from [5]
then gives that its solution satisfies

Z W7 < [optimal value of (9)] - O(logm) < O(T Sy logm),

proving the claim.

Now we upper bound the number of examples sent by the algorithm, namely ", VT/T Let
Jt be the history of the algorithm up to time ¢; more formally, F is the o-algebra generated by
Hy,...,Hyq amdl/V1 L W3 Let Dt : Wt W1 be the indicator of the examples sent
at time t, so Y, Dt counts the number of examples sent at time ¢. The total “conditionally
expected” number of examples sent by the algorithm is

Z ZE o | Fi—1] < (10log Nm) Z Z D} (by sampling Step 5)

t<t e t<t e
< (10log Nm) Z w7l (by definition of DY)
e
< O(T Sy logm - log Nm). (by the previous claim)

Then by concentration of measure, we should have that the actual number of examples sent
S WI =3, >, Dt is close to this conditional expectation. Since there are correlations
between the vectors D'’s (and also the stopping time 7) we cannot directly apply standard
concentration inequalities. But employing part 1 of Lemma 10 we have (letting 8 := cst -
TSk logmlog Nm for a sufficiently large constant cst)

pr (72 20) = pr (S0 > 25t SSY B0 ) < 9) <o < s

t<t e t<t e

This upper bounds the number of examples sent by the algorithm as desired. O

3The last term H;yq is needed only when Learner is not a deterministic function of the examples it receives.
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Lemma 9. If N > max{n,4}, the algorithm returns FAIL with probability at most ﬁ

Proof. As defined in the previous lemma, let 7 be the last time step of the algorithm, k. be
the value of x at this time, and F; be the o-algebra generated by the history Hi, ..., Hi41 and
Wt ... Wt Recall that (a(h), W) = > eewrong(h) W! is the fractional mass of the examples by

time ¢ where hypothesis & is wrong, and (a(h), W) =3
actually sent by time ¢ where h is wrong.

When the algorithm returns FAILS we have Zeewmng( H,)
wrong examples sent) but by Step 4 we always have
of wrong examples); thus, it suffices to show that

eewrong(h) ﬁ/te is the number of examples

ﬁ/g < k; (a too-small number of
(H,) W7 > kr 4+ 1 (a good mass

ecwrong

~ want ]
Pr Z W?I <k, and Z WI >k + 1) < .
ecwrong(Hr) ecwrong(Hr)

By taking a union bound over all possible values h € ‘H for H,, it suffices to prove that for
each h

~ want ]
Pr Z W7 <k, and Z WI >k + 1) < Py (10)
ecwrong(h) ecwrong(h)

To prove this bound again the idea is to prove a similar inequality for each fixed value L €
{0,...,k} of Kk, using a concentration inequality and then to take a union bound over all L’s;
as in the previous lemma, for the concentration we will use the decomposition into increments
W7 = >, D!, and similarly for W7. Unfortunately, because of the truncation min{-,1} in

the sampling step we need to work with RVs Z! and 22 that are modified versions of D% and
Dt.

So for each example e € wrong(h), let 7. be the first time when truncation happens in the
sampling step for e, namely it is the first time ¢ where D! > m (and set 7. = 7 when

no truncation occurs). Then ZNE is the sequence D!, D? ... stopped right before 7., namely
Zl=D!-1(t < 7). We define Z% in the same way but with respect to D?.
The next claim relates these variables with the event of interest (10).

Claim 1. For all e € wrong(h) we have:
1Y, 7L <Y, D -1
2. 22> Dt<r D -1
3. For all t, E[Z! | F,_1] = (10log Nm) ZL.
In particular, the left-hand side of (10) is upper bounded by
Pr [ E Z?te < ks — |wrong(h)| and Z ZE[EE | Fi—1] > (10log Nm)(k; — |wrong(h)| + 1) |.
ecwrong(h) 1 ecwrong(h) t

Proof. By the construction of the sampling scheme we have that when truncation happens the
example is sent, namely D¢ = 1, and therefore,

Y DL>> Di+1=>Y Z +1,

t<t t<Te t<Te
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proving the first part of the claim. For the second part, since the total weight W7 is at most 1,

Y Di<Y Di+1=> Zl+1.

t<t t<Te t<Te

For the third part, since the event 1(¢ < 7.) is determined by the history F;_1, conditioning
on such history we have

E[ZL | Fia] = 1(t < 7) - E[DL | Fy]
(t < 7.)(10log Nm)D?

= (10log Nm)ZL,

1
1

where the second equality holds because given any history if truncation happen at time ¢ both

sides equal 0, and if it does not happen then by the sampling procedure E[D! | F_1] =
(10log Nm)D!. This concludes the proof. O

Now for an integer L define the event

Er ::[ > N Zl<Land > Y E[ZL| Fi1] > (10log Nm)(L +1)|.
(h) t

ecwrong ecwrong(h) t

For L > 0, part 2 of the concentration inequality Lemma 10 shows that Pr(Er) < = Since

% = INm?"
the event never holds for L < 0 due to the non-negativity of the Z!’s, taking a union bound we
get that the probability at the end of Claim 1 can be upper bounded by ZLG{fn,...,k} Pr(EL) <

47\%2 < ﬁ, where the last inequality uses fact k + 1 < 2k < 2m and the assumption N > n.

This proves inequality (10), and concludes the proof of the lemma. ]

Wrapping up. If then number of hypotheses n is known (and at least 4), we can run the
algorithm from Figure 5 with NV = n and take a union bound over Lemmas 8 and 9 to obtain
that with probability at least 1 — % the algorithm returns a minimum error hypothesis and
sends at most O(T Sy logm - logmn) examples.

To remove the assumption that n is known, run the algorithm with increasing estimates
N = N' with N? := %221 for i = [loglogdm],...,[loglognm]. The probability that any of
these runs sends more examples then the bound from Lemma 8 is at most 5 > s 2% < ﬁ
Thus, with probability at least 1 — ﬁ these runs send in total at most

[loglog nm/] [loglog nm/]
Z O(T Sk logm -logmN;) = O(T Sk logm) Z 20 < O(T S logm - logmn)
i=1 =1

examples. Moreover, from Lemma 9 the last of these runs does not fail (so returns a minimum
error hypothesis) with probability at least 1 — ﬁ Taking a union bound over these guarantees
then concludes the proof of Theorem 4.

C.3 Technical lemma

The following concentration inequality can be considered as an extension of Bernstein’s inequal-
ity to the martingale case that is suitable for our use.
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Lemma 10. Consider a filtration F1 C Fo C ..., and an adapted sequence of random vectors
Xt ..., XTe {0,1}™ that may be correlated but satisfy the following: conditioned on Fi_1, the
coordinates of X' are independent: for all z € {0,1}"

Pr(X'=a | F1) = [[Pr(X} =2 | Fiin).

Let Y' =3, X!. Then for any stopping time 7 adapted to {Fi};, « >0, and A > a+ 1

<ZYt>a+2)\ and Y E[Y'| Fi- 1]<a+)\> < e,

t<t t<t

and

(Zyt<aand S EY| Fi 1]>a—i—)\) < e T,

t<t t<t
We will need Freedman’s Inequality.

Lemma 11 (Freedman’s Inequality [9]). Consider a filtration Fy C Fo C ... and an adapted
martingale difference sequence My, ..., My taking values in [—1,1]. Let V =Y, E[M? | Fi_1]
denote the predictable variance. Then for all A,v >0

)\2
Pr(ZMtS —-A andV§v> §exp<—>,
- 2(v+A/3)

and the same upper bound holds for the event [>, My > X and V < v].

Proof of Lemma 10. We first prove the lemma for m = 1, in which case we have Y = Xt. To
simplify the notation let E;_1[-] denote the conditional expectation E[- | F;—1] (Eo[-] := E[-]).
The idea is to apply Freedman’s Inequality to the sequence Y! — E;_1Y?, but to control the
predictable variation we need to further stop the process.

Let 7/ be the smallest ¢ such that EgY! + ... +E; 1Y’ > a + A (and 7/ = oo if there is
no such t). Define the truncated process Y := Y'. 1(¢t < 7)- 1(t < 7/). We claim that this
truncated process upper bounds the original one, namely

(ZYt>a+2)\ and ZEt 1Yt<a+A) <Pr<ZYt>a+2/\ and ZEt 1Yt<a+/\>
t<t t<t
(11)

(ZYt<aand ZEt g >a+)\> <Pr<ZYt<aand ZEt 1Yt>a+)\)

t<t t<rt

(12)

To justify the first inequality, notice that for every scenario satisfying the LHS the truncation
7/ does not kick in, and hence the scenario satisfies the RHS. For the second inequality, since
>, Yt< > i<, Y, for every scenario satlsfylng the LHS we have ZtY < «a; moreover, for

every scenario in the LHS, we have ), Et,lY > a+ A: since in this case Y, B YT > a+ A

we have 7/ < 7 < oo and hence ), Y = Dt Y' > o+ A, the last inequality by definition of
7/. So every scenario that belongs to the LHS also belongs to the RHS, thus proving (12).
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Now define the martingale difference sequence M; := Y! — E;_;Y" and notice that

Pr(ZYt2a+2)\and ZEt_lytga+A>gPr<ZMtzA> (13)
t t t
Pr<ZYtgaand ZEt_lyt2a+A>gPr<ZMtg—A>. (14)
t t t

Moreover, because of the truncation we can bound the predictable variance of this martingale:
in our current case m = 1 we have |Y!| <1 and hence

Et_lMtQ = Var(?t ’ ft—l) S Et_l(?t)z S 1(t S 7',) . Et_lyt.

So using the definition of the stopping time 7" and the fact E;_1Y"? < 1, the predictable variance
is V=3 B aMP <Y, B Y <a+ A+ 1.
Finally, applying Lemma 11 to (M;); with v = a+ XA + 1 we get

Pr ZMt>)\andV>a+)\+1 <exp| — % < emin

- - - - 2@+ A+1+2/3)) — ’
where last inequality uses the assumption A > a+1. The same bound also holds for ), My < —A.
Chaining these bounds with inequalities (11)-(14). This concludes the proof for the case m = 1.

For the case m > 1 we simply reveal the random variables X!, X}, ... one-by-one and apply
the result for the case m = 1 to this sequence. More precisely, we index time using (t,7) and
the lexicographic order (1,1),...,(1,n),(2,1),..., and use prec(t,i) to denote the predecessor
of (¢,4), and define Y% := X!. Let Fy ,, := J, and for i < m let F;; be the o-algebra generated
by Fi—1 and X%, ... ,Xf. The main properties of this filtration are: 1) Yt is ft’i—measurable;
2) by the conditional independence of the RV’s (X!,... X!)|£_,, for i < m conditioning on

F

prec(t,i) 18 the same as conditioning on JF;_1, or more precisely

EY" | Fyreete) = BIY" | Firoa] = Era X[, (15)

Notice that 3°; ;1 <(r.m) Vi =3 Y e XE =20, Y, and using (15) we have D (t)=(rm) E[Yt |
fprec(m-)] = > ier Diem B Xl =Y, E,1Y'. So applying the current lemma for the case
m =1 to (}7“)“ and the stopping time (7,m) proves the full statement of the lemma. This
concludes the proof. O

D Inapproximability result on randomized algorithms for teach-
ing a black box learner

In this section we rephrase the lower bound on the competitiveness of any polynomial time
algorithm for the on line set cover from [14] in terms of approximation of the teaching set for
a randomized teacher dealing with a black box learner. This bound together with the result in
section 3.1 shows a separation between the efficiency of teaching achievable with an adversarial
learner as compared to the teaching efficiency achievable with a smooth transition learner.

Let Z = {ai1,...,an},S8 = {S1,...,Su} be the set of items and the family of sets in an (off
line) set cover instance, i.e., S; CZ for each i =1,..., M.
Fori=1,...,N —1,let Z0 8O be distinct copies of Z and S, i.e., we have that
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e for each i # 7, it holds that Z) N Z() = ¢;
e for each 4, it holds that S@ ¢ 27"

e for each ¢, /,t, it holds that aéi) € S’t(i) iff ap € S;

hence, in particular, for each ¢, /¢, j,¢ it holds that aéi) € St(j) iff i =5 and ay € 5.
In the following, w.l.0.g, let us assume that IV is a power of 2.

We let ”
x ={EY [j=F N1, (=1,...,M}yU{E}
be the set of examples of our instance, where F is a special example whose role will be clarified
shortly.

Foreachi=1,...,N —1and t = 1,...,N we define a hypothesis hgi) : X — {0,1} by
setting h{” (E) = 0 and A" (EY)) = 1 if and only if a; € Sy and i € {4, [j/2],...,1}.
We then define two additional hypotheses h* : X — {0,1} and h : X — {0,1} by

h*(E) = 0, for each F € X,
WME) = 1,if E=E.

_ Note that h differs from h* in only one example, namely F is the only example that covers
h. Equivalently, with respect to the analysis of the smooth transition learner, h is at distance
1 from h*.

Now we define N/2 classes of hypotheses. For that, consider a binary tree with N — 1 nodes,
which are labelled 1,..., N — 1, proceeding from the root to the leaves and from left to right on
each level, so that the root is the node 1, its left child is the node 2, the right child is the node
3, and so on, with the leaves, that from left to right are the nodes %, % +1,...,N — 1. Think

of each node j as containing the sequence of hypotheses (h(lj ), e h%)). The class of hypotheses
H;, for i = N/2,...,N — 1 contains the hypotheses h* and h and also every hypothesis that
belongs to some node (sequence) in the path from the root to the leaf i.

Let U = U;H;. The machine teaching instance is defined by the set of examples X and the
universe of hypotheses U/, where, unknowingly to the teacher, the learner’s hypothesis class lies.
In particular, the hypothesis class of the learner will be one of the sets H,.

To explain the behaviour of the Learner, we need to define a sequence p; associated to the
class H;. This sequence starts with h and then is obtained by concatenating the sequences in
the path from the root to the leaf ¢ of the tree. Finally, h* is appended to sequence p;.

Consider now a Learner (being the adversary) that with uniform probability chooses i €
{N/2,N/2+41,..., N — 1}—equivalently has the hypothesis class H;,—and gives to the teaching
algorithm consistent hypotheses following the sequence p;, skipping those made inconsistent by
the received examples. Note that, in any case, the first hypothesis presented will be h and any
teaching algorithm must cover it with E. Therefore, we can assume that the first interactions
are 71, E, hgl).

The key point here is that every teaching algorithm must use E and then behaves exactly
as if the instance did not contain h and E. This latter instance is the one that can be proved
to have a lower bound of TS logmlogn using the argument in [14]: (1) Every deterministic
algorithm in expectation over the possible N/2 choices of the sequence p;, will spend at least
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logQN k examples where k is equal to the size of the minimum size teaching set, i.e., the size

of the optimal set cover for the off-line instance, because, without knowing the choice of p;
the example chosen by the algorithm to cover some new hypothesis has 1/2 probability of
covering some hypothesis presented later; (2) A randomized algorithm, seen as a distribution
over deterministic algorithms, on average over the N/2 possible input sequences, uses less than
log N jo examples with probability < 2/3. Leveraging these two observation and the gap reduction

2
from SAT to SET COVER of [21] one obtains the following.

Theorem 10. There exists a constant d > 0 such that the following holds: If there exists a
polynomial time randomized algorithm for teaching a black box learner that guarantees to use
less than d - TS lognlogm examples on every instance where the set of examples has size m,
the learner’s hypothesis class has size n then NP C BPP.

This shows that even if Learner starts with the hypothesis h close to the target h*, there is
no way for the teacher algorithm to build a teaching set of size o(7S logmlogn).

E Random Learner model

E.1 Proof of Lemma 5

For each example e € X, let ¢, (resp. ¢.) be the number of hypotheses of H; (resp. 7:[75) covered
by e.

Let e* be an example that covers the largest number of hypotheses in H; so that c.~ = ¢*(Hy).
Thus, Prlc; < -5¢*(H¢)] can be upper bounded by the probability that some example b, with
cp < 1—1206*, covers at least the same number of hypotheses in H, covered by e*, that is, ¢ > Cex.

For a fixed example b, with ¢; < %ce*, let Ej be the event in which ¢, > ée+. It is enough
to show that Pr[Ep] < 2/m® since we can take the union bound, considering all the examples,
to show that the probability of Ej happens for some b is limited above by 2/m?.

Let z be a real number and let F'' and F? be the events in which é&- < z and & > z,
respectively. We have that E, C F' U F2. In fact, if Ej, happens and ¢ < z then F! happens.
Otherwise, if Ej, happens and G« > z then F? happens. Thus, Pr[E,] < Pr[F'] + Pr[F?] so
that it suffices to obtain upper bounds on both Pr[F!] and Pr[F?]. In what follows, we use

2= %]T?ij7 where k > 40 TS(H¢, h*) Inm.

Let Hy = (hi,...,hg) and for i =1,...,k, let X¢ be a random variable defined as

e _ 1 if e € wrong(h;)
‘ 0 if e & wrong(h;).

Then, Pr(X{ = 1) = 7. Tet X© = 30, Xf = & and pe = k- 557 = Yooy BIXf] = E[X°,

By Chernoff bound(see, e.g., [19, (4.5)]), we have that, for any 0 < 6 < 1,

i e
Pr(czfg(l“”@) ZPr(XC < (1- 0)p,) < e F = TS (16)
t
From (16), with § = 1/2 and e = e*, we get
5* ]_C* _Ce* k
PrlF=Pr| = <) <e Puls 17
i) =P (% < 1) < S, (1)

It is not hard to see that there must be an example that covers at least |H¢|/(TS(He, h*))

hypotheses in H;, hence, in particular, ce+ > %
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Because of k > 40 TS(H¢, h*) Inm, it follows that
Ce* 1 cex 1
PriF1=Pr( =< -2 )< — 18
Ar = (<o) < (18)
i.e., with high probability the example e* will appear as one that covers a large fraction of
hypotheses in H;, too.

To bound Pr[F?] we rely on the following Chernoff bound (see [19, (4.3)]). For any R > 6y,
we have

Pr(X¢ > R) <27 (19)
Under the assumption that ¢, < %ce* we have %,ue* > 6up. Let R = %ue*. Then, by (19) we
have ~ ) .
Cp Cex _k Ce*
PrlF?=Pr( 2>~ <9272 < 20
i) = (%2 o) <o h < (20)

where in the last inequality we used the assumption k > 107 S(Hy, h*)log, m. This conclude
the proof.

E.2 Proof of Lemma 6

Let C(H) be the total number of examples selected by the algorithm on an initial set of hy-
potheses H, of cardinality n.

We can show by induction on the cardinality of H that C'(H) <
holds true for |H| = 1. We can focus on the induction step.

Let e be the first example sent by the algorithm and let c. be the number of hypotheses
that x covers in H.

Let Hy be the set of consistent hypotheses after sending the example e. We have that H;
has cardinality n — c¢. <n — ac*(H), and we have that:

In(|H|). The inequality

1
a

C(H) <1+ C(H).

Since Hy C H and ¢*(H) > %, we have the following lower bound on TS(H, h*)

TS(H,h*) > max {%,TS(HL h*)} )

Therefore, putting together the last two inequality we have

CH) _ (), CO)  _1e  COH
TSH ) — H | TS(Huh) ~ alH] " TS(Hih)

1 ce 1 le 1 1
< —— 4+ —In(|H1]) =—+ —1 — < =1 .
S amta n([#a]) =~ + ~In(n —ce) < —lIn(n)

This concludes the proof.

F Experiments on non-redundant teaching sets

To evaluate the impact of the algorithm from Section 4 we made some simulations using synthetic
data. We measure the reduction on the number of examples that the method achieves over the
teaching sets obtained when the Teacher is A,gn, and the Learner always returns a random
hypothesis consistent with examples received thus far.
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In what follows, we describe the data employed in our experiments. We fixed the number of
hypotheses n = 30.001 and varied the number of examples m in the set {100, 500, 2500, 12.500, 75.000}.
We only use binary hypotheses, that is, |)| = 2. For every experiment the class of hypotheses
‘H consists of a hypothesis A* that makes no errors and also 5 groups of 6.000 hypotheses, where
all the hypotheses of the i-th group fail in (2i)% of their examples. We focus on hypotheses
that fail in a relatively small number of examples since those that make a lot of errors are easier
to discard.

To generate these hypotheses we used a parameter o € [0,1] that defines the number of
difficult examples and a parameter 5 € [0, 1] defining the number of errors associated with
the difficult examples in each hypothesis. More specifically, to generate a class of hypotheses
H(m, «a, B), we first fix the ma examples that are difficult. Then, the set of wrong examples
for a hypothesis that fail in % of its examples is built by randomly selecting (z/100) - m - 5%
examples from the difficult set and randomly selecting the remaining ones from the non-difficult
set.

We consider 35 combinations of parameters («, 3, m)

{{0.1,0.2,0.3} x {0.25,0.5} x {100,500, 2500, 12.500, 75.000} } U
{{0} x {0} x {100,500, 2500, 12.500, 75.000} }

For each combination we generated 10 classes of hypotheses and, then, we measured the reduc-
tion on the size of the teaching set obtained by Aagn, when the algorithm from Section 4 is
employed to remove redundant examples. On average, over the 350 runs, 38% of the examples
are removed and we had cases in which this reduction was larger than 50%.

The code employed for this simulation is available in https://github.com/sfilhofreitas/
TeachingWithLimitedKnowledge

G Computational Experiments - More details

We give more details on the experiments reported in Section 5 to compare the number of
examples required by A.gn, and NIT to attain a given level of accuracy.

Computational Environment. Our experiments were executed on an Intel Core i7-7700HQ
with 16G RAM. We used Python 3.7.3 with the following libraries: numpy 1.16.4; pandas
0.23.4; scikit-learn 0.20.1 and lightgbm 2.3.1. The codes and the datasets are available in
https://github.com/sfilhofreitas/TeachingWithLimitedKnowledge.

Datasets and Preprocessing. Our selected datasets meet the following criteria: they do not
have missing values and have up to 60.000 labelled examples. The latter was used to prevent
time consuming experiments.

Datasets were preprocessed to convert categorical attributes into numeric ones: if a cate-
gorical attribute takes k different values then it is replaced with k binary attributes. For that
we used method get_dumies from pandas library. That was done because our learners do not
handle categorical attributes directly.

Learner’s implementations We use classes sklearn.ensemble.RandomForestClassifier
and lightgbm.LGBMClassifier, with their default parameters, to implement Random forest
and LGBM, respectively.

Teacher’s implementations. Algorithm Aagn, is explained and analysed in Section 2 for the
setting in which the Learner always returns a hypothesis consistent with the examples sent thus
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far. However, in practice we do not have this guarantee. To run Aagy, for a more general setting
we use the following definition for the set wrong(h):

wrong(h) = {z € X | h fails on = and z has not been sent to Learner}.
rather than the original one:
wrong(h) = {z € X | h fails on x}.

With the additional requirement in the definition of wrong(h) we avoid sending the same
example more than once. Note that for the realizable case h* € H, this new definition is
equivalent to the original one since, in this case, the hypotheses received by the Teacher do not
make errors on the examples sent thus far.

The other Teacher we consider, NIT, looks for a small random set of examples for which the
Learner, when trained on this set, achieves accuracy larger than some given threshold over the
full dataset under consideration. For that it picks a random order of the examples from the
dataset and then it looks for the smallest value of £ for which the sample consisting of the first
£ examples of this order satisfies the desired property. To avoid very expensive computations,
the value of £ is increased using a step equal to 0.5% of the size of the dataset.

Results. To take into account the Teacher randomness, for each possible triple (Teacher,
Learner, dataset) we had 30 runs. For a fixed combination (Learner,dataset), the first hypothesis
available to both Aagn, and NIT, for their ith run, is obtained by training the Learner with the
first 1% examples of the random order employed by NIT for its ¢th run.

The Columns Avg Size of Tables 2 and 3 show the average number of examples (relative
to the size of the dataset) required for each pair Teacher-Learner to obtain an accuracy over
the full dataset larger than 99% of that achieved when the Learner is trained/tested in the full
dataset. Table 2 presents results for Random forests while Table 3 present those for LGBM.
As an example, for dataset mnist, the combination A,gno,-LGBM required on average (over the
30 runs) to be trained with & 3,780 (6.3% of 60,000) labelled examples to attain accuracy with
respect to the full dataset larger than 99% of that achieved when LGBM is trained and then
tested over the 60,000 mnist’s examples. On the other hand, for the combination NIT-LGBM, ~
37,620 (62.7 % of 60,000) examples are required on average. We note that the results presented
in Table 1, for the target 99%, are the averages of the values shown on columns Avg Size of
Tables 2 and 3.

We can observe a significant advantage of Aagno: it has a standard deviation lower than
NIT and, in terms of the number of examples required, it outperformed NIT in all combinations
but (credit_card, LGBM). These results suggest that algorithm A,gn, is potentially a very
competitive option for fast training of classification methods.
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Dataset Size Aagno-Random Forest NIT-Random Forest
Avg. Size (%) StdDev (%) | Avg. Size (%) StdDev (%)
avila 10,430 25.5 0.8 74.4 3.1
bank_marketing 41,188 224 0.3 89.2 0.7
car 1,728 24 1 7.7 4.8
credit_card 30,000 54 0.4 94 0.4
crowdsourced 10,545 19.5 0.5 82.4 1.8
Electrical_grid 10,000 1.1 0 2.1 0.6
Firm_Teacher 10,796 52.7 0.7 95.3 0.6
HTRU 17,898 7.1 0.2 46.6 2.5
mnist 60000 23.5 0.4 82.1 0.7
mushroom 8,124 1.2 0.1 4.4 1.7
nursery 12,960 13.2 0.5 59.1 2.6
Sensorless_drive_diagnosis | 58,509 3 0.1 11.5 1.1
Average 20.6 0.4 \ 59.9 1.7

Table 2: Column Avg Size shows the average number of examples (in percentage relative to
the size of the dataset) required for each pair Teacher-Learner to obtain an accuracy over the full
dataset larger than 99% of that achieved when the Learner (Random Forest) is trained/tested
in the full dataset. Each value is the average of 30 runs.

Dataset Size Aagno-LGBM NIT-LGBM
Avg. Size (%) StdDev (%) | Avg. Size (%) StdDev (%)

avila 10,430 1.1 0 1.1 0
bank marketing 41,188 12.7 1.4 27.1 2.3
car 1,728 14.3 0.6 47.1 4
credit_card 30,000 26.3 4.3 16.7 1.6
crowdsourced 10,545 8.7 0.2 74.8 2.4
Electrical_grid 10,000 1 0 1 0
Firm_Teacher 10,796 25.7 1.1 64.7 4.2
HTRU 17,898 5.5 0.3 19.5 3.2
mnist 60000 6.3 0.1 62.6 1.2
mushroom 8,124 1.1 0.1 4.5 1.4
nursery 12,960 2.7 0.2 9.7 1
Sensorless_drive_diagnosis | 58,509 1.7 0.1 7.5 0.7
Average 8.9 0.7 ‘ 28 1.8

Table 3: Column Avg size shows the average number of examples (in percentage relative to
the size of the dataset) required for each pair Teacher-Learner to obtain an accuracy over the
full dataset larger than 99% of that achieved when the Learner (LGBM) is trained/tested in the
full dataset. Each value is the average of 30 runs.
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