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Supplementary Material

This supplementary material contains:

1. Proofs of Theorem 1 and Theorem 2.

2. Additional experiments on comparing different embed-
ding techniques.

3. Additional plot of the 2-PCA of the learned embedding
in the movie actors face search experiment.

A. Proof of Theorem 1
Proof. Without loss of generality, assume that σε = 1. Let
y be a binary random variable such that p(y = 1|w, b,x) =
Φ(xTw + b). Then,

arg max
(w,b)∈H

I[x; y | (w, b)]

= arg max
(w,b)∈H

{1− Ex̂[H(y | w, b,x)]} (1)

= arg min
(w,b)∈H

∫
Rd

H
[
Φ(xTw + b)

]
N (x;µ,Σ)dx

= arg min
(w,b)∈H

∫
R
H [Φ(t)]N (t; 0,wTΣw)dt (2)

= arg max
(w,b)∈H

wTΣw. (3)

In (1), we use (2) and the fact that, as the hyperplane is
passing through µ,

H

[∫
Rd

p(y = 1|w, b,x)N (x;µ,Σ)dx

]
= H(1/2) = 1.

In (2), we use the fact that xTw + b ∼ N (0,wTΣw),
by properties of the Gaussian distribution. Finally, in (3),
we start by noting that, for all c1, c2 such that c1/c2 > 1,
H [Φ(c1t)] ≤ H [Φ(c2t)] for all t with equality iff t = 0.
Hence, if σ̃2 > σ2, then∫

R
H [Φ(t)]N (t; 0, σ̃2)dt =

∫
R
H [Φ(σ̃t)]N (t; 0, 1)dt

<

∫
R
H [Φ(σt)]N (t; 0, 1)dt =

∫
R
H [Φ(t)]N (t; 0, σ2)dt.

Therefore, maximizing wTΣw minimizes the expected en-
tropy of y.

B. Proof of Theorem 2
For simplicity, we will assume that d = 1; Section B.1
explains how to generalize the result to any d > 1. Denote
by xt the location of the target object, and letN (x̂;µm, σm)
be the belief about the target’s location after m observations.
Without loss of generality, let σ2

ε = 1. In this case, the
updates have the following form.

σ2
m+1 = σ2

m + βmσ
4
m, (4)

µm+1 = µm + αmσ
2
m · zm,

where zm ∈ {±1} with P(zm = 1) = Φ(xt − µm), and

αm = c/
√
σ2
m + 1,

βm = −c2/(σ2
m + 1),

c =
√

2/π.

We start with a lemma that essentially states that σ2
m de-

creases as 1/m.

Lemma 1. For any initial σ2
0 > 0 and for all m ≥ 0, the

posterior variance σ2
m can be bounded as

min{0.1, σ2
0}

m+ 1
≤ σ2

m ≤
max{10, σ2

0}
m+ 1

.

Proof. From (4), we know that

σ2
m+1 =

(
1− c2 σ2

m

σ2
m + 1

)
σ2
m

First, we need to show that

f(x) =

(
1− c2 x

x+ 1

)
x

is increasing on R>0. This is easily verified by checking
that

f ′(x) =

(
1− c2 x

x+ 1

)
+ x

(
1− c2 1

(x+ 1)2

)
≥ 0,

for all x ∈ R>0 Next, we consider the upper bound. Let
b = max{10, σ2

0}. We will show that σ2
m ≤ b/(m + 1)

1



by induction. The basis step is immediate: by definition,
σ2
0 ≤ b. The induction step is as follows, for m ≥ 1.

σ2
m =

(
1− c2

σ2
m−1

σ2
m−1 + 1

)
σ2
m−1

≤
(

1− c2 b

b+m

)
b

m
≤ b

m+ 1

⇐⇒ 1− c2 b

b+m
− m

m+ 1
≤ 0

⇐⇒ b+m− c2(bm+ b) ≤ 0

⇐⇒ m(1− c2b) + b(1− c2) ≤ 1− b(2c2 − 1︸ ︷︷ ︸
≈0.27

) ≤ 0,

where the first inequality holds because f(x) is increasing.
The lower bound can be proved in a similar way.

For completeness, we restate Theorem 2 for d = 1.

Theorem 2 (Case d = 1). If the answers follow equation 1,
then for any initial µ0 and σ2

0 > 0 and as m→∞,

σ2
m → 0,

µm → xt

almost surely.

Proof. The first part of the theorem (σ2
m → 0) is a trivial

consequence of Lemma 1. The second part follows from the
fact that our update procedure can be cast as the Robbins-
Monro algorithm (Robbins & Monro, 1951) applied to
g(µ)

.
= 2Φ(xt−µ)− 1, which has a unique root in µ = xt.

Indeed, zm is a stochastic estimate of the function g at µm,
i.e., E(zm) = 2Φ(µm − xt)− 1. The remaining conditions
to check are as follows.

• the learning rate γm = αmσ
2
m satisfies

∞∑
m=0

γm ≥
c ·min{σ2

0 , 0.1}√
σ2
0 + 1

∞∑
m

1

m
=∞,

∞∑
m=0

γ2m ≤ (c ·max{σ2
0 , 10.0})2

∞∑
m

1

m2
<∞

• |zm| ≤ 1 for all m

Almost sure convergence then follows directly from the
results derived in (Robbins & Monro, 1951) and (Blum
et al., 1954).

B.1. Extending the proof to d > 1

In order to understand how to extend the argument of the
proof given above to d > 1, the following observation is
key: Every query made during a search gives information

on the position of the target along a single dimension, i.e.,
the one perpendicular to the bisecting hyperplane. This can
be seen, e.g., from the update rule

Σm+1 =
(
Σm + τwim,jm ⊗wT

im,jm

)−1
,

which reveals that the precision matrix (i.e., the inverse
of the covariance matrix) is affected only in the subspace
spanned by wim,jm .

Therefore, if we start with Σ0 = σ2
0I , we can (without loss

of generality) assume that the search procedure sequentially
iterates over the dimensions. At each iteration, the vari-
ance shrinks along that dimension only, leaving the other
dimensions untouched. Conceptually, we can think of the
case d > 1 as interleaving d independent one-dimensional
search procedures. Each of these one-dimensional searches
converges to the corresponding coordinate of the target vec-
tor xt, and the variance along the corresponding dimension
shrinks to 0.

In general, one should consider the fact that the optimal
hyperplane is not always unique, and the chosen hyperplane
might not align with the current basis of the space. This case
can be taken care of by re-parametrizing the space by using
a rotation matrix. However, these technical details do not
bring any new insight as to why the result holds.

C. Performance of Embedding Methods
We evaluated the quality of the object embedding learned
by our embedding technique GAUSSEMB on two real world
datasets with crowdsourced triplet comparisons: Music
artists (Ellis et al., 2002) and Food (Wilber et al., 2014).

We compared our model to the state-of-the-art baselines,
CKL and t-STE. We measured accuracy—the percentage
of satisfied triplets in the learned embeddings on a holdout
set using 10-fold cross validation. Since the “true” dimen-
sionality of the feature space is not known a priori, we also
vary the dimensionality D of the estimated embedding be-
tween 2 and 30. The results are presented in Fig. 1.

Overall, on both datasets, GAUSSEMB showed similar per-
formance to t-STE, correctly modeling between 83% and
85% of triplets, and outperformed CKL. We can conclude
that the noise model considered in this paper reflects the
real user behaviour on the comparison-like tasks well.

D. Movie Actors Face Search Experiment
We illustrate the results of performing 2-PCA on the learned
embedding from the movie actors face search experiment in
Fig. 2. It appears that the two principal components align
well with gender and race. Note that this embedding was
obtained solely from the triplet comparisons collected prior
to the experiment (slightly more than 40000 triplets in total).



Figure 1. Evaluating embedding methods on two real world datasets: Music artists, n = 400 music artists with 9090 triplet comparisons
after removing repeating and inconsistent triplets, and Food, n = 100 images of food with 190376 collected unique triplets.

Figure 2. 2-PCA on learned embedding.
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