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A. Proofs
A.1. Proof of Lemma 3

Lemma 3. Given a hypothesis class P , for all h ∈ H,

RT (h) ≤ sup
h′∈P

RT (h, h′)︸ ︷︷ ︸
Proxy Risk

+ inf
h′∈P

RT (h′)︸ ︷︷ ︸
Bias

. (1)

Proof. Let h∗ = arg infh∈P RT (h), by the triangle inequal-
ity,

RT (h) ≤ RT (h, h∗) +RT (h∗) (2)
≤ sup
h′∈P

RT (h, h′) + inf
h′∈P

RT (h′). (3)

A.2. Proof of Lemma 4

Lemma 4. Given a hypothesis class P , for all h ∈ H,

| sup
h′∈P

RT (h, h′)−RT (h)|︸ ︷︷ ︸
Estimation Error

≤ sup
h′∈P

RT (h′). (4)

Proof. First, by Lemma 3, we have

sup
h′∈PεFG

RT (h, h′)−RT (h) ≥ − inf
h′∈PεFG

RT (h′). (5)

Next, by the triangle inequality,

RT (h, h′) ≤ RT (h) +RT (h′). (6)

The above inequality holds for all h′ ∈ PεFG , by taking
supremum on both sides of the inequality, we have

sup
h′∈PεFG

RT (h, h′) ≤ sup
h′∈PεFG

(RT (h) +RT (h′)) (7)

= RT (h) + sup
h′∈PεFG

RT (h′), (8)
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implying that

sup
h′∈PεFG

RT (h, h′)−RT (h) ≤ sup
h′∈PεFG

RT (h′). (9)

Since infh′∈PεFG
RT (h′) ≤ suph′∈PεFG

RT (h′), combining
equation (5) and equation (9) completes the proof.

A.3. Proof of Theorem 6

Theorem 6. For all f ∈ F and g ∈ G,

RT (fg) ≤ RS(fg) + dF∆F (pgS(Z), pgT (Z))︸ ︷︷ ︸
Latent Divergence

+ dFG∆G (pS , pT )︸ ︷︷ ︸
Embedding Complexity

+λFG(g). (10)

where λFG(g) is a variant of the best in-class joint risk:

λFG(g) = inf
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′).

Proof. Define f∗g∗ as follows:

f∗g∗ = arg inf
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′).

(11)

By the triangle inequality,

RT (fg) ≤ RT (f∗g∗) +RT (fg, f∗g∗) (12)
≤ RT (f∗g∗) +RT (fg, f∗g) +RT (f∗g, f∗g∗).

(13)

The second term in the R.H.S of Eq. 13 can be bounded as

RT (fg, f∗g) (14)
≤ RS(fg, f∗g) + |RS(fg, f∗g)−RT (fg, f∗g)| (15)
≤ RS(fg, f∗g) + sup

f,f ′∈F
|RS(fg, f ′g)−RT (fg, f ′g)|

(16)

= RS(fg, f∗g) + dF∆F (pgS(Z), pgT (Z)) (17)
≤ RS(fg) +RS(f∗g) + dF∆F (pgS(Z), pgT (Z)). (18)
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The last inequality follows from the triangle inequality. The
third term in the R.H.S of Eq. 13 can be bounded similarly:

RT (f∗g, f∗g∗) (19)
≤ RS(f∗g, f∗g∗) + |RS(f∗g, f∗g∗)−RT (f∗g, f∗g∗)|

(20)

≤ RS(f∗g, f∗g∗)

+ sup
f∈F,g,g′∈G

|RS(f ′g, f ′g′)−RT (f ′g, f ′g′)| (21)

= RS(f∗g, f∗g∗) + dFG∆G (pS(X), pT (X)) (22)
≤ RS(f∗g) +RS(f∗g∗) + dFG∆G (pS(X), pT (X)).

(23)

Plugging the above bounds into equation (13), we have

RT (fg) ≤ RS(fg) + dF∆F (pgS(Z), pgT (Z)) (24)
+ dFG∆G (pS(X), pT (X)) + λFG(g),

(25)

where the λFG(g) emerges by

λFG(g) = 2RS(f∗g) +RS(f∗g∗) +RT (f∗g∗) (26)
= inf
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′).

(27)

A.4. Proof of Proposition 7

Proposition 7. In an N -layer feedforward neural network
h = figi ∈ FiGi = H, the following inequalities hold for
all i ≤ j ≤ N − 1:

dFiGi∆Gi
(pS , pT ) ≤ dFjGj∆Gj

(pS , pT )

dFi∆Fi(p
gi
S (Z), pgiT (Z)) ≥ dFj∆Fj (p

gj
S (Z), p

gj
T (Z)).

Proof. Recall that an N -layer feedforward neural network
can be decomposed as h = figi ∈ FiGi = H for i ∈
{1, 2, . . . , N−1}, where the embedding gi is formed by the
first layer to the i-th layer and the predictor fi is formed by
the i+ 1-th layer to the last layer. We define qij : Zi → Zj
to be the function formed by the i-th layer to j-th layer,
where Zk is the latent space formed by the encoder gk :
X → Zk. We denote the class of qij as Qij .

We now prove the first inequality. By the definition of the

FG∆G-divergence, for every i ≤ j

dFiGi∆Gi
(pS , pT ) (28)

= sup
f∈Fi
g,g′∈Gi

|RS(fg, fg′)−RT (fg, fg′)| (29)

= sup
f∈Fj ,q∈Qij
g,g′∈Gi

|RS(fqg, fqg′)−RT (fqg, fqg′)| (30)

≤ sup
f∈Fj

q,q′∈Qij
g,g′∈Gi

|RS(fqg, fq′g′)−RT (fqg, fq′g′)| (31)

= sup
f∈Fj
g,g′∈Gj

|RS(fg, fg′)−RT (fg, fg′)| (32)

=dFjGj∆Gj
(pS , pT ) (33)

The second inequality can be proved similarly. By the defi-
nition of the F∆F-divergence, for every i ≤ j

dFj∆Fj (p
gj
S (Z), p

gj
T (Z)) (34)

= sup
f,f ′∈Fj

|RS(fgj , f
′gj)−RT (fgj , f

′gj)| (35)

= sup
f,f ′∈Fj

|RS(fqijgi, f
′qijgi)−RT (fqijgi, f

′qijgi)|

(36)

≤ sup
q∈Qij
f,f ′∈Fj

|RS(fqgi, f
′qgi)−RT (fqgi, f

′qgi)| (37)

≤ sup
q,q′∈Qij
f,f ′∈Fj

|RS(fqgi, f
′q′gi)−RT (fqgi, f

′q′gi)| (38)

= sup
f,f ′∈Fi

|RS(fgi, f
′gi)−RT (fgi, f

′gi)| (39)

=dFi∆Fi(p
gi
S (Z), pgiT (Z)) (40)

B. Experiments
B.1. The Role of Inductive Bias

Number of Layers in Encoder

Number of Layers in Encoder

Figure 1. The role of inductive
bias: DANN with fully con-
nected layers instead of a CNN.

Besides the number of lay-
ers and number of hidden
neurons, we investigate the
importance of inductive
bias for domain invariant
representations, by replac-
ing the CNN encoder with
an MLP. The results for
M→M-M are shown in
Figure 1. The target er-
ror with the MLP encoder
is significantly higher than
with a CNN encoder. Even
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Figure 2. t-SNE projections of representations with different in-
ductive biases. CNN encoders result in source and target repre-
sentations that are well aligned. In contrast, MLP encoders lose
label-consistency while minimizing the latent divergence between
domains.

Number of Layers in Encoder Number of Layers in Encoder

Number of Layers in Encoder Number of Layers in Encoder

Figure 3. Amazon reviews dataset. First row: Fixed predictor
class, varying number of layers in the encoder. Second row: Fixed
total number of layers and optimizing domain-invariant loss in a
single intermediate layer.

more, with respect to target error, the model is very sensitive
to its complexity. Increasing the number of layers worsens
the performance, and is worse than not doing any domain
adaptation. To gain deeper insight, in Figure 2, we use a
t-SNE (Maaten & Hinton (2008)) projection to visualize
source and target distributions in the latent space. With the
inductive bias of CNNs, the representations of target do-
main well align with those in the source domain. However,
despite the overlap between source and target domains, the
MLP encoder results in serious label-mismatch.

B.2. Effect of Embedding Complexity

Sentiment Classification In addition to K→B and D→B,
we show the results for B→K and D→B in Figure 3. In
agreement with the results in the main paper, the target error
decreases initially, and then increases as more layers are
added to the encoder.

Figure 4. Office-31 dataset. First row: Fixed predictor class, vary-
ing number of layers in the encoder. Second row: Fixed total
number of layers and optimizing domain-invariant loss in a single
intermediate layer.
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(a) Vary Layer Number (b) Vary Hidden Size

Figure 5. Effect of predictor complexity on MNIST→MNIST-M.
(a) Fix the encoder class and vary the number of layers in the
predictor. (b) Fix the encoder class and vary the hidden width of
the predictor.

Object Classification In addition to A→W and A→D,
we show the results for W→A and D→A in Figure 4. Again,
the target error decreases initially and increase as the en-
coder becomes more complex.

B.3. Effect of Predictor Complexity

Next, we investigate the effect of predictor complexity with
the MNIST→MNIST-M data. Following the procedure in
Section 5, we augment the original predictor with 1 to 7
additional CNN layers and fix the number of layers in the
encoder to 4 or vary the hidden width of the predictor. The
results are shown in Figure 5. The target error slightly
decreases as the number of layers in the predictor increases,
but much less than the 19.8% performance drop when we
vary the number of layers in the encoder (Section 5.2, see
also Fig. 3 and 4): when augmenting the predictor with 7
layers, the target error only decreases by 0.9%. Therefore,
we focus on the embedding complexity in the main paper.
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C. Computing Ben-David et al. (2010)’s
Bound

In Section 7.3 and 7.4, we estimate Ben-David et al. (2010)’s
bound with different hypothesis class H. To justify the
choice ofH, we have to trace back to the proof of Theorem 2
(Ben-David et al., 2010).

Theorem 2. (Ben-David et al., 2010) For all hypotheses
h ∈ H, the target risk is bounded as

RT (h) ≤ RS(h) + dH∆H(pS , pT ) + λH, (41)

where λH is the best joint risk

λH := inf
h′∈H

[RS(h′) +RT (h′)].

Proof. Define the optimal hypothesis h∗:

h∗ = arg inf
h′∈H

RS(h′) +RT (h′) (42)

We then bound the target risk of h as follows:

RT (h) (43)
≤ RT (h, h∗) +RT (h∗) (44)
≤ |RS(h, h∗)−RT (h, h∗)|+RS(h, h∗) +RT (h∗)

(45)

≤ RS(h) + |RS(h, h∗)−RT (h, h∗)|
+RS(h∗) +RT (h∗) (46)

= RS(h) + |RS(h, h∗)−RT (h, h∗)|+ λH (47)
≤ RS(h) + sup

h,h′∈H
|RS(h, h′)−RT (h, h′)|︸ ︷︷ ︸
H∆H-Divergence

+λH (48)

where the first and third inequality follow from the triangle
inequality and we replace h∗ with h′ in the last inequality.

The tightness of the bound depends on the hypothesis class
H that the H∆H-divergence uses. According to equa-
tion (48) in the proof, to take the supremum, we have to
ensure that the candidate hypothesis h and the optimal hy-
pothesis h∗ belong toH.

For instance, a model h pretrained on the source belongs to
H = {h ∈ H|R̂S(h) ≤ ε} but not necessarily PεFG . How-
ever, to estimate the target risk for a domain-invariant classi-
fier h = fg which satisfies RS(h)+αd(pgS(Z), pgT (Z) ≤ ε
(Section 7.4), we can tighten the bound by settingH = PεFG
since h ∈ PεFG . Note that in return, the unobserved best
joint risk increases from λH to λPεFG

.

We adopt the computational approach described in Section
7.2 to approximate the H∆H-divergence. For instance,

to approximate PεFG∆PεFG-divergence, we optimize the
following objective:

max
fg,f ′g′∈FG

RT (fg, f ′g′)−RS(fg, f ′g′)

− λ(RS(fg) +RS(f ′g′))

− λα(d(pgS(Z), pgT (Z)) + d(pg
′

S (Z), pg
′

T (Z)))
(49)

where λ > 0. We empirically estimate the RT and RS with
the validation set and minimize the objective via standard
stochastic gradient descent.

D. Experiment Details and Network
Architectures

D.1. Amazon Review Dataset

The learning rate of the Adam optimizer is set to 1×e−3 and
the model is trained for 50 epochs. We adopt the original
progressive training strategy for the discriminator (Ganin
et al., 2016) where the weight α for the domain-invariant
loss is initiated at 0 and is gradually changed to 1 using the
following schedule:

α =
2

1 + exp(−10 · p)
− 1, (50)

where p is the training progress linearly changing from 0 to
1. The architecture of the hypothesis and discriminator are
as follows:

Encoder

nn.Linear(5000, 128)
nn.ReLU

nn.Linear(128, 128)
nn.ReLU

×n (depends on the number of layers)
Predictor

nn.Linear(128, 128)
nn.ReLU

×n (depends on the number of layers)
nn.Linear(128, 2)

nn.Softmax

Discriminator

nn.Linear(128, 256)
nn.ReLU

nn.Linear(256, 256)
nn.ReLU
×5

nn.Linear(256, 2)
nn.Softmax
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D.2. Digit Classification

The learning rate of the Adam optimizer is set to 1 × e−3

and the model is trained for 100 epochs. The weight α
for domain-invariant loss is initiated at 0 and is gradually
changed to 0.1 using the same schedule in Section D.1. The
tradeoff parameter λ for computing proxy error is set to
50 for all tasks. The architecture of the hypothesis and
discriminator are as follows:

Encoder

nn.Conv2d(3, 64, kernel size=5)
nn.BatchNorm2d
nn.MaxPool2d(2)

nn.ReLU
nn.Conv2d(64, 128, kernel size=5)

nn.BatchNorm2d
nn.Dropout2d (only added for MNIST→MNIST-M)

nn.MaxPool2d(2)
nn.ReLU

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.BatchNorm2d

nn.ReLU
×n (depends on the number of layers)

Predictor

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.BatchNorm2d

nn.ReLU
×n (depends on the number of layers)

flatten
nn.Linear(2048, 256)

nn.BatchNorm1d
nn.ReLU

nn.Linear(256, 10)
nn.Softmax

Discriminator

nn.Conv2d(128, 256, kernel size=3, padding=1)
nn.ReLU

nn.Conv2d(256, 256, kernel size=3, padding=1)
nn.ReLU
×4

Flatten
nn.Linear(4096, 512)

nn.ReLU
nn.Linear(512, 512)

nn.ReLU
nn.Linear(512, 2)

nn.Softmax

In the hidden width experiments, we use the architectures

above as a basis and scale their relevant their hidden widths.

D.3. Office-31

We exploit the ResNet-50 (He et al., 2016) trained on Ima-
geNet (Deng et al., 2009) for feature extraction. The learn-
ing rate of the Adam optimizer is set to 3×e−4 and the mod-
els are trained for 100 epochs. The weight α for the domain-
invariant loss is initiated at 0 and is gradually changed to
1 using the same schedule in Section D.1. The tradeoff
parameter λ for computing proxy error is set to 50 for all
tasks. The architecture of the hypothesis and discriminator
are as follows:

Encoder

nn.Linear(2048, 256)
nn.ReLU

nn.Linear(256, 256)
nn.ReLU

×n (depends on the number of layers)
Predictor

nn.Linear(256, 256)
nn.ReLU

×n (depends on the number of layers)
nn.Linear(256, 2)

nn.Softmax

Discriminator

nn.Linear(256, 256)
nn.ReLU
×6

nn.Linear(256, 2)
nn.Softmax
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