
Semismooth Newton Algorithm for Efficient Projections onto `1,∞-norm Ball

Dejun Chu 1 Changshui Zhang 1 Shiliang Sun 2 Qing Tao 3

Abstract

The structured sparsity-inducing `1,∞-norm, as
a generalization of the classical `1-norm, plays
an important role in jointly sparse models which
select or remove simultaneously all the variables
forming a group. However, its resulting prob-
lem is more difficult to solve than the conven-
tional `1-norm constrained problem. In this paper,
we propose an efficient algorithm for Euclidean
projection onto `1,∞-norm ball. We tackle the
projection problem via semismooth Newton al-
gorithm to solve the system of semismooth equa-
tions. Meanwhile, exploiting the structure of the
Jacobian matrix via LU decomposition yields an
equivalent algorithm which is proved to termi-
nate after a finite number of iterations. Empirical
studies demonstrate that our proposed algorithm
outperforms the existing state-of-the-art solver
and is promising for the optimization of learning
problems with the `1,∞-norm ball constraint.

1. Introduction
Sparse statistical model (Tibshirani et al., 2015) seeks only
a small amount of non-zero parameters to describe data,
which not only makes the prediction more interpretable, but
also leads to significant computational advantages. It has
emerged as a powerful tool in machine learning, signal pro-
cessing and statistics. Typically sparse learning model can
be cast as the following regularized loss function minimiza-

1Institute for Artificial Intelligence, Tsinghua University
(THUAI), State Key Lab of Intelligent Technologies and Sys-
tems, Beijing National Research Center for Information Sci-
ence and Technology (BNRist), Department of Automation, Ts-
inghua University, Beijing, P. R. China 2School of Computer
Science and Technology, East China Normal University, Shang-
hai, P. R. China 3Army Academy of Artillery and Air Defense,
Hefei, P. R. China. Correspondence to: Changshui Zhang
<zcs@mail.tsinghua.edu.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

tion problem

min
W
L(W) + λR(W) (1)

whereL(W) is known as the surrogate convex loss function,
λ > 0 is an appropriate regularization parameter andR(W)
represents the sparsity-inducing regularization (Bach et al.,
2012). By Lagrangian duality theory (Bertsekas et al., 2003),
problem (1) is equivalent under mild conditions to the fol-
lowing constrained optimization problem

min
W
L(W), s.t.R(W) ≤ C (2)

where C is a user-specified parameter. It is well known
that the regularization parameter λ in the problem (1) is
usually estimated via an external procedure such as cross-
validation. In contrast, it is easier to find the parameter C in
the constrained problem (2) from the fact that C has a much
more intuitive meaning than λ in many situations. One
straightforward solution to the problem (2) is the projected
gradient algorithm (PGA). Therefore an efficient projection
step will play a crucial role in the whole procedure since
every iteration of PGA will call for a projection. However,
in many cases developing an efficient projection algorithm
comparable with the computational cost of each gradient
update in the PGA is still a challenge. In this paper, we
propose an efficient projection algorithm that converges in
a finite number of iterations for the problem (2) when the
constraint is the `1,∞-norm ball.

As a general extension of `1-norm, `1,q-norms with q ∈
(1,∞] promote group sparsity, i.e., the solution is not only
sparse as that to the classical `1-norm, but also the pre-
specified group variables can be selected or removed simul-
taneously. It has been shown (Turlach et al., 2005; Yuan &
Lin, 2006; Roth & Fischer, 2008; Huang et al., 2010) that
`1,q-norms using group structure can yield more reliable
estimation than the standard `1-norm when the data have
underlying group structure, rather than just sparsity. In prac-
tice, the settings of q = 2 and q =∞ are the most popular
choices. While `1,2-norm has been studied in detail (Yuan
& Lin, 2006; Roth & Fischer, 2008), which will induce
the group Lasso model if combined with the least-squares
loss function, we focus on its counterpart `1,∞-norm in this
paper.

Efficient Projections onto `1,∞-norm Ball

The `1,∞-norm projection arises in a variety of applications,
such as variable selection (Turlach et al., 2005; Masaeli et al.,
2010; Xiang et al., 2013; Hernández-Lobato et al., 2015),
multitask learning (Liu et al., 2009a;b; Rakotomamonjy
et al., 2011), nonnegative matrix factorization (Kim et al.,
2012), ranking (Rakotomamonjy, 2012), and computer vi-
sion (Jia et al., 2010; Zhang et al., 2013), etc. However,
unlike the `1,2-norm, the projection onto the `1,∞-norm ball
is not easy to tackle and lacks a closed-form solution. The
time required by the projection onto the `1,∞-norm ball is
greater than the time cost of gradient update at each iteration,
which has become the bottleneck of the PGA method with
`1,∞-norm constraint and thus weakens the competitiveness
of `1,∞-norm (Vogt & Roth, 2010).

The reliable workhorse to solve the `1,∞ projection was
proposed by Quattoni et al. (2009), which maps the `1,∞
projection problem to a feasibility problem. It takes
O(dm log dm) time to find the jointly sparse solution via
sorting all the dm+ 1 breakpoints associated with data ma-
trix A ∈ Rd×m. The alternative scheme is to cast the pro-
jection into the univariate root-finding procedure (Sra, 2011;
2012; Su et al., 2012). Due to the lack of exploitation of the
special structure of the `1,∞-norm constraint, generally the
bisection method can be invoked which finds the root with
ε-accuracy in O(log(δ/ε)) iterations where δ represents the
width of the interval containing the root. Following this
idea, Chau et al. (2019) just recently employed a Newton
based method to find the root. While the Newton proce-
dure can converge faster than the sorting-based method, it
is somehow disappointing to observe in the experiments of
Chau et al. (2019) that the acceleration effect is gradually
declining when the data size increases. In fact, although
Newton’s method has fewer iterations than its counterpart,
it needs to solve multiple `1-norm projection problems ac-
curately at each iteration. Overall, it takes O(dm) iterations
with arithmetic complexity O(dm2) of each step such that
its advantages, compared with the sorting-based method,
gradually decline when m becomes large.

The main contribution of this paper is that we develop an
efficient semismooth Newton method for computing the
`1,∞-norm ball projection after at most O(dm) iterations.
More specifically, we reformulate the projection problem to
semismooth system and employ Newton’s method to find
the solution. Furthermore, we exploit the structure of the
Jacobian matrix via LU decomposition and obtain an equiv-
alent algorithm whose time complexity can be bounded
theoretically in finite steps. Meanwhile, an important appeal
of the proposed algorithm is its linear time iteration com-
plexityO(dm), while it also enjoys the comparable iteration
numbers to the recent Newton’s method (Chau et al., 2019).
The experimental results show that our method outperforms
the state-of-the-art solver.

The paper is organized as follows. We first introduce the
notation and cast the `1,∞-norm ball projection as a solving
problem of semismooth equations in Section 2. We then
gain from a proper use of the special structure of the Jaco-
bian matrix and propose the semismooth Newton method in
Section 3. The characteristics of Newton iterations are for-
mally analysed and as a by-product an equivalent algorithm
is guaranteed to converge in a finite number of iterations in
Section 4. The experimental results are reported in Section
5, after which the conclusion is given in Section 6.

2. Notation and Problem Formulation
Vectors are denoted by bold lower case letters and matrices
by upper case ones. We use xi to denote the i-th component
of the vector x ∈ Rd and x[i] as the i-th smallest component
of x, that is, x[1] ≤ x[2] ≤ . . . ≤ x[d].

Assume the parameter matrix W ∈ Rd×m with rows
w>1 ,w

>
2 , . . . ,w

>
d , where wi ∈ Rm for i = 1, 2, . . . , d is

the i-th row of W . We consider the Frobenius norm of
matrix W as ‖W ‖F = (

∑d
i=1

∑m
j=1W

2
i,j)

1/2 and define

the `1,∞-norm of W as ‖W ‖1,∞ =
∑d
i=1 maxj |Wi,j |.

Thus the Euclidean projection with respect to A onto the
`1,∞-norm ball can be formulated as

min
W

1

2
‖W −A‖2F , s.t.

d∑
i=1

max
j
|Wi,j | ≤ C (3)

where C is a bound on ‖W ‖1,∞.

It is easy to show that each non-zero component of the
optimal solution W of problem (3) shares the sign of its
counterpart in A (Duchi et al., 2008). Thus, we may as-
sume without loss of generality that Ai,j ≥ 0 for all i, j.
Furthermore, it can also be assumed that the constraint in
(3) is active, i.e. ‖A‖1,∞ ≥ C. Otherwise, there is a trivial
optimal W = A. Based on these two assumptions, the
above problem can be rewritten as

min
W ,µ

1

2
‖W −A‖2F

s.t. 0 ≤Wi,j ≤ µi, ∀i, j
d∑
i=1

µi = C.

(4)

Introducing Lagrange multiplier θ̃ for the equality con-
straint

∑d
i=1 µi = C, while keeping the box constraint

0 ≤Wi,j ≤ µi intact, we define the Lagrange dual function
associated with (4) as

min
W ,µ

L̃(W ,µ; θ̃) =
1

2
‖W −A‖2F + θ̃

(d∑
i=1

µi − C
)

s.t. 0 ≤Wi,j ≤ µi, ∀i, j.

(5)

Efficient Projections onto `1,∞-norm Ball

Combining the KKT conditions with box constraints on the
variableW , we obtain the primal optimal

Wi,j = min (max (Ai,j , 0) , µi) = min (Ai,j , µi) . (6)

Using this expression to substitute Wi,j in (4), we can write
the equivalent optimization problem with only µ as

min
µ

1

2

d∑
i=1

m∑
j=1

max (Ai,j − µi, 0)
2

s.t.

d∑
i=1

µi = C

µi ≥ 0, i = 1, . . . , d.

(7)

Now we will focus on the problem (7), since the optimal
solution Wi,j depends on the variable µi from the closed-
form expression (6). To form the Lagrangian similarly,
we introduce multiplier θ for the equality constraint, and
multipliers γi ≥ 0 for the d inequality constraints, and
obtain

L(µ;λ) =
1

2

d∑
i=1

m∑
j=1

max (Ai,j − µi, 0)
2

+ θ

(
d∑
i=1

µi − C

)
−

d∑
i=1

γiµi.

(8)

Applying the zero gradient condition with respect to the
variable µi, we obtain

γi +
∑
j

max (Ai,j − µi, 0) = θ,

where we can conclude that θ ≥ 0 as the two terms on the
left side of the equation are both nonnegative. Furthermore,
we distinguish two cases with respect to µi separately. We
first consider the case µi > 0. By the complementary
relaxation condition, the optimal Lagrange multiplier γi
must be zero. Therefore,

m∑
j=1

max (Ai,j − µi, 0) = θ. (9)

Alternatively, we obtain θ ≥
∑m
j=1Ai,j in which case µi =

0.

We note that given a constant θ > 0, the equation (9) is the
transformation from the classical `1-norm ball projection
problem (Liu & Ye, 2009; Gong et al., 2011; Condat, 2014).
However, `1,∞-norm ball projection problem is more diffi-
cult than the projection onto the `1-norm ball. In the latter
problem, not only θ is a user-specified constant but the equa-
tion (9) is just a univariate root-finding problem. In contrast,
a major difficulty that arises in solving the `1,∞ projection

problem stems from the fact that θ is an unknown Lagrange
multiplier. More importantly, there is also a d-dimension
variable µ that should satisfy the equality constraint in (7).

One straightforward approach is to build a univariate equa-
tion like the `1-norm ball projection problem. We consider
the i-th row of matrixA. It can be shown from the analysis
that every µi ∈ [0,maxj Ai,j] should satisfy the equation
(9) in which the multiplier θ ∈ [0,

∑m
j=1Ai,j]. In this case

we can derive the following closed-form expression for µi
which is denoted by µ̃i(θ):

µ̃i(θ) =

{∑
j∈I(µi)

Ai,j−θ
|I(µi)| , if 0 ≤ θ <

∑m
j=1Ai,j

0, if θ ≥
∑m
j=1Ai,j

(10)

where the index set

I(µi) = {j | Ai,j ≥ µi, j = 1, . . . ,m}

and |I(µi)| denotes the cardinality of the set I(µi).

We substitute µ̃i(θ) into the equality constraint of (7), and
then obtain a univariate equation for θ,

s(θ) = 0 (11)

where

s(θ) =

d∑
i=1

µ̃i(θ)− C. (12)

Evaluating the derivative of s(θ) with respect to θ, we get

s′(θ) = −
d∑
i=1

1

|I(µi)|
. (13)

Proposition 1 Let s(θ) be defined by (12). Then s(θ) is
convex, strictly monotonically decreasing with dm+1 break-
points at most, and the equation (11) has unique root on the
interval [0,maxi

∑m
j=1Ai,j].

The proof is given in the supplementary material. Figure 1
illustrates a toy example which builds upon a 2× 3 matrix
A. Hence, there are 7 breakpoints in the function s(θ).

Based on the root-finding idea, we can employ not only the
primary bisection method (Sra, 2011; 2012; Su et al., 2012)
but more sophisticated algorithms to solve the equation (12).
For instance, we can sort all the d(m+ 1) breakpoints in all
the nonsmooth functions µ̃i(θ) for i = 1, . . . , d (Quattoni
et al., 2009) or apply linear-time median-finding algorithm
(Duchi et al., 2008) to search the root for the univariate
equation about θ. Newton’s method (Cominetti et al., 2014;
Davis et al., 2016) can also be used to tackle the equation
(11) which is the main contribution of the recent work (Chau

Efficient Projections onto `1,∞-norm Ball

et al., 2019). It is well known that Newton’s method enjoys
fast convergence rate. However, we should note that each
Newton step relies on the accurate solution µi to (9). In
other words, we should solve d `1-norm ball projection
problems at each iteration which will severely hinder the
total performance of Newton’s method.

θ

C

µ̃1(θ)
µ̃2(θ)∑

i
µ̃i(θ)

Figure 1. Geometric interpretation of the functions µ̃1(θ), µ̃2(θ)
and their summation. The horizontal dashed line shows the bound
C and all the breakpoints are indicated as solid circles.

3. Semismooth Newton Method for `1,∞-norm
Ball Euclidean Projection

Before proposing our semismooth Newton method, we give
an overview of semismoothness. Semismoothness was first
introduced for functionals by Mifflin (1977). Qi & Sun
(1993) extended the definition to vector-value functions and
developed the semismooth Newton method to solve the non-
smooth equations. We note that the notion of semismooth-
ness is based on Clarke’s generalized Jacobian (Clarke,
1990). Important examples of semismooth functions in-
clude convex functions, smooth functions and piecewise
linear functions (Mifflin, 1977). For more details we refer
to the book (Izmailov & Solodov, 2014) and the survey (Qi
& Sun, 1999).

3.1. Semismooth Equations

Suppose the variable x = (µ1, µ2, . . . , µd, θ)
>. Combin-

ing the equations (9) and the equality constraint in (7), we
consider the system

F (x) = 0, (14)

where function F : Rd+1 → Rd+1 is defined by

F (x) =


∑
j max{A1,j − µ1, 0} − θ

...∑
j max{Ad,j − µd, 0} − θ
−µ1 − µ2 − . . .− µd + C

 .

Before attempting to find the solution of (14), it is important
to verify that each component Fi(x) of F (x) is convex.

Since the convex function is a special case of semismooth
function (Mifflin, 1977), we can conclude F (x) is semis-
mooth without elaborating on these mathematical concepts.
The semismoothness is the hallmark of the applicability of
semismooth Newton algorithm.

3.2. Semismooth Newton Method

To solve the semismooth equation (14), we design a semis-
mooth Newton algorithm by exploiting the underlying
second-order structure information. The key of our method
is to find the Newton direction. Specifically, for the current
iteration of x(t) we solve the following equation

J(x(t))v = −F (x(t)),

where J(x(t)) is an arbitrary element of the generalized
Jacobian of F (x(t)). Generally speaking, it is not always
straightforward to compute the element of the generalized
Jacobians. Fortunately, in our case the i-th row of J(x(t)) is
just a subgradient of Fi(x) at x(t) because each component
Fi(x) is convex (Clarke, 1990).

Assuming that the Jacobian J(x(t)) is nonsingular, the
semismooth Newton method iterates as

v(t) = −J−1(x(t))F (x(t)), (15)

x(t+1) = x(t) + v(t). (16)

Computing a subgradient of each row of F with respect to
µi and θ, we obtain the generalized Jacobian

J(x) =


−|I(µ1)| 0 . . . 0 −1

0 −|I(µ2)|
. . .

... −1
...

. 0
...

0 . . . 0 −|I(µd)| −1
−1 −1 . . . −1 0

 .

The main disadvantage of Newton’s method is the storage
cost of the Jacobian and the computational cost of Newton
step, which for large scale problems can be prohibitively
expensive. Fortunately, instead of calculating the inverse
of generalized Jacobian J directly, we can exploit the sym-
metric structure of sparse J to substantially reduce the cost.
The following lemma establishes the nonsingularity of the
generalized Jacobian J and the unique LU factorization of
J .

Lemma 1 Suppose µi ∈ [0,maxj Ai,j] for i = 1, 2, . . . , d.
Then the generalized Jacobian J is nonsingular. Further-
more, the LU factorization of J exits and is unique.

Proof: It is easy to verify that there exist a lower triangular
matrix L and an upper triangular matrix U such that

J = LU,

Efficient Projections onto `1,∞-norm Ball

where

L =


1 0 0 · · · 0
0 1 0 · · · 0
...

.
...

0 · · · 0 1 0
1

|I(µ1)|
1

|I(µ2)| · · ·
1

|I(µd)| 1


and

U =


−|I(µ1)| · · · 0 −1

0
. . . 0

...
... · · · −|I(µd)| −1

0 · · · 0
∑d
i=1

1
|I(µi)|

 .

On the other hand, since µi ∈ [0,maxj Ai,j], then
|I(µi)| ≥ 1 and the determinant of matrix J

det(J) = (−1)d
d∑
i=1

1

|I(µi)|

d∏
i=1

|I(µi)| 6= 0.

Thus, the Jacobian J is nonsingular which concludes that
the LU factorization is unique.

From the proof of Lemma 1, one can see that the semis-
mooth Newton iteration (15)-(16) is well-defined. Moreover,
once the Jacobian J has been factored into the product of L
and U , we can take advantage of these two sparse triangular
matrices to find the Newton step v via two steps, i.e.,

Lz = −F, Uv = z, (17)

where z ∈ Rd+1 is a temporary variable. First we solve the
lower triangular system by forward substitution to obtain

zi = −Fi, i = 1, . . . , d (18)

zd+1 = −Fd+1 −
d∑
i=1

zi
|I(µi)|

. (19)

Similarly, solve the upper triangular system by back substi-
tution to obtain the Newton step v as

vd+1 =
zd+1∑d

i=1 1/|I(µi)|
(20)

vi = −zi + vd+1

|I(µi)|
, i = 1, . . . , d. (21)

To compute the Newton step takes the linear time complexity
O(dm), which is much more efficient than directly calcu-
lating the inverse matrix in (15). We describe the proposed
semismooth Newton procedure in Algorithm 1.

It is worth noting that if θ ≥
∑
j Ai,j , we conclude µi = 0

which means that µi contributes nothing to s(θ). Thus the

Algorithm 1 Semismooth Newton Algorithm for `1,∞-
norm Ball Projection

1: Input: A ∈ Rd×m, C > 0, ε > 0, t = 0.
2: if ‖A‖1,∞ ≤ C then
3: W = A and return.
4: end if
5: Initialize θ(0) ∈ [0,maxi

∑m
j=1Ai,j] and compute µ(0)

i

to satisfy the equation (9).
6: repeat
7: Compute G = {i | θ(t) ≤

∑m
j=1Ai,j}.

8: Update I(µ
(t)
i) =

{
j | Ai,j ≥ µ(t)

i , i ∈ G
}

.

9: Compute F (x(t)) via (14).
10: Compute v(t) via (18)-(21).
11: Update x(t+1) = x(t) + v(t).
12: t = t+ 1.
13: until stopping criterion is satisfied, i.e., ‖v(t)‖ ≤ ε.
14: µ = max(µ, 0).
15: Wi,j = min(Ai,j , µi) for all i, j.
16: Output: W

i-th equation in (14) should be deleted and the row index
set G is reduced. The Jacobian J(x) will also be reduced
accordingly. In a practical implementation, the stopping
criterion can be checked after the Newton step is computed.

Although the semismooth Newton algorithm enjoys fast con-
vergence speed, if the initial estimate is too far from the root
of the equation (14), the generated sequence may converge
slowly or even diverge. In general, choosing a proper initial
guess relies on a shrewd insight into the underlying prob-
lem. From the equation (14) and Figure (1), while we can
randomly initialize θ(0) ∈ [0,maxi

∑
j Ai,j], µ

(0)
i should

satisfy the equation (9). A simple and effective strategy is
setting µ(0)

i = maxj Ai,j and θ(0) = 0.

3.3. Convergence Analysis

Using semismoothness and nonsingularity conditions, gen-
eralized Newton’s methods have been proved locally and
superlinearly convergent for solving systems of nonsmooth
equations (Qi & Sun, 1993). As F (x) in the system (14) is
a semismooth function, our algorithm enjoys the following
superlinear convergence rate.

Theorem 1 Suppose x∗ is the solution of (14), F :
Rd+1 → Rd+1 is locally Lipschitz continuous and semis-
mooth at x∗, and the Jacobian J(x) is nonsingular. Let
{xt} be the sequence generated by Algorithm 1. Then the
semismooth Newton iteration (15)-(16) is well-defined and
{xt} converges to the solution x∗ Q-superlinearly.

The proof is similar to that of Qi & Sun (1993, Th. 3.2) for
semismooth functions and is omitted here. In the next sec-

Efficient Projections onto `1,∞-norm Ball

tion, we will show that the equivalent variant of Algorithm
1 terminates after a finite number of iterations.

4. The Equivalent Variant of Algorithm 1
In order to better understand why our method is superior to
the existing Newton based method (Chau et al., 2019), we
need to further delve into Algorithm 1.

4.1. Equivalent Semismooth Newton Iteration

Proposition 2 Assume |I(µ
(t)
i)| ≥ 1 for i = 1, 2, . . . , d.

Then v(t)d+1 is the Newton step for s(θ) at θ(t).

The proof is given in the supplementary material. According
to the Proposition 2, we can see that the iteration of variable
θ follows the Newton iteration

θ(t+1) = θ(t) + v
(t)
d+1 = θ(t) − s(θ(t))

s′(θ(t))
. (22)

Now let us consider the update of variable µ in (16) via the
Newton step (21). It follows that

µ
(t+1)
i = µ

(t)
i + v

(t)
i , i = 1, . . . , d

= µ
(t)
i +

F
(t)
i

|I(µ
(t)
i)|

+
s(θ(t))

|I(µ
(t)
i)|s′(θ(t))

=

 ∑
j∈I(µ(t)

i)

Ai,j −
(
θ(t) − s(θ(t))

s′(θ(t))

)/|I(µ
(t)
i)|

=

∑
j∈I(µ(t)

i)
Ai,j − θ(t+1)

|I(µ
(t)
i)|

.

(23)

In fact from the derivation given above, one can see that
µ
(t)
i is updated after the Newton iteration of θ(t), which

is presented as Algorithm 2. The whole procedure can
give important insights into the Newton iteration (16) of
Algorithm 1. At step t, given θ(t) we first compute µ̃i(θ(t))
via (10). It follows from (22) that θ(t) is updated by the
Newton step.

Significantly different from the previous method (Chau et al.,
2019), Algorithm 2 updates the variable µi via (23) with
low cost at each step. More precisely, the former needs to
use an iterative algorithm to calculate each µi accurately to
satisfy the equation (9) with overall arithmetic complexity
O(m2), while the latter update of µi is essentially a one-step
computation with cost O(m) in the `1-norm ball projection
problem (9). There is no doubt that the iterative algorithm
for the accurate µi of (9) is less efficient than our update
strategy. This is the key reason why the acceleration effect
of Newton’s method declines when the data size increases in

Algorithm 2 The Equivalent Algorithm for `1,∞-norm Ball
Euclidean Projection

1: Input: A ∈ Rd×m, C > 0, ε > 0, t = 0.
2: if ‖A‖1,∞ ≤ C then
3: W = A and return.
4: end if
5: Initialize µ

(0)
i and θ(0), which satisfy∑m

j=1 max(Ai,j − µ(0)
i , 0) ≥ θ(0) and s(θ(0)) ≥ 0.

6: repeat
7: Compute G = {i | θ(t) ≤

∑m
j=1Ai,j}.

8: Update I(µ
(t)
i) =

{
j | Ai,j ≥ µ(t)

i , i ∈ G
}

.

9: Compute µ̃i(θ(t)) =

∑
j∈I(µ

(t)
i

)
Ai,j−θ(t)

|I(µ(t)
i)|

.

10: Update θ(t+1) = θ(t) − s(θ(t))
s′(θ(t))

.

11: Update µ(t+1)
i =

∑
j∈I(µ

(t)
i

)
Ai,j−θ(t+1)

|I(µ(t)
i)|

, i ∈ G.

12: t = t+ 1.
13: until stopping criterion is satisfied, i.e., s(θ(t)) ≤ ε.
14: µ = max(µ, 0).
15: Wi,j = min(Ai,j , µi) for all i, j.
16: Output: W

Chau et al. (2019). However, an important question follows:
why does our simple update work? We will conduct an
extensive proof in the next section.

4.2. Convergence Theorem in Finite Steps

Algorithm 2 tackles the `1,∞-norm ball projection as a uni-
variate equation problem s(θ) = 0. Hence we first pay
attention to the update of θ(t) and the following proposition
holds.

Proposition 3 Suppose θ(t) lies between two breakpoints,
i.e., θ(t) ∈ (Θ[j−1],Θ[j]]. Assume s(Θ[j]) > 0. There holds

θ(t) ≤ Θ[j] < θ(t+1).

All subsequent proofs except for Theorem 2 will be given
in the supplementary material.

Proposition 4 Assume µ(t)
i is updated via (23) for t ≥ 0.

Then we have
d∑
i=1

µ
(t+1)
i − C = 0.

Lemma 2 Assume that µ(t)
i ∈ [0,maxj Ai,j], θ

(t) ≥ 0
and the following two inequalities hold: (i)∑m
j=1 max

(
Ai,j − µ(t)

i , 0
)
≥ θ(t), (ii) s(θ(t)) ≥ 0,

Efficient Projections onto `1,∞-norm Ball

then it can be obtained that

m∑
j=1

max
(
Ai,j − µ(t+1)

i , 0
)
≥ θ(t+1).

According to the above Lemma 2, we can obtain the follow-
ing corollary.

Corollary 1 Assume that
∑m
j=1 max

(
Ai,j − µ(t)

i , 0
)
≥

θ(t). Then we can obtain

µ̃i(θ
(t)) ≥ µ(t)

i .

Building upon the above analysis of the equivalent Algo-
rithm 2, we give the following convergence result.

Theorem 2 Algorithm 2 converges to the root of equation
s(θ) = 0 in O(dm) steps at most.

Proof: We denote the breakpoint set by Θ =
{Θ1,Θ2, . . . ,Θdm+1}. Similarly, Θ[j] represents the j-th
small element of the set Θ.

From the assumption, we have the initialization θ(0) ∈
(Θ[j−1],Θ[j]] and s(θ(0)) > 0. If s(Θ[j]) ≤ 0, we will
find the root immediately. Otherwise, with Proposition 3 we
have

θ(0) ≤ Θ[j] < θ(1).

If we can prove s(θ(1)) > 0, it means that each iteration
will jump over one breakpoint at least. Thus, Algorithm
2 will terminate in O(dm) steps due to the fact that only
dm+ 1 breakpoints exist at most. Indeed,

s(θ(1)) =
∑
i

µ̃i(θ
(1))− C =

∑
i

µ̃i(θ
(1))− µ(1)

i ≥ 0.

The second equation comes from Proposition 4 and the last
inequality comes from Corollary 1.

In the iterative process of the algorithm, it is necessary to
ensure |I(µi)| ≥ 1 so that the problem is well-defined.
Indeed, it should be pointed out that one conclusion can be
implicitly obtained in the above proof that θ(t+1) ≥ θ(t).
According to the update formula (23), it can be shown that

µ
(t+1)
i =

∑
j∈Ii(µ(t)

i)
Ai,j − θ(t+1)

|I(µ
(t)
i)|

≤ |I(µ
(t)
i)|maxj Ai,j − θ(t+1)

|I(µ
(t)
i)|

≤ max
j
Ai,j .

Therefore, |I(µ
(t)
i)| ≥ 1 is always true during the iteration.

5. Experiments
In this section, we evaluate the proposed semismooth New-
ton algorithm (SNA) for computing projections onto the
`1,∞-norm ball. In particular, we first make the running
time comparison on synthetic data against the benchmark
and the state-of-the-art methods: the sorting-based method
(SBM)1 (Quattoni et al., 2009) and recent Newton-based
root-finding method (NRFM)2 (Chau et al., 2019). Then
we show a notable application to the multitask Lasso prob-
lem with `1,∞-norm constraint (MTLC) on real-world data.
Equipped with our proposed projection algorithm, the pro-
jected gradient descent method can solve the MTLC prob-
lem more efficiently. For the fairness of the experimental
comparison, all the algorithms are implemented in C lan-
guage with a MATLAB interface and run on 3.1-GHz Intel
Core i5 MacBook Pro with 16GB memory. The source
codes of SBM and NRFM are available on the authors’ web-
sites, and our implementation will be released publicly on
the github3 for reproducing the results.

5.1. Projection onto the `1,∞-norm Ball

We first study the relationship between the running time and
the bound parameter C in the problem (3). We randomly
generate a data matrixA ∈ R10,000×10,000 from the normal
distribution N (0, diag(1)), which means that there are 100
millions of non-zeros elements in matrix A. The optimal
W ∗ is computed via three different projection algorithms,
i.e., SBM, NRFM and our SNA. The bound parameter C
varies from 0.01‖A‖1,∞ to 0.5‖A‖1,∞ as listed in the left
column of Table 1. We choose the tolerance ε = 10−10

in SNA. Table 1 presents the average errors and running
times over 10 randomly generated tests. The errors are
measured by the constraint violation, i.e., |C − ‖W ∗‖1,∞|
for an optimal pointW ∗. The errors in Table 1 reveal that
SNA performs comparable to the state-of-the-art NRFM,
and both represent several orders of magnitude better than
SBM. The speedup with respect to SBM is shown for NRFM
and SNA respectively. It is demonstrated that the proposed
SNA always outperforms its counterparts in all scenarios
without sacrificing the accuracy.

We observe that the time cost does not vary very much
with respect to C for each method from Table 1. Thus,
in our next two comparisons we set C = 0.01‖A‖1,∞ to
investigate the scalability of the projection algorithms. We
first randomly generate a data matrix A ∈ Rd×m while
setting m = 103 and varying d ∈ {103, 5 × 103, 104, 5 ×
104, 105}. Similarly, we set d = 103 and varying m ∈

1https://www.lsi.upc.edu/˜aquattoni/
CodeToShare/L1InfProjection.tar.gz

2https://sites.google.com/a/pucp.edu.pe/
grchau/projects/l1inf

3https://github.com/djchu/projontol1inf

https://www.lsi.upc.edu/~aquattoni/CodeToShare/L1InfProjection.tar.gz
https://www.lsi.upc.edu/~aquattoni/CodeToShare/L1InfProjection.tar.gz
https://sites.google.com/a/pucp.edu.pe/grchau/projects/l1inf
https://sites.google.com/a/pucp.edu.pe/grchau/projects/l1inf
https://github.com/djchu/projontol1inf

Efficient Projections onto `1,∞-norm Ball

Table 1. Running times (s) and accuracy on a 10, 000× 10, 000 matrix A.

C
‖A‖1,∞

SBM (QUATTONI ET AL., 2009) NRFM (CHAU ET AL., 2019) PROPOSED SNA

ERROR TIME ERROR TIME SPEEDUP ERROR TIME SPEEDUP

0.01 1.058× 10−5 35.434 2.069× 10−11 10.337 3.428 1.478× 10−12 2.851 12.431
0.05 8.550× 10−6 35.060 2.069× 10−11 10.718 3.302 3.183× 10−12 3.536 9.915
0.1 6.406× 10−6 34.850 4.547× 10−12 10.999 3.169 1.182× 10−11 4.833 7.211
0.2 3.325× 10−6 33.876 1.273× 10−11 11.783 2.875 5.457× 10−11 5.489 6.171
0.3 1.543× 10−6 33.363 5.639× 10−11 12.310 2.710 3.820× 10−11 4.602 7.250
0.4 6.328× 10−7 32.950 1.819× 10−11 12.987 2.537 9.459× 10−11 3.751 8.784
0.5 2.267× 10−7 32.617 2.547× 10−11 13.705 2.380 6.548× 10−11 3.251 10.032

d

10
3

10
4

10
5

C
P

U
 T

im
e

 (
s
)

0

10

20

30

40

 Our SNA

 NRMF

 SBM

m

10
3

10
4

10
5

C
P

U
 T

im
e

 (
s
)

0

10

20

30

40

 Our SNA

 NRMF

 SBM

Figure 2. Time versus data dimensions and tasks. The left figure
displays the result for varying dimensions and fixed tasks m =
1000. The right figure displays the result for varying tasks and
fixed dimensions d = 1000.

{103, 5×103, 104, 5×104, 105} in the second test problem.
In both comparisons, the data entries are also sampled from
the normal distribution N (0, diag(1)).

The computational results are demonstrated in Figure 2. We
can observe from the left figure that with a fixed number
of m, the time cost of the three methods increases with the
number of dimensions d. Moreover, both recent NRFM and
our SNA run faster than the SBM, of which SNA performs
best. The situation is slightly different in the right figure
with a fixed number of data dimensions. Although the time
overhead of all the competitors increases as the number of
m increases, the efficiency advantage of NRFM is gradu-
ally decreasing compared to SBM, which is consistent with
our previous theoretical analysis. In contrast, the proposed
method performs quite stably and runs fastest.

5.2. Application to MTLC Model on Real-world
Dataset

The multitask Lasso problem aims to fit multiple regression
tasks jointly and encourage group-wise sparsity across re-
lated tasks via a sparsity promoting mixed-norm, such as the
`1,∞-norm (Liu et al., 2009a). In order to study the potential
of our proposed algorithm in machine learning, we apply
the PGA method to solve the multitask Lasso problem with
`1,∞-norm constraint, which can be cast as the following

optimization problem

min
W

L(W) =
1

2

n∑
i=1

‖yi −Xiw̃i‖22

s.t. ‖W ‖1,∞ ≤ C
(24)

whereXi ∈ Rni×d denotes the data matrix for the i-th task,
yi ∈ Rni×1 contains the associating responses, and w̃i is
the i-th column of parameter matrixW .

PGA method solves the constrained optimization problem
(24) via the iteration

W k+1 = P`1,∞ (W k − λk∇L(W k)) ,

where λk is the stepsize, and the operator P`1,∞ performs
projection onto the `1,∞-norm ball. In the experiment, we
apply the BB line search scheme (Barzilai & Borwein, 1988)
for the stepsize λk. The PGA process is terminated when
the stopping criteria ‖W k+1 −W k‖F ≤ 10−8 is satis-
fied before the maximum iteration number (set to 1000) is
reached.

Since our focus is evaluating the efficiency of the projection
algorithm from an optimization perspective, we report the
running time results of projection steps on a widely used
real-world dataset, i.e., School4. The School data is from
the Inner London Education Authority and it contains the
test scores of 15,362 students from 139 secondary schools.
Each student is a sample described by 27 features. In total,
we are given 139 tasks (schools) to predict the exam scores.

Table 2 reports the total running time of projection steps
with different bound parameters C which are listed in the
leftmost column. Initialized by the same W 0 = 0, both
NRFM and the proposed SNA outperform the sorting-based
method SBM. Compared with SBM, SNA speeds up faster
than NRFM except in the only case C = 0.01d. Meanwhile,
it can be shown that the speedup effect in Table 2 is not
as good as that in Table 1. This is mainly because the
dimensionality of the real-world dataset School is not high.
As shown in Figure 2, the higher the dimensionality of

4https://ttic.uchicago.edu/˜argyriou/code

https://ttic.uchicago.edu/~argyriou/code

Efficient Projections onto `1,∞-norm Ball

Table 2. Projection times (s) on dataset School.

C/d
SBM NRFM OUR SNA

TIME TIME SPEEDUP TIME SPEEDUP

0.01 0.017 0.002 8.755 0.002 7.688
0.05 0.459 0.116 3.944 0.053 8.717
0.1 0.442 0.137 3.224 0.057 7.724
0.5 0.434 0.172 2.528 0.065 6.712
1.0 0.389 0.172 2.199 0.067 5.617

the problem is, the more obvious the acceleration effect
becomes.

6. Conclusion
We proposed an efficient semismooth Newton algorithm for
projection onto `1,∞-norm ball and obtained an equivalent
variant by using LU decomposition to exploit the structural
information of the Jacobian matrix. The theoretical analysis
concludes that our algorithm not only converges after a finite
number of steps, but also enjoys the linear time iteration
cost. Experiments on both artificial data and real-world
dataset show that our method outperforms the state-of-the-
art solvers for the `1,∞-norm projection. Therefore, with
the fast convergence of the semismooth Newton method,
we are able to solve the challenging large scale `1,∞-norm
projection problem efficiently as the classical `1-norm.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their insightful comments. We also thank the authors
of the comparative methods for providing the code. This
research was supported by the NSFC Project (No. 61673179
and No. 61673394), the Fundamental Research Funds for
the Central Universities, Anhui Provincial Natural Science
Foundation (No. 1908085MF193) and Beijing Academy of
Artificial Intelligence (BAAI).

References
Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. Opti-

mization with sparsity-inducing penalties. Foundations
and Trends R© in Machine Learning, 4(1):1–106, 2012.

Barzilai, J. and Borwein, J. M. Two-point step size gradient
methods. IMA Journal of Numerical Analysis, 8(1):141–
148, 1988.

Bertsekas, D. P., Nedi, A., Ozdaglar, A. E., et al. Convex
Analysis and Optimization. Athena Scientific, 2003.

Chau, G., Wohlberg, B., and Rodriguez, P. Efficient projec-
tion onto the `∞,1 mixed-norm ball using a Newton root

search method. SIAM Journal on Imaging Sciences, 12
(1):604–623, 2019.

Clarke, F. H. Optimization and Nonsmooth Analysis. SIAM,
1990.

Cominetti, R., Mascarenhas, W. F., and Silva, P. J. A New-
ton’s method for the continuous quadratic knapsack prob-
lem. Mathematical Programming Computation, 6(2):
151–169, 2014.

Condat, L. Fast projection onto the simplex and the l1 ball.
Mathematical Programming Series A, 2014.

Davis, T. A., Hager, W. W., and Hungerford, J. T. An effi-
cient hybrid algorithm for the separable convex quadratic
knapsack problem. ACM Transactions on Mathematical
Software, 42(3):22, 2016.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T.
Efficient projections onto the l1-ball for learning in high
dimensions. In Proceedings of the 25th International
Conference on Machine Learning, pp. 272–279. ACM,
2008.

Gong, P., Gai, K., and Zhang, C. Efficient Euclidean pro-
jections via piecewise root finding and its application in
gradient projection. Neurocomputing, 74(17):2754–2766,
2011.

Hernández-Lobato, D., Hernández-Lobato, J. M., and
Ghahramani, Z. A probabilistic model for dirty multi-
task feature selection. In International Conference on
Machine Learning, pp. 1073–1082, 2015.

Huang, J., Zhang, T., et al. The benefit of group sparsity.
The Annals of Statistics, 38(4):1978–2004, 2010.

Izmailov, A. F. and Solodov, M. V. Newton-Type Methods
for Optimization and Variational Problems. Springer,
2014.

Jia, Y., Salzmann, M., and Darrell, T. Factorized latent
spaces with structured sparsity. In Advances in Neural
Information Processing Systems, pp. 982–990, 2010.

Kim, J., Monteiro, R. D., and Park, H. Group sparsity in
nonnegative matrix factorization. In Proceedings of the
2012 SIAM International Conference on Data Mining, pp.
851–862. SIAM, 2012.

Liu, H., Palatucci, M., and Zhang, J. Blockwise coordinate
descent procedures for the multi-task lasso, with applica-
tions to neural semantic basis discovery. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pp. 649–656. ACM, 2009a.

Efficient Projections onto `1,∞-norm Ball

Liu, H., Wasserman, L., and Lafferty, J. D. Nonparamet-
ric regression and classification with joint sparsity con-
straints. In Advances in Neural Information Processing
Systems, pp. 969–976, 2009b.

Liu, J. and Ye, J. Efficient Euclidean projections in linear
time. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 657–664. ACM,
2009.

Masaeli, M., Yan, Y., Cui, Y., Fung, G., and Dy, J. G. Con-
vex principal feature selection. In Proceedings of the
2010 SIAM International Conference on Data Mining, pp.
619–628. SIAM, 2010.

Mifflin, R. Semismooth and semiconvex functions in con-
strained optimization. SIAM Journal on Control and
Optimization, 15(6):959–972, 1977.

Qi, L. and Sun, D. A survey of some nonsmooth equa-
tions and smoothing Newton methods. In Progress in
Optimization, pp. 121–146. Springer, 1999.

Qi, L. and Sun, J. A nonsmooth version of Newton’s method.
Mathematical Programming, 58(1-3):353–367, 1993.

Quattoni, A., Carreras, X., Collins, M., and Darrell, T. An ef-
ficient projection for `1,∞ regularization. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pp. 857–864. ACM, 2009.

Rakotomamonjy, A. Sparse support vector infinite push.
In Proceedings of the 29th International Conference on
Machine Learning, pp. 339–346. Omnipress, 2012.

Rakotomamonjy, A., Flamary, R., Gasso, G., and Canu,
S. lp-lq penalty for sparse linear and sparse multiple
kernel multitask learning. IEEE Transactions on Neural
Networks, 22(8):1307–1320, 2011.

Roth, V. and Fischer, B. The group-lasso for generalized
linear models: uniqueness of solutions and efficient algo-
rithms. In Proceedings of the 25th International Confer-
ence on Machine Learning, pp. 848–855. ACM, 2008.

Sra, S. Fast projections onto l1,q-norm balls for grouped
feature selection. In Machine Learning and Knowledge
Discovery in Databases, pp. 305–317. Springer, 2011.

Sra, S. Fast projections onto mixed-norm balls with appli-
cations. Data Mining and Knowledge Discovery, 25(2):
358–377, 2012.

Su, H., Yu, W., and Li, F. Efficient Euclidean projections
onto the intersection of norm balls. In Proceedings of
the 29th International Conference on Machine Learning,
volume 1, pp. 433–440. International Machine Learning
Society., 2012.

Tibshirani, R., Wainwright, M., and Hastie, T. Statistical
Learning with Sparsity: the Lasso and Generalizations.
Chapman and Hall/CRC, 2015.

Turlach, B. A., Venables, W. N., and Wright, S. J. Simulta-
neous variable selection. Technometrics, 47(3):349–363,
2005.

Vogt, J. E. and Roth, V. The group-lasso: `1,∞ regulariza-
tion versus `1,2 regularization. In Goesele, M., Roth, S.,
Kuijper, A., Schiele, B., and Schindler, K. (eds.), Proceed-
ings of the 32nd DAGM Conference on Pattern Recog-
nition, pp. 252–261, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Xiang, S., Tong, X., and Ye, J. Efficient sparse group feature
selection via nonconvex optimization. In International
Conference on Machine Learning, pp. 284–292, 2013.

Yuan, M. and Lin, Y. Model selection and estimation in
regression with grouped variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68
(1):49–67, 2006.

Zhang, T., Ghanem, B., Liu, S., and Ahuja, N. Robust
visual tracking via structured multi-task sparse learning.
International Journal of Computer Vision, 101(2):367–
383, 2013.

