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1. Proof of Proposition 1

Proposition 1 Ler s(0) be defined by (12). Then s(0) is convex, strictly monotonically decreasing with dm + 1 breakpoints
at most, and the equation (11) has unique root on the interval [0, max; ZT:l A; jl.

Proof: All the breakpoints are given by (9), in which y; is 0 or equal to each element of the i-th row of data matrix A. Thus,
s(#) has dm + 1 breakpoints at most.

Meanwhile, it is clear that for all 4, fi;(¢) is convex, continuous and monotonically decreasing in [0, max; 37" | A; ;] with
respect to #, and strictly monotonically decreasing in [0, ZT:I A; ;1. Therefore, s(6) is convex and strictly monotonically
decreasing in [0, max; ) 7" | A; 5.

It is easily verified that 1; = max; A; ; given § = 0. Thus, we have s(0) > 0 from the assumption of the problem (4), and

8(0max) = —C < 0 where 0 = max; Z}”:l A; ;. According to the Intermediate Value Theorem, s(6) has unique root

on the interval [0, max; 37", Aj ;. [ ]
2. Proof of Proposition 2

Proposition 2 Assume |I(u§-t))\ >1fori=1,2,...,d. Then vffll is the Newton step for s(0) at ).

Proof: Substituting (19) into (20), we can rewrite the last element of v as
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Thus, ”5121 is the Newton step at 6(*) for the search direction of (11). u
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3. Proof of Proposition 3
Proposition 3 Suppose 01 lies between two breakpoints, i.e., 9 € (©rj-1], ©yj)]- Assume s(O;)) > 0. There holds

0 <oy < .

Proof: We focus on the right inequality while the left one is obvious. From the update of 6, we obtain
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If 5(©y;]) > 0, we have 5(0™) > 0 since s(0) is a strictly monotonically decreasing function. Meanwhile,
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4. Proof of Proposition 4

Proposition 4 Assume u( ) is updated via (23) for t > 0. Then we have
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Proof: From the update of (), we have
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which means
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5. Proof of Lemma 2

Lemma 2 Assume that ,ug ) € [0,max; A; ;], 6 > 0 and the following two inequalities hold:

(i) Zj | max ( 0) > 0, (ii) s()) > 0, then it can be obtained that

Zmax( SHU ) > g+

Proof: According to the inequality (i), we have
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Meanwhile, from the definition of Z (uz(-t)) and using
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6. Proof of Corollary 1

Corollary 1 Assume that 37" | max (Ai,j — D, O) > 0®). Then we can obtain
i (00) > p?.

Proof: From the definition of ji;(#(*)), we have
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The last inequality comes from the assumption which concludes the proof.



