
Online Continual Learning from Imbalanced Data

Aristotelis Chrysakis 1 Marie-Francine Moens 1

Abstract
A well-documented weakness of neural networks
is the fact that they suffer from catastrophic for­
getting when trained on data provided by a non-
stationary distribution. Recent work in the field
of continual learning attempts to understand and
overcome this issue. Unfortunately, the majority
of relevant work embraces the implicit assump­
tion that the distribution of observed data is per­
fectly balanced, despite the fact that, in the real
world, humans and animals learn from observa­
tions that are temporally correlated and severely
imbalanced. Motivated by this remark, we aim
to evaluate memory population methods that are
used in online continual learning, when dealing
with highly imbalanced and temporally correlated
streams of data. More importantly, we introduce a
new memory population approach, which we call
class-balancing reservoir sampling (CBRS). We
demonstrate that CBRS outperforms the state-of­
the-art memory population algorithms in a consid­
erably challenging learning setting, over a range
of different datasets, and for multiple architec­
tures.

1. Introduction
Over the past decade, deep neural networks have been used
to tackle an impressive range of problems. Such problems
vary from classifying (Krizhevsky et al., 2012) or gener­
ating images (Radford et al., 2015) to translating natural
language (Bahdanau et al., 2015) and outperforming hu­
mans at playing several board games (Silver et al., 2018).
The models utilized to solve the aforementioned tasks are
typically trained offline by performing multiple passes over
large amounts of previously collected (mostly labeled) data.

The accumulation of knowledge and experience by humans

1Department of Computer Science, KU Leuven, Leuven,
Belgium. Correspondence to: Aristotelis Chrysakis <aris­
totelis.chrysakis@kuleuven.be>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au­
thor(s).

is a vastly different story. Over our lives we perceive a
stream of temporally correlated, unlabeled observations, and
rarely revisit the same observation multiple times (Parisi
et al., 2019). Moreover, the learning and application of
new knowledge takes place concurrently, rather than in two
distinct stages, by interacting with our surrounding environ­
ment (Tani, 2016). Finally, humans learn to address a large
number of problems (i.e., visual understanding of our sur­
roundings, communication, use of our limbs etc.), instead
of only just one (Cangelosi & Schlesinger, 2015).

In general, neural networks perform poorly when trained on
a non-stationary distribution of data. Assuming a network
is being trained on a sequence of distinct tasks, sometimes
called a continuum, it learns the currently presented task
but fails to remember previously learned ones (Goodfellow
et al., 2014). This phenomenon is defined as catastrophic
forgetting (McCloskey & Cohen, 1989; French, 1999).

The field researching how to overcome catastrophic for­
getting is called continual learning (CL). Two distinct CL
settings have primarily been investigated (De Lange et al.,
2019). The first one, termed task-incremental CL, assumes
that each task of the continuum can be learned offline.
Specifically, the learner is given access to all the data from
the current task and can perform numerous passes over it.
Under the second CL setting, which is being referred to as
online CL, the learner is presented with a stream of tiny
batches of observations and cannot revisit previously seen
batches from the current or the previous tasks.

A majority of recent work has centered on the task-
incremental setting. In this work, however, we focus on
online CL, as it more closely resembles the way humans
and animals learn (Cangelosi & Schlesinger, 2015). In par­
ticular, we focus on replay-based online CL, under which a
small part of the incoming stream of observations are mem­
orized, so that they can be used to retrain the learner in the
future. Research in the field of neuroscience has shown that
replay is also present in living beings and is connected to the
process of memory consolidation (Girardeau et al., 2009;
Ego-Stengel & Wilson, 2010).

Our main motivation has been to emphasize a gap that exists
in CL research. Specifically, most of the benchmarks used
to evaluate CL approaches are perfectly balanced, both in
terms of the sizes of the different tasks, and in terms of the

mailto:totelis.chrysakis@kuleuven.be

Online Continual Learning from Imbalanced Data

classes that comprise each task. Consequently, the major­
ity of the proposed approaches assume either explicitly or
implicitly that the data used to train the model is perfectly
balanced. In contrast, a living being will experience major
imbalances in the experiences it acquires over its lifetime.

Here, we consider an online CL setting that contains sig­
nificant data imbalances and does not provide task identi­
fiers or boundaries. To tackle such settings, we propose
class-balancing reservoir sampling (CBRS), a novel mem­
ory population approach, which does not require any prior
knowledge about the incoming stream and does not make
any assumptions about its distribution. CBRS is designed
to be able to balance the stored data instances with respect
to their class labels, having made only one pass over the
stream. We compare CBRS to state-of-the-art memory pop­
ulation methods, over four different datasets, and two dif­
ferent neural network architectures. We demonstrate that it
consistently outperforms the state of the art (with relative
differences of up to more than 40%), while being equally
or more efficient computationally. We present a sizeable
amount of experimental results that support our claims.

1.1. Document Structure

In Section 2 we present the main techniques proposed in
this work — namely, the CBRS algorithm and the use of
weighted replay. In Section 3 we describe our experimental
work and discuss the corresponding results. In Section 4 we
review other work relevant to ours, and finally, in Section 5,
we offer our concluding remarks.

1.2. Notation

We use lower-case boldface characters to denote a vector
(e.g., v) and lower-case italic characters for scalars (e.g., s),
with the only exception being loss values, where the special
symbol L is used . Upper-case boldface characters signify a
matrix (e.g., M).

2. Methodology
2.1. Online Continual Learning

Online continual learning can be formally defined as learn­
ing from a lengthy stream of data that is produced by a non-
stationary distribution (Aljundi et al., 2019a). The stream
is generally modeled as a sequence of distinct tasks, each
of them containing instances from a specific set of classes
(Chaudhry et al., 2019a). The data distribution is typically
assumed to be stationary throughout each task (Aljundi
et al., 2019a). The stream provides the learner with data
instances (xt, yt) or small batches of them (Xt, y), where t

xt, yt are the input and label of the instance respectively,
and t refers to the current time-step. An incoming instance

or batch cannot be revisited once the next instance or batch
is received (Chaudhry et al., 2019a). A more informative
stream might also provide the learner with so-called task
boundaries, hinting that the current task has been completed
and the next one is about to start.

The learner is typically evaluated after the stream has been
received in its entirety. During the evaluation process, some
learners require task identifiers — that is, information that
communicates to them the task to which the instances to be
predicted belong, before they make their prediction (Lopez-
Paz & Ranzato, 2017). Having access to task identifiers
simplifies CL significantly (van de Ven & Tolias, 2019), but
is inconsistent with human learning.

In this work, we consider a minimal-prerequisite scenario,
where task identifiers and boundaries are not provided dur­
ing training and evaluation. Additionally, we assume the
absence of any prior knowledge regarding the incoming
stream (i.e., length, task composition etc.). Our motiva­
tion for making these choices is to constrain the learning
process so that it approximates the human aggregation of
experiences and knowledge.

2.2. Class-Balancing Reservoir Sampling

In this section we describe in detail the main contributions of
this work. We propose an algorithm called class-balancing
reservoir sampling (CBRS) that decides which data in­
stances of the input stream to store for future replay. In
essence, having read the stream in its entirety, the aim of
CBRS is to store an independent and identically distributed
(iid) sample from each class, and keep the classes as bal­
anced as possible. In other words, the algorithm preserves
the distribution of each class, while at the same time altering
the distribution of the stream so that class imbalances are
mitigated.

Let us first describe our notation. Given a memory of size
m, we will say that the memory is filled when all its m
storage units are occupied. When a certain class contains
the most instances among all the different classes present in
the memory, we will call it the largest. Two or more classes
can be the largest, if they are equal in size and also the most
numerous. Finally, we will call a class full if it currently is,
or has been in one of the previous time steps, the largest
class. Once a class becomes full, it remains so in the future.
Such classes are called full, because CBRS does not allow
them to grow in size.

As in the case of reservoir sampling (Vitter, 1985), the
CBRS sampling scheme can be split into two stages. During
the first stage, and as long as the memory is not filled, all
the incoming stream instances are getting stored in memory.
After the memory is filled, we move on to the second stage.

During this stage, when a stream instance (xi, yi) is re­

Online Continual Learning from Imbalanced Data

Algorithm 1 Class-Balancing Reservoir Sampling
1: input: stream: {(xi, yi)}n

i=1
2: for i = 1 to n do
3: if memory is not filled then
4: store (xi, yi)
5: else
6: if c ≡ yi is not a full class then
7: find all instances of the largest class
8: select from them an instance at random
9: overwrite the selected instance with (xi, yi)

10: else
11:	 mc ← number of currently stored instances of

class c ≡ yi
12:	 nc ← number of stream instances of class c ≡

yi encountered thus far
13:	 sample u ∼ Uniform(0, 1)
14:	 if u ≤ mc/nc then
15:	 pick a stored instance of class c ≡ yi at ran­

dom
16:	 replace it with (xi, yi)
17:	 else
18:	 ignore the instance (xi, yi)
19:	 end if
20: end if
21: end if
22: end for

ceived, the algorithm checks at first whether yi belongs to
a full class. If it does not, the received instance is stored
in the place of another instance that belongs to the largest
class. This is the component of CBRS that mitigates class
imbalances in memory. In the opposite case, the received
instance replaces a randomly selected stored instance of the
same class c with probability mc/nc, where mc is the num­
ber of instances of the class c currently stored in memory,
and nc the number of stream instances of class c that we
have encountered so far. We sketch the pseudocode for the
CBRS algorithm in Algorithm 1.

In Figure 1 we compare the memory distributions of CBRS
and two state-of-the-art memory population algorithms (Vit­
ter, 1985; Aljundi et al., 2019b)1. The input sequence is
an imbalanced stream of the first five (for illustrative pur­
poses) classes of the MNIST dataset (LeCun et al., 2010).
Evidently, the resulting distributions of stored instances un­
der reservoir sampling and GSS are significantly influenced
by the stream distribution. In contrast, CBRS stores all
instances of the two smallest classes (classes 0 and 2) and
balances the remaining three.

Storing a balanced subset of the input stream for future re­
play, represents a prior belief that all the observed classes are

1For more details on these two algorithms, see Subsection 3.1.

equally difficult and equally important to learn. This princi­
ple is applied because of the absence of any more specific
knowledge about the contents of the stream. Nonetheless, if
one possesses such knowledge, it is trivial to extend CBRS
to take it into account. We describe how in the supplemen­
tary material.

As we show in Section 3, CBRS exhibits superior perfor­
mance compared to the state of the art. At this point, how­
ever, we would like to highlight two important properties
that CBRS possesses. Assuming a stream that contains in­
stances of nc distinct classes, and a memory of size m, the
following two statements stand.2

First, if the stream contains a class with less than m/nc in­
stances, then all of these instances will be stored in memory
after the stream has been read in whole. This is a remark­
able attribute of CBRS, which guarantees that not even a
single instance of severely underrepresented classes will be
discarded. We can see this property illustrated in Figure 1.
The stream contains instances from nc = 5 classes, and the
memory size is size m = 1000. Thus, the two classes of the
stream that are composed by less than 200 instances (i.e.,
classes 0 and 2) are stored in their entirety by CBRS.

Second, the subset of the instances from each class that
are stored in memory is iid with respect to the instances
of the same class contained in the stream. This is another
important characteristic of CBRS, that is also present when
performing reservoir sampling. Since we cannot assume that
the instances of each class are presented in an iid manner
over time, it is desirable that we capture a representative
sample from each class in memory.

2.3. Weighted Random Replay

In some cases it is impossible to fully utilize the whole
capacity of the memory and keep it balanced at the same
time. This is well exemplified by Figure 1. Assuming a
memory of size m = 1000, and keeping in mind that the
smallest class of the stream contains 51 instances, one way
to keep the memory balanced would be to store 51 instances
from each class. In this case, however, only a quarter of the
memory would be utilized, which is very wasteful. Thus,
we could fill the entire memory using CBRS (as in Figure 1),
and try to mitigate the influence of the resulting imbalance
later.

A well-known and effective way to deal with such imbal­
ances is oversampling the minority classes (Branco et al.,
2016). In our case, we propose the use of a custom replay
sampling scheme, where the probability of replaying a cer­
tain stored instance is inversely proportional to the number
of stored instances of the same class. In other words, in­
stances of a smaller class will have a higher probability of

2We prove both statements in the supplementary material.

Online Continual Learning from Imbalanced Data

0 1 2 3 4
Class ID

191

6742

51
654

1909

Stream distribution

0 1 2 3 4
Class ID

20

694

5
73

207

Memory distribution (Reservoir)

0 1 2 3 4
Class ID

170

723

12 19
76

Memory distribution (GSS)

0 1 2 3 4
Class ID

191

253

51

252 253

Memory distribution (CBRS)

Figure 1. A simple illustration of three memory population methods when learning from an imbalanced stream. All methods employ
a memory of size m = 1000. We describe the figures from left to right. (i) An imbalanced stream containing instances from the first
five classes from MNIST. The resulting memory composition when using Reservoir Sampling (ii) and GSS-Greedy (iii) respectively.
Both methods are considerably affected by the distribution of the incoming stream. On the other hand, CBRS (iv) does not discard any
instances from the significantly underrepresented classes 0 and 2 and balances the remaining three.

getting replayed, in comparison to instances of a larger one.
We will call this scheme weighted replay, as opposed to
uniform replay, under which all stored instances are equally
likely to be replayed.

2.4. Putting it All Together

At this point, we describe a general replay-based online
CL training process (see Algorithm 2) that is a generaliza­
tion of previously proposed ones (Chaudhry et al., 2019b;
Aljundi et al., 2019a). During the learning process, the
model is trained both on the stream, and via replay of the
stored instances. The process we describe can be used with
any stream, classifier, loss function, memory population
algorithm, and replay sampling scheme.

In order to be able to adapt to changes in the stream and
at the same time prevent catastrophic forgetting, the model
updates are guided by a two-component loss. The first
component Ls is computed with respect to the currently
observed stream batch (Xt, y) of size b, and the second t

component Lr with respect to a batch (Xr, y), also of r

size b, that was sampled from memory to be replayed. In
our implementation, we use as a loss function the cross-
entropy between the model predictions and the true labels,
but any other differentiable loss could be used. The joint
loss is computed as the convex combination of the two loss
components

L = a × Ls + (1 − a) × Lr, (1)

where a ∈ [0, 1] controls the relative importance between
them. In practice, a represents a trade-off between quickly
adapting to temporal changes in the stream and safeguard­
ing currently possessed knowledge. Previous work either
treats the loss components as equally important (Chaudhry
et al., 2019b; Aljundi et al., 2019b), or decreases a with the
number of completed tasks (Shin et al., 2017; Li & Hoiem,
2017). In our setting, however, we are not provided with

Algorithm 2 Replay-Based Online Continual Learning
1: input: stream: {(xi, yi)}n

i=1
2: model: f(·)
3: loss function: £(·, ·)
4: batch size: b
5: steps per batch: nb

6: repeat
7: receive batch (Xt, y) of size b from stream t

8: nc ← number of classes encountered so far
9: a ← 1/nc

10: for nb steps do
11:	 predict outputs: ŷ = f(Xt)t
12:	 stream loss: Ls = £(ŷt, y)t
13:	 sample batch (Xr, y) of size b from memory r

14:	 predict outputs: ŷ = f(Xr)r
15:	 replay loss: Lr = £(ŷ , y)r r

16:	 joint loss: L = a × Ls + (1 − a) × Lr

17:	 update model f according to L
18: end for
19: for j = 1 to b do
20:	 (xt,j , yt,j) ≡ j-th instance of batch (Xt, y)t
21:	 decide whether to store (xt,j , yt,j) according to

the selected memory population algorithm
22: end for
23: until the stream has been read in full

task boundaries. We set a = 1/nc , where nc is the number
of distinct classes encountered so far, thus sidestepping the
issue of not having access to task information. As we show
in the supplementary material, considering the loss compo­
nents as equally important results in consistently inferior
performance.

Note that, although we cannot revisit previously seen
batches, we can perform multiple parameter updates on
the currently observed batch, as is common practice in on-
line CL (Chaudhry et al., 2019b). In practice, we find that

Online Continual Learning from Imbalanced Data

performing just one update per time-step might result in un­
derfitting the data. On the other hand, performing multiple
(nb) updates has an additional computational cost, but is
nevertheless beneficial in the sense that it allows for faster
adaptation to the non-stationary nature of the stream. Addi­
tionally, it permits us to perform multiple replay steps (with
a different batch of stored instances each time) for each
incoming stream batch, which in turn mitigates forgetting
more effectively.

Finally, the learner goes over the data instances contained
in the currently observed batch, one at a time, and decides
which ones to store, according to the selected memory pop­
ulation algorithm.

3. Experimental Work
In this section, we aim to compare CBRS to the state of the
art when it comes to memory population strategies under
online CL scenarios. We exclusively consider replay-based
training as it is the only one that is suitable to our setting.

3.1. Memory Population Approaches

At the time of writing, reservoir sampling (Vitter, 1985)
and gradient-space sampling (Aljundi et al., 2019b) are
considered the state-of-the-art approaches at populating the
memory during online CL. We refer to these methods as
RESERVOIR and GSS respectively.3

The memory population strategy that RESERVOIR follows
is split in two phases. During the first phase, which lasts
until the memory gets filled, all encountered data instances
are stored in empty memory spots. In the second phase,
which starts once the memory gets filled and continues from
then on, the currently observed data instance is stored with
probability m/n, where m is the size of the memory and
n is the number of data instances encountered so far. The
data instance is stored in a memory spot that is uniformly
selected, thus all currently stored instances are equally likely
to be overwritten. It can be proven that RESERVOIR is
equivalent to extracting an iid subset of size m from the
stream.

GSS attempts to greedily maximize the variance of the gradi­
ent directions of the samples contained in memory (Aljundi
et al., 2019b). To that end, it computes a score of similarity
between the incoming instance and some randomly sampled
stored instances. If the similarity score is small, the instance
is more likely to be stored, with instances that have a high
score being more likely to get overwritten in the process.

In addition to the aforementioned methods, we consider two
weaker baselines — one that trains a model exclusively on

3Of the two GSS alternatives proposed in Aljundi et al. (2019b),
we select the best-performing one, namely GSS-Greedy.

the stream without replaying stored memories, and another
that stores the current stream instance with 50% probability,
in the place of a randomly picked stored instance. We call
these methods NAIVE and RANDOM respectively.

3.2. Simulating Imbalances

In this subsection, we describe our approach to creating
imbalanced streams. For each class, we define its reten­
tion factor as the percentage of its instances in the original
dataset that will be present in the stream. We define a vector
r containing k retention factors as follows:

r = (r1, r2, · · · , rk) . (2)

We distribute the retention factors to each class at random
and without replacement, starting over if the number of
classes in the dataset is larger than k. In practice, we use

r = 10−2 , 10−1.5 , 10−1 , 10−0.5 , 100 (3)

for all of our experiments. Given this choice, the minimum
imbalance that can exist between two classes in a stream
is approximately three to one, while the maximum is 100
to one. The selection of these retention factors represents
a trade-off between simulating extreme imbalances and en­
suring adequate class representation. Specifically, we take
into account the fact that each class in CIFAR-100 (see Sub­
section 3.3) contains only 500 instances. Consequently, this
selection of r ensures that at least five instances from each
class will be present in the resulting stream, while allowing
for imbalances of up to two orders of magnitude.

The retention factors for each class are selected at random
in every run, and thus each run is performed using a stream
with different imbalances. We want to stress, however, that
in each experiment, all memory population methods are
compared on exactly the same group of imbalanced streams.
We do not discard other sources of stochasticity such as the
random initialization of a model or the replay sampling.

3.3. Benchmarks

Datasets Following Aljundi et al. (2019b), we select
MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky,
2012) for our experiments. In addition, we use Fashion-
MNIST (Xiao et al., 2017) and CIFAR-100 (Krizhevsky,
2012). All four of the datasets used in this work are freely
available online. We evaluate each method on the standard
test set of each selected dataset.

We opt for using one class per task, with the classes being
presented in increasing order. This way, the continuum is
more difficult to learn since it is split in more distinct tasks.
When allowing for two or more classes to be present and iid
in each task, as is usually the case in the relevant research
(Chaudhry et al., 2019b; Aljundi et al., 2019b), the stream

Online Continual Learning from Imbalanced Data

remains stationary for longer periods of time steps, and is
thus easier to learn.

All datasets are used as split benchmarks — that is to say,
the learner is first presented with the instances of the first
class, then with the ones of the second, and so on. We
found the influence of the class ordering on the results to
be negligible.4 We intentionally refrain from using the
permuted MNIST benchmark (Goodfellow et al., 2014),
due to the criticism it has received in Farquhar & Gal (2018)
for being too simple and unrealistic for CL.

Models Our choices here are largely influenced by previ­
ous work (Chaudhry et al., 2019b; Lopez-Paz & Ranzato,
2017). For MNIST & Fashion-MNIST, we train a multi­
layer perceptron (MLP) consisting of two hidden layers with
250 neurons and ReLU activations. Since we need a model
with greater modeling capacity for CIFAR-10 and CIFAR­
100, we pick a ResNet-18 (He et al., 2016) pre-trained on
ImageNet (Deng et al., 2009).

Hyperparameters We use a learning rate of 0.05 when
training the MLP and 0.01 when training the ResNet-18.
Both were selected via grid search in the range [0.1, 0.001].
Following Aljundi et al. (2019b); Chaudhry et al. (2019b),
we set the batch size at b = 10, abiding by the assumption
that batches provided by the stream should be relatively
small, and we perform nb = 5 update steps per incoming
batch, as it is a good trade-off between minimizing the
training time and maximizing the predictive performance.

3.4. Comparison of Memory Population Methods

Here, we compare the five selected methods (NAIVE, RAN­
DOM, RESERVOIR, GSS and CBRS) over the four selected
datasets. Complying with previous work (Aljundi et al.,
2019b), we set the memory size at m = 500 for MNIST
and Fashion-MNIST, while for the more difficult CIFAR-10
and CIFAR-100, we set it at m = 1000. We report the 95%
confidence interval of the test set accuracy (over ten runs) of
each model, after having been trained with the correspond­
ing memory population algorithm. The relevant results are
presented in Table 1.

We observe that CBRS outperforms the other four ap­
proaches in all four datasets by significant margins. Es­
pecially in the case of CIFAR-100 — where some classes
are represented only by a single-digit number of instances in
the stream — the relative gap over the second-best method
is more than 40%. As expected, we notice that the weaker
baselines (i.e., NAIVE and RANDOM) are significantly out­
performed by the other three approaches.

In all experiments excluding the ablation, all replay methods

4For more details see the supplementary material.

Table 1. Comparison of the five learning methods over four dif­
ferent benchmarks. For MNIST and Fashion-MNIST we set the
memory size at m = 500, while for the two CIFAR- datasets we
set it at m = 1000. All methods use weighted replay so that they
can be compared on equal terms. We report the 95% confidence
interval of the accuracy on the test set after the training is complete.
Each experiment is repeated for ten different streams.

METHODS MNIST F-MNIST CIFAR-10 CIFAR-100

NAIVE 10.1 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 1.0 ± 0.0

RANDOM 37.8 ± 5.6 38.9 ± 6.7 52.1 ± 3.8 25.8 ± 1.0

RESERVOIR 67.9 ± 3.0 64.1 ± 1.8 54.7 ± 2.2 28.1 ± 1.2

GSS 74.2 ± 3.4 64.9 ± 3.1 63.3 ± 2.3 23.0 ± 1.1

CBRS 83.3 ± 2.5 75.0 ± 2.5 73.4 ± 2.2 40.2 ± 1.0

Table 2. Comparison of the four memory population methods on
Fashion-MNIST for various memory sizes. All methods use
weighted replay so that they can be compared on equal terms.
We report the 95% confidence interval of the accuracy on the test
set after the training is complete. Each experiment is repeated for
ten different streams.

MEMORY SIZE m

METHODS m = 100 m = 500 m = 1000 m = 5000

RANDOM 21.7 ± 4.2 38.7 ± 5.6 57.6 ± 5.1 76.1 ± 1.3

RESERVOIR 53.7 ± 3.0 64.3 ± 2.8 68.2 ± 2.0 75.2 ± 1.9

GSS 59.5 ± 3.6 65.0 ± 3.8 65.1 ± 3.9 70.7 ± 3.2

CBRS 66.5 ± 1.5 75.8 ± 2.0 76.7 ± 2.4 77.1 ± 1.8

use weighted replay. By setting up the experiments in this
manner, we isolate the difference in performance between
the different memory population schemes. In Subsection 3.6,
we perform an ablation study that probes the use of the two
different types of replay.

3.5. Varying the Memory Size

The goal of this experiment is to survey the impact of mem­
ory size in the final learning performance. We evaluate the
four methods that use a memory (i.e., all except for NAIVE)
over four different memory sizes, ranging from very small
(i.e., m = 100) to very large (i.e., m = 5000). Since we are
using only one dataset in this experiment, we opt for one of
moderate difficulty, namely Fashion-MNIST. For the same
reason mentioned in the previous subsection, all methods
use weighted replay. We present the results in Table 2.

The results are consistent across all memory sizes. CBRS
outperforms all other methods in every case, with the rel­
ative performance improvement being more tangible for
smaller memory sizes.

Online Continual Learning from Imbalanced Data

Table 3. Ablation study. We want to isolate the performance boost that CBRS provides both with and without weighted replay. We present
results on two different datasets (MNIST and CIFAR-10) and for two different memory sizes (m = 1000 and m = 5000). We report the
95% confidence interval of the accuracy on the test set after the training is complete. Each experiment is repeated for ten different streams.

m = 1000 m = 5000

MNIST CIFAR-10 MNIST CIFAR-10

METHODS UNIFORM WEIGHTED UNIFORM WEIGHTED UNIFORM WEIGHTED UNIFORM WEIGHTED

RESERVOIR 71.3 ± 2.0 76.3 ± 2.8 54.2 ± 2.1 56.7 ± 1.4 77.9 ± 4.3 86.3 ± 1.8 68.7 ± 4.3 73.1 ± 1.7

GSS 75.4 ± 2.6 77.9 ± 2.3 62.9 ± 2.2 62.8 ± 2.1 76.6 ± 4.8 84.2 ± 1.9 68.5 ± 4.1 71.8 ± 2.0

CBRS 86.0 ± 2.6 86.1 ± 2.6 74.4 ± 2.5 73.7 ± 2.6 85.6 ± 2.8 90.3 ± 1.3 76.8 ± 2.3 78.3 ± 1.9

Table 4. Comparison of the four memory population methods with respect to their computational efficiency. With regard to time complexity,
we report the 95% confidence interval of the wall-clock time per incoming batch in milliseconds over ten runs. With regard to memory
overhead, we report the relative increase in storage space, compared to storing only the selected data instances, that each method results in.
For more details on the contents of this table see Subsection 3.7.

WALL CLOCK TIME MEMORY OVERHEAD

METHODS MNIST F-MNIST CIFAR-10 CIFAR-100 MNIST F-MNIST CIFAR-10 CIFAR-100

RANDOM

RESERVOIR

GSS
CBRS

20.0 ± 0.5

19.8 ± 0.5

295.9 ± 18.

19.3 ± 0.2

19.3 ± 1.1

17.7 ± 0.7

316.3 ± 11.

20.4 ± 1.0

363.4 ± 6.4

367.6 ± 4.6

3671.1 ± 46.

364.9 ± 5.8

357.6 ± 4.8

358.7 ± 4.8

3647.8 ± 27.

357.9 ± 5.1

0.00%

0.00%

827.19%

0.13%

0.00%

0.00%

827.19%

0.13%

0.00%

0.00%

3639.86%

0.03%

0.00%

0.00%

3639.86%

0.03%

3.6. Ablation Study

At this point, we would like to isolate the influence of
using CBRS in the place of another strong baseline (i.e.,
RESERVOIR or GSS), from that of using weighted instead
of uniform replay. We select an easier dataset (MNIST)
and a harder one (CIFAR-10), and measure the accuracy
of the trained classifier for all combinations of the three se­
lected memory population methods (i.e., RESERVOIR, GSS,
CBRS), two memory sizes (m = 1000 and m = 5000),
and the use of either uniform or weighted replay. Each com­
bination is repeated ten times and the results are presented
in Table 3.

There are three points we would like to emphasize here.
First, we note that the relative performance gaps between
CBRS and the other two methods are higher when using uni­
form replay. When the memory is populated using RESER­
VOIR or GSS — two methods that are significantly influ­
enced by the imbalanced distribution of the stream — the
probabilities of replaying instances of different classes are
very disparate. These disparities, in turn, cause the learner
to be able to classify instances of some classes much better
than others, and thus deteriorates its accuracy on the test set,
where all the classes are more or less balanced.

Second, we observe that using weighted replay is almost
always beneficial, compared to using uniform replay. This
observation follows naturally from what we described in
the previous paragraph. In short, the use of weighted replay

partially masks the effects of the imbalanced memory by
oversampling the underrepresented classes.

Finally, we notice that when using uniform replay, one of
the CBRS entries in Table 3 are worse for m = 5000 than
they are for m = 1000. This abnormality can be intuitively
understood by realizing that for the same stream, a mem­
ory with higher storage capacity will end up being more
imbalanced. In Figure 1 for instance, CBRS would keep
the memory perfectly balanced if its size was m = 255, but
since it actually is m = 1000, it cannot.

3.7. Computational Efficiency

An important characteristic of any online CL approach is its
computational efficiency. Keeping that in mind, we contrast
the time and memory complexity of the four selected replay
methods (RANDOM, RESERVOIR, GSS and CBRS).

All experiments are run on an NVIDIA TITAN Xp. For
the implementation of GSS, we followed the pseudocode in
Aljundi et al. (2019b), while CBRS, RANDOM and RESER­
VOIR were optimized to the best of our knowledge. The
experimental setup is identical to that of Subsection 3.4. All
relevant results are presented in Table 4.

Timing the memory population methods is relatively simple.
We repeat the learning process for all replay-based methods
over ten different streams, and report the 95% confidence
interval of the elapsed time per incoming batch in millisec­

Online Continual Learning from Imbalanced Data

onds. We observe that RANDOM, RESERVOIR and CBRS
require roughly the same amount of time. In contrast, GSS
is about an order of magnitude more time-consuming than
the other three methods. By profiling GSS, we found that its
main bottleneck is the additional computation of gradients
that are involved in the calculation of the similarity score
for each incoming instance.

Quantifying the memory overhead is slightly more complex.
First of all, the number we report is a memory overhead
factor. We define this factor as the additional storage space
required by each memory population method, divided by
the space that the m stored instances occupy. RANDOM and
RESERVOIR require no additional storage space, hence their
memory overhead factor is zero in every case. GSS requires
an additional storage space for 10 gradient vectors, with
each of them containing approximately 3.2 × 105 for the
MLP, and 1.1 × 107 for the ResNet-18, 32-bit floating-point
numbers. In order for CBRS to be time-efficient, it utilizes
a data structure that keeps track of which memory locations
correspond to each class, and thus requires an additional
storage space equivalent to m 32-bit integers in every case.
Therefore, it has a meager 0.13% (MNIST and Fashion-
MNIST) and 0.03% (CIFAR-10 and CIFAR-100) memory
overhead. Conversely, the additional memory requirements
of GSS are equivalent to having an eight (for MNIST and
Fashion-MNIST) and 36 (for CIFAR-10 and CIFAR-100)
times larger memory, than the one it actually uses for the
stored instances.

3.8. Discussion

In this subsection, we attempt to interpret our results quali­
tatively. As we showed experimentally, CBRS outperforms
RESERVOIR and GSS in terms of their predictive accuracy
during evaluation. This performance gap can be explained
in two steps.

First, a more balanced memory translates into all classes be­
ing replayed more or less with the same frequency, and thus
not being forgotten. In the opposite case, if a certain class is
severely underrepresented in memory it will not be replayed
as often, and will thus be more prone to being forgotten.
This claim is indirectly exemplified in Table 3, where CBRS
is the method that has the least relative increase in accuracy
when switching from uniform to weighted replay, since it
stores a more balanced subset of the data instances provided
by the imbalanced stream.

Second, and more importantly, RESERVOIR and GSS are
biased by the imbalanced distribution of the stream and fail
to store an adequate number of data instances from highly
underrepresented classes, as is demonstrated in Figure 1.
As a consequence, these classes are largely forgotten come
evaluation time. In contrast, CBRS is guaranteed to store all
data instances from significantly underrepresented classes,

and thus, is in the best possible position to not forget them
in the future. As evidence of this statement, we again refer
to Table 3. We observe that even when using weighted
replay, CBRS still has a higher accuracy than the other
replay methods in all examined cases, as it stores enough
instances in order to be able to better remember even the
most severely underrepresented classes of the stream.

4. Related Work
There are three main CL paradigms in the relevant research.
The first one, called regularization-based CL, applies one or
more additional loss terms when learning a task, to ensure
previously acquired knowledge is not forgotten. Methods
that follow this paradigm are, for instance, learning without
forgetting (Li & Hoiem, 2017), synaptic intelligence (Zenke
et al., 2017) and elastic weight consolidation (Kirkpatrick
et al., 2017).

Approaches following the parameter isolation paradigm
sidestep catastrophic forgetting by allocating non-
overlapping sets of model parameters to each task, with
relevant examples being the work of Serrà et al. (2018) and
Mallya & Lazebnik (2018). Most of such methods require
task identifiers during training and prediction time.

Replay-based methods are another major CL paradigm.
These methods replay previously observed data instances
during future learning in order to mitigate catastrophic for­
getting. The replay can take place either directly, via storing
a small subset of the observed data (Isele & Cosgun, 2018),
or indirectly, with the aid of generative models (Shin et al.,
2017).

The majority of research pertinent to CL focuses on the
task-incremental setting, with some approaches (von Os­
wald et al., 2020; Shin et al., 2017; Rebuffi et al., 2016)
achieving strong predictive performance and at the same
time minimizing forgetting.

In contrast, the more challenging online CL setting has
not been explored as much. Relevant approaches store a
small subset of the observed instances, which are then ex­
ploited either via replay (Chaudhry et al., 2019b; Aljundi
et al., 2019a;b), or by regularizing the training process using
data-dependent constraints (Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2019a). The latter approach is not applica­
ble to our learning setting since it requires task identifiers
both at training and at evaluation time. Therefore, replay-
based methods are the only ones that can be practically
applied to the minimal-assumption learning setting that we
adopt in this work.

Reservoir sampling (Vitter, 1985) extracts an iid subset of
the observations it receives, and was, until recently, con­
sidered to be the state-of-the-art in selecting which data

Online Continual Learning from Imbalanced Data

instances to store during online continual learning (Isele
& Cosgun, 2018; Chaudhry et al., 2019b). Aljundi et al.
(2019b) introduced two approaches (i.e., GSS-IQP and GSS-
Greedy) that try to maximize the variance of the stored
memories with respect to the gradient direction of the
model update they would generate. GSS-IQP utilizes inte­
ger quadratic programming, while GSS-Greedy is a more
efficient heuristic approach that actually outperforms GSS­
IQP. Additionally, Aljundi et al. (2019b) demonstrate that
both their proposed algorithms achieve higher accuracy than
reservoir sampling when learning moderately imbalanced
streams of MNIST (LeCun et al., 2010) digits with two
classes per task.

5. Conclusion
In this work, we examined the issue of online continual
learning from severely imbalanced, temporally correlated
streams. Moreover, we proposed CBRS — an efficient mem­
ory population approach that outperforms the current state
of the art in such learning settings. We provided an inter­
pretation for the performance gap between CBRS and the
current state of the art, accompanied by supportive empiri­
cal evidence. Specifically, we argued that underrepresented
classes in memory tend to be forgotten more quickly, partly
because they are not replayed as often as more sizeable
classes, and also because of the scarcity of their correspond­
ing stored instances. Further improvements in replay-based
CL methods could be possible, if memory population meth­
ods are able to infer which classes are more challenging to
learn and store their instances preferentially.

Acknowledgements
We would like to thank Ivan Vulić and Pieter Delobelle for
providing valuable feedback on this work. In addition, we
want to thank the anonymous reviewers for their comments.
This work is part of the CALCULUS5 project, which is
funded by the ERC Advanced Grant H2020-ERC-2017­
ADG 788506.

References
Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Cac­

cia, M., Lin, M., and Page-Caccia, L. Online continual
learning with maximal interfered retrieval. In Advances
in Neural Information Processing Systems 32, pp. 11849–
11860. 2019a.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradient
based sample selection for online continual learning. In
Advances in Neural Information Processing Systems 32,
pp. 11816–11825. 2019b.

5http://calculus-project.eu

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
3rd International Conference on Learning Representa­
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Branco, P., Torgo, L., and Ribeiro, R. P. A survey of pre­
dictive modeling on imbalanced domains. ACM Comput.
Surv., 49(2), August 2016.

Cangelosi, A. and Schlesinger, M. Developmental Robotics:
From Babies to Robots. MIT Press, 2015.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-GEM. In Interna­
tional Conference on Learning Representations, 2019a.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H., and Ranzato, M. Continual
learning with tiny episodic memories. arXiv preprint
arXiv:1902.10486, 2019, 2019b.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T.
Continual learning: A comparative study on how to
defy forgetting in classification tasks. arXiv preprint
arXiv:1909.08383v1, 2019.

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009.

Ego-Stengel, V. and Wilson, M. A. Disruption of ripple-
associated hippocampal activity during rest impairs spa­
tial learning in the rat. Hippocampus, 20(1):1–10, 2010.

Farquhar, S. and Gal, Y. Towards Robust Evaluations of
Continual Learning. In Lifelong Learning: A Reinforce­
ment Learning Approach workshop, ICML, 2018.

French, R. M. Catastrophic forgetting in connectionist net­
works. Trends in Cognitive Sciences, 3(4):128 – 135,
1999.

Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G.,
and Zugaro, M. B. Selective suppression of hippocampal
ripples impairs spatial memory. Nature Neuroscience, 12
(10):1222, 2009.

Goodfellow, I. J., Mirza, M., Da, X., Courville, A. C., and
Bengio, Y. An empirical investigation of catastrophic
forgeting in gradient-based neural networks. CoRR,
abs/1312.6211, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

http://calculus-project.eu

Online Continual Learning from Imbalanced Data

Isele, D. and Cosgun, A. Selective experience replay for
lifelong learning. In Thirty-second AAAI conference on
artificial intelligence, 2018.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des­
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the Na­
tional Academy of Sciences, 114(13):3521–3526, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto, 05 2012.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
25, pp. 1097–1105. 2012.

LeCun, Y., Cortes, C., and Burges, C. MNIST handwritten
digit database. Yann LeCun’s Website, 2010. URL http:
//yann.lecun.com/exdb/mnist/.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelli­
gence, 40(12):2935–2947, 2017.

Lopez-Paz, D. and Ranzato, M. Imagenet classification with
deep convolutional neural networks. In Advances in Neu­
ral Information Processing Systems 30, pp. 6467–6476.
2017.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks
to a single network by iterative pruning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7765–7773, 2018.

McCloskey, M. and Cohen, N. J. Catastrophic interference
in connectionist networks: The sequential learning prob­
lem. In Psychology of Learning and Motivation; Volume
24, pp. 109 – 165. 1989.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 2019.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep­
resentation learning with deep convolutional generative
adversarial networks. CoRR, abs/1511.06434, 2015.

Rebuffi, S.-A., Kolesnikov, A. I., Sperl, G., and Lampert,
C. H. icarl: Incremental classifier and representation
learning. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533–5542, 2016.

Serrà, J., Suris, D., Miron, M., and Karatzoglou, A. Over­
coming catastrophic forgetting with hard attention to the
task. arXiv preprint arXiv:1801.01423, 2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. In Advances in Neural Infor­
mation Processing Systems 30, pp. 2990–2999. 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae­
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A
general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362
(6419):1140–1144, 2018.

Tani, J. Exploring Robotic Minds: Actions, Symbols, and
Consciousness as Self-Organizing Dynamic Phenomena.
Oxford University Press, 2016.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Vitter, J. S. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1):37–57, March 1985.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. In Interna­
tional Conference on Learning Representations, 2020.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 3987–3995, 2017.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

