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Abstract 
A well-documented weakness of neural networks 
is the fact that they suffer from catastrophic for­
getting when trained on data provided by a non-
stationary distribution. Recent work in the field 
of continual learning attempts to understand and 
overcome this issue. Unfortunately, the majority 
of relevant work embraces the implicit assump­
tion that the distribution of observed data is per­
fectly balanced, despite the fact that, in the real 
world, humans and animals learn from observa­
tions that are temporally correlated and severely 
imbalanced. Motivated by this remark, we aim 
to evaluate memory population methods that are 
used in online continual learning, when dealing 
with highly imbalanced and temporally correlated 
streams of data. More importantly, we introduce a 
new memory population approach, which we call 
class-balancing reservoir sampling (CBRS). We 
demonstrate that CBRS outperforms the state-of­
the-art memory population algorithms in a consid­
erably challenging learning setting, over a range 
of different datasets, and for multiple architec­
tures. 

1. Introduction 
Over the past decade, deep neural networks have been used 
to tackle an impressive range of problems. Such problems 
vary from classifying (Krizhevsky et al., 2012) or gener­
ating images (Radford et al., 2015) to translating natural 
language (Bahdanau et al., 2015) and outperforming hu­
mans at playing several board games (Silver et al., 2018). 
The models utilized to solve the aforementioned tasks are 
typically trained offline by performing multiple passes over 
large amounts of previously collected (mostly labeled) data. 

The accumulation of knowledge and experience by humans 
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is a vastly different story. Over our lives we perceive a 
stream of temporally correlated, unlabeled observations, and 
rarely revisit the same observation multiple times (Parisi 
et al., 2019). Moreover, the learning and application of 
new knowledge takes place concurrently, rather than in two 
distinct stages, by interacting with our surrounding environ­
ment (Tani, 2016). Finally, humans learn to address a large 
number of problems (i.e., visual understanding of our sur­
roundings, communication, use of our limbs etc.), instead 
of only just one (Cangelosi & Schlesinger, 2015). 

In general, neural networks perform poorly when trained on 
a non-stationary distribution of data. Assuming a network 
is being trained on a sequence of distinct tasks, sometimes 
called a continuum, it learns the currently presented task 
but fails to remember previously learned ones (Goodfellow 
et al., 2014). This phenomenon is defined as catastrophic 
forgetting (McCloskey & Cohen, 1989; French, 1999). 

The field researching how to overcome catastrophic for­
getting is called continual learning (CL). Two distinct CL 
settings have primarily been investigated (De Lange et al., 
2019). The first one, termed task-incremental CL, assumes 
that each task of the continuum can be learned offline. 
Specifically, the learner is given access to all the data from 
the current task and can perform numerous passes over it. 
Under the second CL setting, which is being referred to as 
online CL, the learner is presented with a stream of tiny 
batches of observations and cannot revisit previously seen 
batches from the current or the previous tasks. 

A majority of recent work has centered on the task-
incremental setting. In this work, however, we focus on 
online CL, as it more closely resembles the way humans 
and animals learn (Cangelosi & Schlesinger, 2015). In par­
ticular, we focus on replay-based online CL, under which a 
small part of the incoming stream of observations are mem­
orized, so that they can be used to retrain the learner in the 
future. Research in the field of neuroscience has shown that 
replay is also present in living beings and is connected to the 
process of memory consolidation (Girardeau et al., 2009; 
Ego-Stengel & Wilson, 2010). 

Our main motivation has been to emphasize a gap that exists 
in CL research. Specifically, most of the benchmarks used 
to evaluate CL approaches are perfectly balanced, both in 
terms of the sizes of the different tasks, and in terms of the 
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classes that comprise each task. Consequently, the major­
ity of the proposed approaches assume either explicitly or 
implicitly that the data used to train the model is perfectly 
balanced. In contrast, a living being will experience major 
imbalances in the experiences it acquires over its lifetime. 

Here, we consider an online CL setting that contains sig­
nificant data imbalances and does not provide task identi­
fiers or boundaries. To tackle such settings, we propose 
class-balancing reservoir sampling (CBRS), a novel mem­
ory population approach, which does not require any prior 
knowledge about the incoming stream and does not make 
any assumptions about its distribution. CBRS is designed 
to be able to balance the stored data instances with respect 
to their class labels, having made only one pass over the 
stream. We compare CBRS to state-of-the-art memory pop­
ulation methods, over four different datasets, and two dif­
ferent neural network architectures. We demonstrate that it 
consistently outperforms the state of the art (with relative 
differences of up to more than 40%), while being equally 
or more efficient computationally. We present a sizeable 
amount of experimental results that support our claims. 

1.1. Document Structure 

In Section 2 we present the main techniques proposed in 
this work — namely, the CBRS algorithm and the use of 
weighted replay. In Section 3 we describe our experimental 
work and discuss the corresponding results. In Section 4 we 
review other work relevant to ours, and finally, in Section 5, 
we offer our concluding remarks. 

1.2. Notation 

We use lower-case boldface characters to denote a vector 
(e.g., v) and lower-case italic characters for scalars (e.g., s), 
with the only exception being loss values, where the special 
symbol L is used . Upper-case boldface characters signify a 
matrix (e.g., M). 

2. Methodology 
2.1. Online Continual Learning 

Online continual learning can be formally defined as learn­
ing from a lengthy stream of data that is produced by a non-
stationary distribution (Aljundi et al., 2019a). The stream 
is generally modeled as a sequence of distinct tasks, each 
of them containing instances from a specific set of classes 
(Chaudhry et al., 2019a). The data distribution is typically 
assumed to be stationary throughout each task (Aljundi 
et al., 2019a). The stream provides the learner with data 
instances (xt, yt) or small batches of them (Xt, y ), where t

xt, yt are the input and label of the instance respectively, 
and t refers to the current time-step. An incoming instance 

or batch cannot be revisited once the next instance or batch 
is received (Chaudhry et al., 2019a). A more informative 
stream might also provide the learner with so-called task 
boundaries, hinting that the current task has been completed 
and the next one is about to start. 

The learner is typically evaluated after the stream has been 
received in its entirety. During the evaluation process, some 
learners require task identifiers — that is, information that 
communicates to them the task to which the instances to be 
predicted belong, before they make their prediction (Lopez-
Paz & Ranzato, 2017). Having access to task identifiers 
simplifies CL significantly (van de Ven & Tolias, 2019), but 
is inconsistent with human learning. 

In this work, we consider a minimal-prerequisite scenario, 
where task identifiers and boundaries are not provided dur­
ing training and evaluation. Additionally, we assume the 
absence of any prior knowledge regarding the incoming 
stream (i.e., length, task composition etc.). Our motiva­
tion for making these choices is to constrain the learning 
process so that it approximates the human aggregation of 
experiences and knowledge. 

2.2. Class-Balancing Reservoir Sampling 

In this section we describe in detail the main contributions of 
this work. We propose an algorithm called class-balancing 
reservoir sampling (CBRS) that decides which data in­
stances of the input stream to store for future replay. In 
essence, having read the stream in its entirety, the aim of 
CBRS is to store an independent and identically distributed 
(iid) sample from each class, and keep the classes as bal­
anced as possible. In other words, the algorithm preserves 
the distribution of each class, while at the same time altering 
the distribution of the stream so that class imbalances are 
mitigated. 

Let us first describe our notation. Given a memory of size 
m, we will say that the memory is filled when all its m 
storage units are occupied. When a certain class contains 
the most instances among all the different classes present in 
the memory, we will call it the largest. Two or more classes 
can be the largest, if they are equal in size and also the most 
numerous. Finally, we will call a class full if it currently is, 
or has been in one of the previous time steps, the largest 
class. Once a class becomes full, it remains so in the future. 
Such classes are called full, because CBRS does not allow 
them to grow in size. 

As in the case of reservoir sampling (Vitter, 1985), the 
CBRS sampling scheme can be split into two stages. During 
the first stage, and as long as the memory is not filled, all 
the incoming stream instances are getting stored in memory. 
After the memory is filled, we move on to the second stage. 

During this stage, when a stream instance (xi, yi) is re­
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Algorithm 1 Class-Balancing Reservoir Sampling 
1: input: stream: {(xi, yi)}n 

i=1 
2: for i = 1 to n do 
3: if memory is not filled then 
4: store (xi, yi) 
5: else 
6: if c ≡ yi is not a full class then 
7: find all instances of the largest class 
8: select from them an instance at random 
9: overwrite the selected instance with (xi, yi) 

10: else 
11:	 mc ← number of currently stored instances of 

class c ≡ yi 
12:	 nc ← number of stream instances of class c ≡ 

yi encountered thus far 
13:	 sample u ∼ Uniform(0, 1) 
14:	 if u ≤ mc/nc then 
15:	 pick a stored instance of class c ≡ yi at ran­

dom 
16:	 replace it with (xi, yi) 
17:	 else 
18:	 ignore the instance (xi, yi) 
19:	 end if 
20: end if 
21: end if 
22: end for 

ceived, the algorithm checks at first whether yi belongs to 
a full class. If it does not, the received instance is stored 
in the place of another instance that belongs to the largest 
class. This is the component of CBRS that mitigates class 
imbalances in memory. In the opposite case, the received 
instance replaces a randomly selected stored instance of the 
same class c with probability mc/nc, where mc is the num­
ber of instances of the class c currently stored in memory, 
and nc the number of stream instances of class c that we 
have encountered so far. We sketch the pseudocode for the 
CBRS algorithm in Algorithm 1. 

In Figure 1 we compare the memory distributions of CBRS 
and two state-of-the-art memory population algorithms (Vit­
ter, 1985; Aljundi et al., 2019b)1. The input sequence is 
an imbalanced stream of the first five (for illustrative pur­
poses) classes of the MNIST dataset (LeCun et al., 2010). 
Evidently, the resulting distributions of stored instances un­
der reservoir sampling and GSS are significantly influenced 
by the stream distribution. In contrast, CBRS stores all 
instances of the two smallest classes (classes 0 and 2) and 
balances the remaining three. 

Storing a balanced subset of the input stream for future re­
play, represents a prior belief that all the observed classes are 

1For more details on these two algorithms, see Subsection 3.1. 

equally difficult and equally important to learn. This princi­
ple is applied because of the absence of any more specific 
knowledge about the contents of the stream. Nonetheless, if 
one possesses such knowledge, it is trivial to extend CBRS 
to take it into account. We describe how in the supplemen­
tary material. 

As we show in Section 3, CBRS exhibits superior perfor­
mance compared to the state of the art. At this point, how­
ever, we would like to highlight two important properties 
that CBRS possesses. Assuming a stream that contains in­
stances of nc distinct classes, and a memory of size m, the 
following two statements stand.2 

First, if the stream contains a class with less than m/nc in­
stances, then all of these instances will be stored in memory 
after the stream has been read in whole. This is a remark­
able attribute of CBRS, which guarantees that not even a 
single instance of severely underrepresented classes will be 
discarded. We can see this property illustrated in Figure 1. 
The stream contains instances from nc = 5 classes, and the 
memory size is size m = 1000. Thus, the two classes of the 
stream that are composed by less than 200 instances (i.e., 
classes 0 and 2) are stored in their entirety by CBRS. 

Second, the subset of the instances from each class that 
are stored in memory is iid with respect to the instances 
of the same class contained in the stream. This is another 
important characteristic of CBRS, that is also present when 
performing reservoir sampling. Since we cannot assume that 
the instances of each class are presented in an iid manner 
over time, it is desirable that we capture a representative 
sample from each class in memory. 

2.3. Weighted Random Replay 

In some cases it is impossible to fully utilize the whole 
capacity of the memory and keep it balanced at the same 
time. This is well exemplified by Figure 1. Assuming a 
memory of size m = 1000, and keeping in mind that the 
smallest class of the stream contains 51 instances, one way 
to keep the memory balanced would be to store 51 instances 
from each class. In this case, however, only a quarter of the 
memory would be utilized, which is very wasteful. Thus, 
we could fill the entire memory using CBRS (as in Figure 1), 
and try to mitigate the influence of the resulting imbalance 
later. 

A well-known and effective way to deal with such imbal­
ances is oversampling the minority classes (Branco et al., 
2016). In our case, we propose the use of a custom replay 
sampling scheme, where the probability of replaying a cer­
tain stored instance is inversely proportional to the number 
of stored instances of the same class. In other words, in­
stances of a smaller class will have a higher probability of 

2We prove both statements in the supplementary material. 
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Figure 1. A simple illustration of three memory population methods when learning from an imbalanced stream. All methods employ 
a memory of size m = 1000. We describe the figures from left to right. (i) An imbalanced stream containing instances from the first 
five classes from MNIST. The resulting memory composition when using Reservoir Sampling (ii) and GSS-Greedy (iii) respectively. 
Both methods are considerably affected by the distribution of the incoming stream. On the other hand, CBRS (iv) does not discard any 
instances from the significantly underrepresented classes 0 and 2 and balances the remaining three. 

getting replayed, in comparison to instances of a larger one. 
We will call this scheme weighted replay, as opposed to 
uniform replay, under which all stored instances are equally 
likely to be replayed. 

2.4. Putting it All Together 

At this point, we describe a general replay-based online 
CL training process (see Algorithm 2) that is a generaliza­
tion of previously proposed ones (Chaudhry et al., 2019b; 
Aljundi et al., 2019a). During the learning process, the 
model is trained both on the stream, and via replay of the 
stored instances. The process we describe can be used with 
any stream, classifier, loss function, memory population 
algorithm, and replay sampling scheme. 

In order to be able to adapt to changes in the stream and 
at the same time prevent catastrophic forgetting, the model 
updates are guided by a two-component loss. The first 
component Ls is computed with respect to the currently 
observed stream batch (Xt, y ) of size b, and the second t

component Lr with respect to a batch (Xr, y ), also of r

size b, that was sampled from memory to be replayed. In 
our implementation, we use as a loss function the cross-
entropy between the model predictions and the true labels, 
but any other differentiable loss could be used. The joint 
loss is computed as the convex combination of the two loss 
components 

L = a × Ls + (1 − a) × Lr, (1) 

where a ∈ [0, 1] controls the relative importance between 
them. In practice, a represents a trade-off between quickly 
adapting to temporal changes in the stream and safeguard­
ing currently possessed knowledge. Previous work either 
treats the loss components as equally important (Chaudhry 
et al., 2019b; Aljundi et al., 2019b), or decreases a with the 
number of completed tasks (Shin et al., 2017; Li & Hoiem, 
2017). In our setting, however, we are not provided with 

Algorithm 2 Replay-Based Online Continual Learning 
1: input: stream: {(xi, yi)}n 

i=1 
2: model: f(·) 
3: loss function: £(·, ·) 
4: batch size: b 
5: steps per batch: nb 

6: repeat 
7: receive batch (Xt, y ) of size b from stream t

8: nc ← number of classes encountered so far 
9: a ← 1/nc 

10: for nb steps do 
11:	 predict outputs: ŷ = f(Xt)t 
12:	 stream loss: Ls = £(ŷt, y )t
13:	 sample batch (Xr, y ) of size b from memory r

14:	 predict outputs: ŷ = f(Xr)r 
15:	 replay loss: Lr = £(ŷ , y )r r

16:	 joint loss: L = a × Ls + (1 − a) × Lr 

17:	 update model f according to L 
18: end for 
19: for j = 1 to b do 
20:	 (xt,j , yt,j ) ≡ j-th instance of batch (Xt, y )t
21:	 decide whether to store (xt,j , yt,j ) according to 

the selected memory population algorithm 
22: end for 
23: until the stream has been read in full 

task boundaries. We set a = 1/nc , where nc is the number 
of distinct classes encountered so far, thus sidestepping the 
issue of not having access to task information. As we show 
in the supplementary material, considering the loss compo­
nents as equally important results in consistently inferior 
performance. 

Note that, although we cannot revisit previously seen 
batches, we can perform multiple parameter updates on 
the currently observed batch, as is common practice in on-
line CL (Chaudhry et al., 2019b). In practice, we find that 
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performing just one update per time-step might result in un­
derfitting the data. On the other hand, performing multiple 
(nb) updates has an additional computational cost, but is 
nevertheless beneficial in the sense that it allows for faster 
adaptation to the non-stationary nature of the stream. Addi­
tionally, it permits us to perform multiple replay steps (with 
a different batch of stored instances each time) for each 
incoming stream batch, which in turn mitigates forgetting 
more effectively. 

Finally, the learner goes over the data instances contained 
in the currently observed batch, one at a time, and decides 
which ones to store, according to the selected memory pop­
ulation algorithm. 

3. Experimental Work 
In this section, we aim to compare CBRS to the state of the 
art when it comes to memory population strategies under 
online CL scenarios. We exclusively consider replay-based 
training as it is the only one that is suitable to our setting. 

3.1. Memory Population Approaches 

At the time of writing, reservoir sampling (Vitter, 1985) 
and gradient-space sampling (Aljundi et al., 2019b) are 
considered the state-of-the-art approaches at populating the 
memory during online CL. We refer to these methods as 
RESERVOIR and GSS respectively.3 

The memory population strategy that RESERVOIR follows 
is split in two phases. During the first phase, which lasts 
until the memory gets filled, all encountered data instances 
are stored in empty memory spots. In the second phase, 
which starts once the memory gets filled and continues from 
then on, the currently observed data instance is stored with 
probability m/n, where m is the size of the memory and 
n is the number of data instances encountered so far. The 
data instance is stored in a memory spot that is uniformly 
selected, thus all currently stored instances are equally likely 
to be overwritten. It can be proven that RESERVOIR is 
equivalent to extracting an iid subset of size m from the 
stream. 

GSS attempts to greedily maximize the variance of the gradi­
ent directions of the samples contained in memory (Aljundi 
et al., 2019b). To that end, it computes a score of similarity 
between the incoming instance and some randomly sampled 
stored instances. If the similarity score is small, the instance 
is more likely to be stored, with instances that have a high 
score being more likely to get overwritten in the process. 

In addition to the aforementioned methods, we consider two 
weaker baselines — one that trains a model exclusively on 

3Of the two GSS alternatives proposed in Aljundi et al. (2019b), 
we select the best-performing one, namely GSS-Greedy. 

the stream without replaying stored memories, and another 
that stores the current stream instance with 50% probability, 
in the place of a randomly picked stored instance. We call 
these methods NAIVE and RANDOM respectively. 

3.2. Simulating Imbalances 

In this subsection, we describe our approach to creating 
imbalanced streams. For each class, we define its reten­
tion factor as the percentage of its instances in the original 
dataset that will be present in the stream. We define a vector 
r containing k retention factors as follows: 

r = (r1, r2, · · · , rk) . (2) 

We distribute the retention factors to each class at random 
and without replacement, starting over if the number of 
classes in the dataset is larger than k. In practice, we use   

r = 10−2 , 10−1.5 , 10−1 , 10−0.5 , 100 (3) 

for all of our experiments. Given this choice, the minimum 
imbalance that can exist between two classes in a stream 
is approximately three to one, while the maximum is 100 
to one. The selection of these retention factors represents 
a trade-off between simulating extreme imbalances and en­
suring adequate class representation. Specifically, we take 
into account the fact that each class in CIFAR-100 (see Sub­
section 3.3) contains only 500 instances. Consequently, this 
selection of r ensures that at least five instances from each 
class will be present in the resulting stream, while allowing 
for imbalances of up to two orders of magnitude. 

The retention factors for each class are selected at random 
in every run, and thus each run is performed using a stream 
with different imbalances. We want to stress, however, that 
in each experiment, all memory population methods are 
compared on exactly the same group of imbalanced streams. 
We do not discard other sources of stochasticity such as the 
random initialization of a model or the replay sampling. 

3.3. Benchmarks 

Datasets Following Aljundi et al. (2019b), we select 
MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 
2012) for our experiments. In addition, we use Fashion-
MNIST (Xiao et al., 2017) and CIFAR-100 (Krizhevsky, 
2012). All four of the datasets used in this work are freely 
available online. We evaluate each method on the standard 
test set of each selected dataset. 

We opt for using one class per task, with the classes being 
presented in increasing order. This way, the continuum is 
more difficult to learn since it is split in more distinct tasks. 
When allowing for two or more classes to be present and iid 
in each task, as is usually the case in the relevant research 
(Chaudhry et al., 2019b; Aljundi et al., 2019b), the stream 
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remains stationary for longer periods of time steps, and is 
thus easier to learn. 

All datasets are used as split benchmarks — that is to say, 
the learner is first presented with the instances of the first 
class, then with the ones of the second, and so on. We 
found the influence of the class ordering on the results to 
be negligible.4 We intentionally refrain from using the 
permuted MNIST benchmark (Goodfellow et al., 2014), 
due to the criticism it has received in Farquhar & Gal (2018) 
for being too simple and unrealistic for CL. 

Models Our choices here are largely influenced by previ­
ous work (Chaudhry et al., 2019b; Lopez-Paz & Ranzato, 
2017). For MNIST & Fashion-MNIST, we train a multi­
layer perceptron (MLP) consisting of two hidden layers with 
250 neurons and ReLU activations. Since we need a model 
with greater modeling capacity for CIFAR-10 and CIFAR­
100, we pick a ResNet-18 (He et al., 2016) pre-trained on 
ImageNet (Deng et al., 2009). 

Hyperparameters We use a learning rate of 0.05 when 
training the MLP and 0.01 when training the ResNet-18. 
Both were selected via grid search in the range [0.1, 0.001]. 
Following Aljundi et al. (2019b); Chaudhry et al. (2019b), 
we set the batch size at b = 10, abiding by the assumption 
that batches provided by the stream should be relatively 
small, and we perform nb = 5 update steps per incoming 
batch, as it is a good trade-off between minimizing the 
training time and maximizing the predictive performance. 

3.4. Comparison of Memory Population Methods 

Here, we compare the five selected methods (NAIVE, RAN­
DOM, RESERVOIR, GSS and CBRS) over the four selected 
datasets. Complying with previous work (Aljundi et al., 
2019b), we set the memory size at m = 500 for MNIST 
and Fashion-MNIST, while for the more difficult CIFAR-10 
and CIFAR-100, we set it at m = 1000. We report the 95% 
confidence interval of the test set accuracy (over ten runs) of 
each model, after having been trained with the correspond­
ing memory population algorithm. The relevant results are 
presented in Table 1. 

We observe that CBRS outperforms the other four ap­
proaches in all four datasets by significant margins. Es­
pecially in the case of CIFAR-100 — where some classes 
are represented only by a single-digit number of instances in 
the stream — the relative gap over the second-best method 
is more than 40%. As expected, we notice that the weaker 
baselines (i.e., NAIVE and RANDOM) are significantly out­
performed by the other three approaches. 

In all experiments excluding the ablation, all replay methods 

4For more details see the supplementary material. 

Table 1. Comparison of the five learning methods over four dif­
ferent benchmarks. For MNIST and Fashion-MNIST we set the 
memory size at m = 500, while for the two CIFAR- datasets we 
set it at m = 1000. All methods use weighted replay so that they 
can be compared on equal terms. We report the 95% confidence 
interval of the accuracy on the test set after the training is complete. 
Each experiment is repeated for ten different streams. 

METHODS MNIST F-MNIST CIFAR-10 CIFAR-100 

NAIVE 10.1 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 1.0 ± 0.0 

RANDOM 37.8 ± 5.6 38.9 ± 6.7 52.1 ± 3.8 25.8 ± 1.0 

RESERVOIR 67.9 ± 3.0 64.1 ± 1.8 54.7 ± 2.2 28.1 ± 1.2 

GSS 74.2 ± 3.4 64.9 ± 3.1 63.3 ± 2.3 23.0 ± 1.1 

CBRS 83.3 ± 2.5 75.0 ± 2.5 73.4 ± 2.2 40.2 ± 1.0 

Table 2. Comparison of the four memory population methods on 
Fashion-MNIST for various memory sizes. All methods use 
weighted replay so that they can be compared on equal terms.
We report the 95% confidence interval of the accuracy on the test 
set after the training is complete. Each experiment is repeated for 
ten different streams. 

 

MEMORY SIZE m 

METHODS m = 100 m = 500 m = 1000 m = 5000 

RANDOM 21.7 ± 4.2 38.7 ± 5.6 57.6 ± 5.1 76.1 ± 1.3 

RESERVOIR 53.7 ± 3.0 64.3 ± 2.8 68.2 ± 2.0 75.2 ± 1.9 

GSS 59.5 ± 3.6 65.0 ± 3.8 65.1 ± 3.9 70.7 ± 3.2 

CBRS 66.5 ± 1.5 75.8 ± 2.0 76.7 ± 2.4 77.1 ± 1.8 

use weighted replay. By setting up the experiments in this 
manner, we isolate the difference in performance between 
the different memory population schemes. In Subsection 3.6, 
we perform an ablation study that probes the use of the two 
different types of replay. 

3.5. Varying the Memory Size 

The goal of this experiment is to survey the impact of mem­
ory size in the final learning performance. We evaluate the 
four methods that use a memory (i.e., all except for NAIVE) 
over four different memory sizes, ranging from very small 
(i.e., m = 100) to very large (i.e., m = 5000). Since we are 
using only one dataset in this experiment, we opt for one of 
moderate difficulty, namely Fashion-MNIST. For the same 
reason mentioned in the previous subsection, all methods 
use weighted replay. We present the results in Table 2. 

The results are consistent across all memory sizes. CBRS 
outperforms all other methods in every case, with the rel­
ative performance improvement being more tangible for 
smaller memory sizes. 
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Table 3. Ablation study. We want to isolate the performance boost that CBRS provides both with and without weighted replay. We present 
results on two different datasets (MNIST and CIFAR-10) and for two different memory sizes (m = 1000 and m = 5000). We report the 
95% confidence interval of the accuracy on the test set after the training is complete. Each experiment is repeated for ten different streams. 

m = 1000 m = 5000 

MNIST CIFAR-10 MNIST CIFAR-10 

METHODS UNIFORM WEIGHTED UNIFORM WEIGHTED UNIFORM WEIGHTED UNIFORM WEIGHTED 

RESERVOIR 71.3 ± 2.0 76.3 ± 2.8 54.2 ± 2.1 56.7 ± 1.4 77.9 ± 4.3 86.3 ± 1.8 68.7 ± 4.3 73.1 ± 1.7 

GSS 75.4 ± 2.6 77.9 ± 2.3 62.9 ± 2.2 62.8 ± 2.1 76.6 ± 4.8 84.2 ± 1.9 68.5 ± 4.1 71.8 ± 2.0 

CBRS 86.0 ± 2.6 86.1 ± 2.6 74.4 ± 2.5 73.7 ± 2.6 85.6 ± 2.8 90.3 ± 1.3 76.8 ± 2.3 78.3 ± 1.9 

Table 4. Comparison of the four memory population methods with respect to their computational efficiency. With regard to time complexity, 
we report the 95% confidence interval of the wall-clock time per incoming batch in milliseconds over ten runs. With regard to memory 
overhead, we report the relative increase in storage space, compared to storing only the selected data instances, that each method results in. 
For more details on the contents of this table see Subsection 3.7. 

WALL CLOCK TIME MEMORY OVERHEAD 

METHODS MNIST F-MNIST CIFAR-10 CIFAR-100 MNIST F-MNIST CIFAR-10 CIFAR-100 

RANDOM 

RESERVOIR 

GSS 
CBRS 

20.0 ± 0.5 

19.8 ± 0.5 

295.9 ± 18. 

19.3 ± 0.2 

19.3 ± 1.1 

17.7 ± 0.7 

316.3 ± 11. 

20.4 ± 1.0 

363.4 ± 6.4 

367.6 ± 4.6 

3671.1 ± 46. 

364.9 ± 5.8 

357.6 ± 4.8 

358.7 ± 4.8 

3647.8 ± 27. 

357.9 ± 5.1 

0.00% 

0.00% 

827.19% 

0.13% 

0.00% 

0.00% 

827.19% 

0.13% 

0.00% 

0.00% 

3639.86% 

0.03% 

0.00% 

0.00% 

3639.86% 

0.03% 

3.6. Ablation Study 

At this point, we would like to isolate the influence of 
using CBRS in the place of another strong baseline (i.e., 
RESERVOIR or GSS), from that of using weighted instead 
of uniform replay. We select an easier dataset (MNIST) 
and a harder one (CIFAR-10), and measure the accuracy 
of the trained classifier for all combinations of the three se­
lected memory population methods (i.e., RESERVOIR, GSS, 
CBRS), two memory sizes (m = 1000 and m = 5000), 
and the use of either uniform or weighted replay. Each com­
bination is repeated ten times and the results are presented 
in Table 3. 

There are three points we would like to emphasize here. 
First, we note that the relative performance gaps between 
CBRS and the other two methods are higher when using uni­
form replay. When the memory is populated using RESER­
VOIR or GSS — two methods that are significantly influ­
enced by the imbalanced distribution of the stream — the 
probabilities of replaying instances of different classes are 
very disparate. These disparities, in turn, cause the learner 
to be able to classify instances of some classes much better 
than others, and thus deteriorates its accuracy on the test set, 
where all the classes are more or less balanced. 

Second, we observe that using weighted replay is almost 
always beneficial, compared to using uniform replay. This 
observation follows naturally from what we described in 
the previous paragraph. In short, the use of weighted replay 

partially masks the effects of the imbalanced memory by 
oversampling the underrepresented classes. 

Finally, we notice that when using uniform replay, one of 
the CBRS entries in Table 3 are worse for m = 5000 than 
they are for m = 1000. This abnormality can be intuitively 
understood by realizing that for the same stream, a mem­
ory with higher storage capacity will end up being more 
imbalanced. In Figure 1 for instance, CBRS would keep 
the memory perfectly balanced if its size was m = 255, but 
since it actually is m = 1000, it cannot. 

3.7. Computational Efficiency 

An important characteristic of any online CL approach is its 
computational efficiency. Keeping that in mind, we contrast 
the time and memory complexity of the four selected replay 
methods (RANDOM, RESERVOIR, GSS and CBRS). 

All experiments are run on an NVIDIA TITAN Xp. For 
the implementation of GSS, we followed the pseudocode in 
Aljundi et al. (2019b), while CBRS, RANDOM and RESER­
VOIR were optimized to the best of our knowledge. The 
experimental setup is identical to that of Subsection 3.4. All 
relevant results are presented in Table 4. 

Timing the memory population methods is relatively simple. 
We repeat the learning process for all replay-based methods 
over ten different streams, and report the 95% confidence 
interval of the elapsed time per incoming batch in millisec­
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onds. We observe that RANDOM, RESERVOIR and CBRS 
require roughly the same amount of time. In contrast, GSS 
is about an order of magnitude more time-consuming than 
the other three methods. By profiling GSS, we found that its 
main bottleneck is the additional computation of gradients 
that are involved in the calculation of the similarity score 
for each incoming instance. 

Quantifying the memory overhead is slightly more complex. 
First of all, the number we report is a memory overhead 
factor. We define this factor as the additional storage space 
required by each memory population method, divided by 
the space that the m stored instances occupy. RANDOM and 
RESERVOIR require no additional storage space, hence their 
memory overhead factor is zero in every case. GSS requires 
an additional storage space for 10 gradient vectors, with 
each of them containing approximately 3.2 × 105 for the 
MLP, and 1.1 × 107 for the ResNet-18, 32-bit floating-point 
numbers. In order for CBRS to be time-efficient, it utilizes 
a data structure that keeps track of which memory locations 
correspond to each class, and thus requires an additional 
storage space equivalent to m 32-bit integers in every case. 
Therefore, it has a meager 0.13% (MNIST and Fashion-
MNIST) and 0.03% (CIFAR-10 and CIFAR-100) memory 
overhead. Conversely, the additional memory requirements 
of GSS are equivalent to having an eight (for MNIST and 
Fashion-MNIST) and 36 (for CIFAR-10 and CIFAR-100) 
times larger memory, than the one it actually uses for the 
stored instances. 

3.8. Discussion 

In this subsection, we attempt to interpret our results quali­
tatively. As we showed experimentally, CBRS outperforms 
RESERVOIR and GSS in terms of their predictive accuracy 
during evaluation. This performance gap can be explained 
in two steps. 

First, a more balanced memory translates into all classes be­
ing replayed more or less with the same frequency, and thus 
not being forgotten. In the opposite case, if a certain class is 
severely underrepresented in memory it will not be replayed 
as often, and will thus be more prone to being forgotten. 
This claim is indirectly exemplified in Table 3, where CBRS 
is the method that has the least relative increase in accuracy 
when switching from uniform to weighted replay, since it 
stores a more balanced subset of the data instances provided 
by the imbalanced stream. 

Second, and more importantly, RESERVOIR and GSS are 
biased by the imbalanced distribution of the stream and fail 
to store an adequate number of data instances from highly 
underrepresented classes, as is demonstrated in Figure 1. 
As a consequence, these classes are largely forgotten come 
evaluation time. In contrast, CBRS is guaranteed to store all 
data instances from significantly underrepresented classes, 

and thus, is in the best possible position to not forget them 
in the future. As evidence of this statement, we again refer 
to Table 3. We observe that even when using weighted 
replay, CBRS still has a higher accuracy than the other 
replay methods in all examined cases, as it stores enough 
instances in order to be able to better remember even the 
most severely underrepresented classes of the stream. 

4. Related Work 
There are three main CL paradigms in the relevant research. 
The first one, called regularization-based CL, applies one or 
more additional loss terms when learning a task, to ensure 
previously acquired knowledge is not forgotten. Methods 
that follow this paradigm are, for instance, learning without 
forgetting (Li & Hoiem, 2017), synaptic intelligence (Zenke 
et al., 2017) and elastic weight consolidation (Kirkpatrick 
et al., 2017). 

Approaches following the parameter isolation paradigm 
sidestep catastrophic forgetting by allocating non-
overlapping sets of model parameters to each task, with 
relevant examples being the work of Serrà et al. (2018) and 
Mallya & Lazebnik (2018). Most of such methods require 
task identifiers during training and prediction time. 

Replay-based methods are another major CL paradigm. 
These methods replay previously observed data instances 
during future learning in order to mitigate catastrophic for­
getting. The replay can take place either directly, via storing 
a small subset of the observed data (Isele & Cosgun, 2018), 
or indirectly, with the aid of generative models (Shin et al., 
2017). 

The majority of research pertinent to CL focuses on the 
task-incremental setting, with some approaches (von Os­
wald et al., 2020; Shin et al., 2017; Rebuffi et al., 2016) 
achieving strong predictive performance and at the same 
time minimizing forgetting. 

In contrast, the more challenging online CL setting has 
not been explored as much. Relevant approaches store a 
small subset of the observed instances, which are then ex­
ploited either via replay (Chaudhry et al., 2019b; Aljundi 
et al., 2019a;b), or by regularizing the training process using 
data-dependent constraints (Lopez-Paz & Ranzato, 2017; 
Chaudhry et al., 2019a). The latter approach is not applica­
ble to our learning setting since it requires task identifiers 
both at training and at evaluation time. Therefore, replay-
based methods are the only ones that can be practically 
applied to the minimal-assumption learning setting that we 
adopt in this work. 

Reservoir sampling (Vitter, 1985) extracts an iid subset of 
the observations it receives, and was, until recently, con­
sidered to be the state-of-the-art in selecting which data 
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instances to store during online continual learning (Isele 
& Cosgun, 2018; Chaudhry et al., 2019b). Aljundi et al. 
(2019b) introduced two approaches (i.e., GSS-IQP and GSS-
Greedy) that try to maximize the variance of the stored 
memories with respect to the gradient direction of the 
model update they would generate. GSS-IQP utilizes inte­
ger quadratic programming, while GSS-Greedy is a more 
efficient heuristic approach that actually outperforms GSS­
IQP. Additionally, Aljundi et al. (2019b) demonstrate that 
both their proposed algorithms achieve higher accuracy than 
reservoir sampling when learning moderately imbalanced 
streams of MNIST (LeCun et al., 2010) digits with two 
classes per task. 

5. Conclusion 
In this work, we examined the issue of online continual 
learning from severely imbalanced, temporally correlated 
streams. Moreover, we proposed CBRS — an efficient mem­
ory population approach that outperforms the current state 
of the art in such learning settings. We provided an inter­
pretation for the performance gap between CBRS and the 
current state of the art, accompanied by supportive empiri­
cal evidence. Specifically, we argued that underrepresented 
classes in memory tend to be forgotten more quickly, partly 
because they are not replayed as often as more sizeable 
classes, and also because of the scarcity of their correspond­
ing stored instances. Further improvements in replay-based 
CL methods could be possible, if memory population meth­
ods are able to infer which classes are more challenging to 
learn and store their instances preferentially. 
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