
Online Continual Learning from Imbalanced Data
Supplementary Material

Aristotelis Chrysakis 1 Marie-Francine Moens 1

A. Proofs of Statements
Lemma A.1 Let us assume a stream that contains in-
stances of k distinct classes, and a memoryM of size m.
If a class c consists of less than m/k stream instances, or in
other words nc < m/k, then it cannot be the largest class
while the memory is filled.

Proof. We use proof by contradiction. Let us assume a
scenario where c is a largest class while the memory is
filled.1 If we define mci to be the number of instances of
class ci currently stored in memory, and since c is the largest
class in memory, it is

mci ≤ mc, ∀i s.t. ci inM. (1)

Moreover, since the memory is filled, it must be that∑
i

mci = m, ∀i s.t. ci inM. (2)

If km is the number of different classes present in memory,
the combination of (1) and (2) gives us

kmmc ≥ m. (3)

However, since km ≤ k and mc ≤ nc, from (3) we get

knc ≥ m, (4)

which cannot be true since we started from the fact that
nc < m/k. Thus, we proved that a class with less than m/k
instances in the stream, cannot be the largest class when the
memory is filled.

Statement A.1 Let us assume a stream that contains in-
stances of k distinct classes, and a memoryM of size m. If
a class c of the stream consists of less than m/k instances, or
in other words nc < m/k, then all nc instances of said class
will be stored in memory after the stream has been read.

Proof. It suffices to show that all of the nc instances will
be stored when observed, and that none of them will be
overwritten.

1See our definitions in Subsection 2.2 of the main paper.

Regarding the first part, there are three cases applicable
when an incoming instance is considered to be stored in
memory (i.e., lines 4, 9, and 16 of the CBRS algorithm).
In the first two (i.e., lines 4 and 9), the observed instance
is always stored, and in the third case (i.e., line 16) the
instance is stored with a certain probability. The third case
is reached only when the memory is filled and when c is a
full class. However, as we showed in the Lemma A.1, a class
that consists of less than m/k instances cannot become the
largest class when the memory is filled, thus it cannot be a
full class. Therefore, the third case will never be applicable
for such classes. Consequently, all encountered instances of
c will correspond to one of the first two cases, and they are
always stored.

Regarding the second part, there are two cases where in-
stances stored in memory get overwritten (i.e., lines 9 and
16 of the CBRS algorithm). None of the two cases apply to
stored instances of c, however, since c cannot be either full
or the largest class.

Hence, we proved that all incoming instances of class c will
be stored when observed, and that none of them will be
overwritten by instances of another class.

Lemma A.2 The set of currently stored instances of a
class c is iid with respect to the observed stream instances
of the same class, at any time step.

Proof. We use proof by induction. Let us assume a stream,
of which n instances have been observed, and a memory
M of size m. Additionally, out of all the distinct classes
encountered in the stream so far, let us consider a random
one, denoted by c. We denote by nc the number of instances
of class c observed thus far, and by mc the number of in-
stances of class c currently stored in memory. The induction
takes place with respect to n.

Base case. The base case is applicable when n = 1, or in
other words, immediately after the first stream instance is
observed. The first observed instance will always be stored
in memory. If the instance is of class c, it is the only one
observed so far and it is present in memory. Conversely, if
it is not of class c, we have neither observed nor stored any



Title Suppressed Due to Excessive Size

instances of class c. Hence, whether the instance is of class
c or not, the base case holds.

Inductive step. Having observed n instances of an arbitrary
number of classes, we assume that all observed instances
of class c have the same probability of being present in
memory, and that probability is

pn =
mc

nc
. (5)

After the (n+1)-th instance is observed, we can differentiate
four distinct cases for what happens next. The differentia-
tion arises from whether the incoming instance is of class c
or not, and the memory status (i.e., largest, full, or none of
the above) of c.

First, we examine the case where c is not full and the in-
coming instance is of class c. According to Algorithm 1
of the main paper, the incoming instance will be stored,
overwriting, in the process, an instance of another class.
Since c is not full, we know that all of its already observed
instances will be present in memory. Thus, the observed and
the stored instances of c will be identical, and by extension,
iid.

Second, we consider the case where c is full and the in-
coming instance is of c. We assume nc and mc to be the
quantities we defined, before the instance is observed. Since
c is full, the observed instance is not allowed to overwrite
an instance of another class. Therefore, we need to show
that all nc + 1 observed instances of class c have the same
probability pn+1 to be present in memory, where

pn+1 =
mc

nc + 1
. (6)

According to Algorithm 1 of the main paper, the probability
that the incoming instance will be stored is equal to pn+1.2

For an arbitrary observed instance of class c , the probability
of being present in memory after the incoming instance is
processed, is the product of pn times the probability of not
being overwritten by the observed instance. Specifically, it
is

pn

(
1− pn+1

mc

)
=

pnnc

nc + 1
=

mc

nc + 1
= pn+1. (7)

Third, in the case where c is not full and the incoming
instance is not of c, we know that c is not the largest class,
and thus, none of its stored instances will be overwritten. In
this case, since the stored c instances were iid with respect to

2Note that the meanings of mc, nc here, are minutely different
from the ones in Algorithm 1, for the sake of being more formal.
Here, we assume that the values of mc, nc correspond to the re-
spective quantities not taking into account the incoming instance,
while in Algorithm 1, they correspond to the same quantities hav-
ing taken into account the incoming instance.

the observed ones, and we did not observe a c instance, the
stored instances of c remain iid with respect to the observed
ones.

Finally, when c is the largest class and the incoming in-
stance is not of c, according to Algorithm 1 of the main
paper, a stored instance of c will be overwritten. Since that
c instance is selected uniformly, the probability that an arbi-
trary observed instance of c is present in memory after the
incoming instance is processed is

mc

nc

(
1− 1

mc

)
=

mc − 1

nc
. (8)

Therefore, the stored instances of c remain iid with respect
to the observed ones, because all of the observed ones have
the same probability of being present in memory.

We showed that in all cases, the stored instances of an arbi-
trary class c remain iid with respect to the observed instances
of c, after the inductive step is performed.

Statement A.2 The stored instances of each class c are
iid with respect to the stream instances of the same class,
after the stream is read in whole.

Proof. Follows naturally from Lemma A.2.

B. Extending CBRS
In the main paper, we state that in absence of any prior
knowledge about the stream contents, CBRS assumes that
all classes are equally important and equally difficult to
learn. However, when in possession of such prior knowledge
before reading the stream, CBRS can be trivially extended
to take it into account. We assume a vector

i = (i1, i2, · · · , ik) , (9)

where each ic represents an importance score for class c.
Moreover, we define the extended size of each class in mem-
ory to be mc/ic, where mc is the number of elements of
class c currently present in memory. CBRS, instead of using
the raw size mc, uses the extended size to find the largest
class, and thus, promotes the inclusion of more samples
from classes of higher importance.

In Figure 1, we present an illustration of this concept, with
a memory of size m = 500. In the first two streams we
assume that

iinc = (1, 2, · · · , 10) , (10)

and in the remaining two we assume that

idec = (10, 9, · · · , 1) . (11)

We observe that CBRS is indeed taking into account the
provided importance scores and boosts the storage of classes
of higher importance.



Title Suppressed Due to Excessive Size

0 1 2 3 4 5 6 7 8 9
Class ID

5923

67

5958

617 59 533 174 199

1859 1885

(i) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

9 18 27 36 45 54
64 73 82

92

(i) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

176 641 68 191

5842

55

1860

6265

615
1922

(ii) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

9 18 27 36 45 54
64 73 82

92

(ii) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

590

2229

57

6131

582

5421

162 198

1785

56

(iii) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

94 85

57 66 57
47 38

28
18 10

(iii) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

190

6742

197 67

1885
534

1839

6265

62 605

(iv) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

91 82 73 64
54 45 36 27 18 10

(iv) Memory distribution (m=500)

Figure 1. Extending CBRS for classes of different importance.

C. Equal Weighting of the Loss Components
We examine whether it is beneficial to use adaptive weight-
ing of the two loss components described in Subsection 2.4
of the main paper, in comparison to always weighting both
components as equal. We present the experiments of Sub-
sections 3.4 and 3.5 with and without adaptive weighting
of the loss components. All experiments are repeated ten
times. We report the 95% confidence interval of the accu-
racy on the test set of each dataset, after the learner has been
trained on the corresponding stream. The relevant results
are presented in Table 1 and Table 2. We observe that using
an equal loss weighting (a = 0.5) generally results in lower
accuracy and higher variance over all different datasets and
methods.

D. Different Class Orderings
At this point we examine the degree to which the class
order affects the results presented in the main paper. We
remind the reader, that in the main paper the learner is
presented with the classes in increasing order. Here, we
repeat the experiments from Subsections 3.4 and 3.5 with
the class order being selected at random. All experiments are

repeated ten times. We report the 95% confidence interval of
the accuracy on the test set of each dataset, after the learner
has been trained on the corresponding stream. The relevant
results are presented in Table 3 and Table 4. The results tell
roughly the same story in both cases, without having any
consistent differences.

E. CBRS Illustration for Various Streams
In Figure 2, we present the memory distribution that
CBRS results in, after reading four different imbalanced
MNIST streams, and for three different memory sizes
(m = 100, 500, 2500). Specifically, the first four bar plots
of the figure (i.e., all plots having “(i)” in the title) depict
the distribution of the first stream and the resulting memory
composition for each different memory size respectively,
and so on for the remaining quartets of plots.



Title Suppressed Due to Excessive Size

Table 1. Comparison of memory population methods when a is adaptively selected as described in the main paper (left), and when a = 0.5
(right). We report the 95% confidence interval of the test set accuracy of each experiment over ten runs.

ADAPTIVE LOSS WEIGHTING EQUAL LOSS WEIGHTING

METHODS MNIST F-MNIST CIFAR-10 CIFAR-100 MNIST F-MNIST CIFAR-10 CIFAR-100

NAIVE 10.1± 0.0 10.0± 0.0 10.0± 0.0 1.0± 0.0 10.1± 0.1 10.0± 0.0 10.0± 0.0 1.0± 0.0

RANDOM 37.8± 5.6 38.9± 6.7 52.1± 3.8 25.8± 1.0 30.9± 5.1 42.2± 5.6 43.0± 3.2 16.7± 1.3

RESERVOIR 67.9± 3.0 64.1± 1.8 54.7± 2.2 28.1± 1.2 66.3± 1.5 65.3± 2.5 49.9± 3.1 18.1± 1.0

GSS 74.2± 3.4 64.9± 3.1 63.3± 2.3 23.0± 1.1 76.8± 1.8 68.6± 2.6 52.2± 3.5 14.3± 1.9

CBRS 83.3 ± 2.5 75.0 ± 2.5 73.4 ± 2.2 40.2 ± 1.0 81.1 ± 3.6 73.8 ± 2.8 63.4 ± 4.0 22.5 ± 2.0

Table 2. Varying the memory size on Fashion-MNIST when a is adaptively selected as described in the main paper (left), and when
a = 0.5 (right). We report the 95% confidence interval of the test set accuracy of each experiment over ten runs.

ADAPTIVE LOSS WEIGHTING EQUAL LOSS WEIGHTING

METHODS m = 100 m = 500 m = 1000 m = 5000 m = 100 m = 500 m = 1000 m = 5000

RANDOM 21.7± 4.2 38.7± 5.6 57.6± 5.1 76.1± 1.3 20.5± 4.5 37.1± 4.7 53.5± 3.3 74.5± 3.1

RESERVOIR 53.7± 3.0 64.3± 2.8 68.2± 2.0 75.2± 1.9 52.5± 2.9 63.6± 3.0 66.0± 2.6 73.8± 4.3

GSS 59.5± 3.6 65.0± 3.8 65.1± 3.9 70.7± 3.2 59.1± 1.6 65.6± 2.9 70.2± 2.1 72.3± 3.0

CBRS 66.5 ± 1.5 75.8 ± 2.0 76.7 ± 2.4 77.1 ± 1.8 65.9 ± 1.5 74.9 ± 2.5 75.1 ± 2.7 76.5 ± 3.7

Table 3. Comparison of memory population methods when the classes are presented in increasing order (left), and when they are presented
in random order (right). We report the 95% confidence interval of the test set accuracy of each experiment over ten runs.

INCREASING CLASS ORDER RANDOM CLASS ORDER

METHODS MNIST F-MNIST CIFAR-10 CIFAR-100 MNIST F-MNIST CIFAR-10 CIFAR-100

NAIVE 10.1± 0.0 10.0± 0.0 10.0± 0.0 1.0± 0.0 10.3± 0.5 10.0± 0.0 10.0± 0.0 1.0± 0.0

RANDOM 37.8± 5.6 38.9± 6.7 52.1± 3.8 25.8± 1.0 33.0± 5.6 37.3± 7.7 50.1± 4.9 25.2± 0.9

RESERVOIR 67.9± 3.0 64.1± 1.8 54.7± 2.2 28.1± 1.2 70.4± 2.5 64.6± 2.1 56.1± 2.4 28.8± 0.8

GSS 74.2± 3.4 64.9± 3.1 63.3± 2.3 23.0± 1.1 75.8± 3.8 66.5± 2.3 64.3± 1.8 24.0± 0.9

CBRS 83.3 ± 2.5 75.0 ± 2.5 73.4 ± 2.2 40.2 ± 1.0 85.8 ± 1.2 76.1 ± 1.8 74.4 ± 2.4 39.7 ± 0.9

Table 4. Varying the memory size on Fashion-MNIST when the classes are presented in increasing order (left), and when they are
presented in random order (right). We report the 95% confidence interval of the test set accuracy of each experiment over ten runs.

INCREASING CLASS ORDER RANDOM CLASS ORDER

METHODS m = 100 m = 500 m = 1000 m = 5000 m = 100 m = 500 m = 1000 m = 5000

RANDOM 21.7± 4.2 38.7± 5.6 57.6± 5.1 76.1± 1.3 28.5± 5.1 43.1± 6.1 57.6± 5.2 72.3± 2.6

RESERVOIR 53.7± 3.0 64.3± 2.8 68.2± 2.0 75.2± 1.9 54.6± 2.1 65.9± 2.9 66.6± 1.7 72.8± 2.7

GSS 59.5± 3.6 65.0± 3.8 65.1± 3.9 70.7± 3.2 62.5± 2.7 66.8± 2.1 66.2± 2.8 68.8± 3.4

CBRS 66.5 ± 1.5 75.8 ± 2.0 76.7 ± 2.4 77.1 ± 1.8 66.5 ± 2.8 73.3 ± 1.7 74.6 ± 2.4 75.7 ± 2.0



Title Suppressed Due to Excessive Size

0 1 2 3 4 5 6 7 8 9
Class ID

187

6742

1863 1922

63 144 594 624

5851

44

(i) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

10 10 10 10 10 10 10 10 10 10

(i) Memory distribution (m=100)

0 1 2 3 4 5 6 7 8 9
Class ID

51 50 50 51 51 51 50 51 51
44

(i) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

187

344 344 344

63
144

344 343 343

44

(i) Memory distribution (m=2500)

0 1 2 3 4 5 6 7 8 9
Class ID

182

2084
591

6131

59

5421

56 620
1846

170

(ii) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

10 10 10 10 10 10 10 10 10 10

(ii) Memory distribution (m=100)

0 1 2 3 4 5 6 7 8 9
Class ID

50 50 50 50 50 50 50 50 50 50

(ii) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

182

339 338 339

59

339

56

339 339

170

(ii) Memory distribution (m=2500)

0 1 2 3 4 5 6 7 8 9
Class ID

1828
658 163 54 179 47

1919

6265 5851

620

(iii) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

10 10 10 10 10 10 10 10 10 10

(iii) Memory distribution (m=100)

0 1 2 3 4 5 6 7 8 9
Class ID

51 50 50 50 50 47 50 51 50 51

(iii) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

343 343

163

54

179

47

342 343 343 343

(iii) Memory distribution (m=2500)

0 1 2 3 4 5 6 7 8 9
Class ID

5923

664 57

6131

206 526 196

1978

54

1867

(iv) Stream distribution

0 1 2 3 4 5 6 7 8 9
Class ID

10 10 10 10 10 10 10 10 10 10

(iv) Memory distribution (m=100)

0 1 2 3 4 5 6 7 8 9
Class ID

50 50 50 50 50 50 50 50 50 50

(iv) Memory distribution (m=500)

0 1 2 3 4 5 6 7 8 9
Class ID

331 331

57

331

206

331

196

331

54

332

(iv) Memory distribution (m=2500)

Figure 2. Resulting CBRS memory distributions (for three different memory sizes m = 100, 500, 2500) after being presented with four
different imbalanced streams.


