
k-means++: Few More Steps Yield Constant Approximation

Davin Choo * 1 Christoph Grunau * 1 Julian Portmann * 1 Václav Rozhoň * 1

Abstract
The k-means++ algorithm of Arthur and
Vassilvitskii (SODA 2007) is a state-of-the-art
algorithm for solving the k-means clustering
problem and is known to give an
O(log k)-approximation in expectation. Recently,
Lattanzi and Sohler (ICML 2019) proposed
augmenting k-means++ with O(k log log k)
local search steps to yield a constant
approximation (in expectation) to the k-means
clustering problem. In this paper, we improve
their analysis to show that, for any arbitrarily
small constant ε > 0, with only εk additional
local search steps, one can achieve a constant
approximation guarantee (with high probability
in k), resolving an open problem in their paper.

1. Introduction
k-means clustering is an important unsupervised learning
task often used to analyze datasets. Given a set P of points
in d-dimensional Euclidean space Rd and an integer k, the
task is to partition P into k clusters while minimizing the
total cost of the partition. Formally, the goal is to find a set
C ∈ Rd of k centers minimizing the following objective:∑

p∈P
min
c∈C
‖p− c‖2,

where points p ∈ P are assigned to the closest candidate
center c ∈ C.

Finding an optimal solution to this objective was proven to
be NP-hard (Aloise et al., 2009; Mahajan et al., 2009), and
the problem was even shown to be hard to approximate to
arbitrary precision (Awasthi et al., 2015; Lee et al., 2017).
The currently best known approximation ratio is 6.357
(Ahmadian et al., 2019), while other constant factor

*Equal contribution 1ETH Zürich. Correspondence
to: Davin Choo <chood@ethz.ch>, Christoph Grunau
<cgrunau@ethz.ch>, Julian Portmann <pjulian@ethz.ch>,
Václav Rozhoň <rozhonv@ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the
author(s).

approximation algorithms exist (Jain & Vazirani, 2001;
Kanungo et al., 2004). For constant dimensions d or
constant k, (1 + ε)-approximation algorithms are known
(Kumar et al., 2004; Bandyapadhyay & Varadarajan, 2015;
Cohen-Addad, 2018; Cohen-Addad et al., 2019; Friggstad
et al., 2019). However, these algorithms are mainly of
theoretical interest and not known to be efficient in practice.

On the practical side of things, the canonical k-means
algorithm (Lloyd, 1982) proved to be a good heuristic.
Starting with k initial points (e.g. chosen at random),
Lloyd’s algorithm iteratively, in an alternating minimization
manner, assigns points to the nearest center and updates the
centers to be the centroids of each cluster, until
convergence. Although the alternating minimization
provides no provable approximation guarantee, Lloyd’s
algorithm never increases the cost of the initial clustering.
Thus, one way to obtain theoretical guarantees is to provide
Lloyd’s algorithm with a provably good initialization.

The k-means++ algorithm (see Algorithm 1) of Arthur
and Vassilvitskii (2007) is a well-known algorithm for
computing an initial set of k centers with provable
approximation guarantees. The initialization is performed
by incrementally choosing k initial seeds for Lloyd using
D2-sampling, i.e., sample a point with probability
proportional to its squared distance to the closest existing
center. They showed that the resultant clustering is an
O(log k)-approximation in expectation. This theoretical
guarantee is substantiated by empirical results showing that
k-means++ can heavily outperform random initialization,
with only a small amount of additional computation time on
top of running Lloyd’s algorithm. However, lower bound
analyses (Brunsch & Röglin, 2013; Bhattacharya et al.,
2016) show that there exist inputs where k-means++ is
Ω(log k)-competitive with high probability in k.

Recently, Lattanzi and Sohler (2019) proposed a variant of
local search after picking k initial centers via k-means++
(see Algorithm 2): In each step, a new point is sampled
with probability proportional to its current cost and used to
replace an existing center such as to maximize the cost
reduction. If all possible swaps increase the objective cost,
the new sampled point is discarded. Following their
notation, we refer to this local search procedure as
LocalSearch++. They showed that performing



k-means++: Constant Approximation

Algorithm 1 k-means++ seeding
Input: P , k, `

1: Uniformly sample p ∈ P and set C = {p}.
2: for i← 2, 3, . . . , k do
3: Sample p ∈ P w.p. cost(p,C)∑

q∈P cost(q,C) and add it to C.
4: end for

Algorithm 2 One step of LocalSearch++
Input: P , C

1: Sample p ∈ P with probability cost(p,C)∑
q∈P cost(q,C)

2: p′ = arg minq∈C cost(P,C \ {q} ∪ {p})
3: if cost(P,C \ {p′} ∪ {p}) < cost(P,C) then
4: C = C \ {p′} ∪ {p}
5: end if
6: return C

O(k log log k) steps of LocalSearch++ after
k-means++ improves the expected approximation factor
from O(log k) to O(1), and stated that it is an interesting
open question to prove that O(k) local search steps suffice
to obtain a constant factor approximation.

1.1. Our Contribution

In this paper, we answer the open question by Lattanzi and
Sohler (2019) in the affirmative. We refine their analysis to
show that with only εk additional local search steps, one
can achieve an approximation guarantee of O(1/ε3) with
probability 1− exp

(
−Ω

(
k0.1

))
. Compared to (Lattanzi &

Sohler, 2019), we improve the number of search steps
needed to achieve a constant approximation from
O(k log log k) to just εk.

To achieve this result, we go beyond the worst-case analysis
of k-means++ that shows that it is Ω(log k) approximate
in the worst case (Arthur & Vassilvitskii, 2007) (Theorem
3.1); we prove in Lemma 12 that it is always the case that
most optimal clusters are approximated up to a constant
factor (this goes in the similar spirit as bi-criteria result of
Wei (2016)). This enables us to show that a few steps of
local search is enough to “fix” these “few bad clusters”.

Theorem 1 (Main theorem). Let k ∈ Ω(1/ε20) and 0 <
ε ≤ 1. Suppose we run Algorithm 1 followed by ` = εk
steps of Algorithm 2. We have cost(P,C) ≤

(
1030/ε3

)
·

cost(P,C∗) with probability at least 1− exp(−Ω(k0.1)).

1.2. Related Work

Another variant of local search was analyzed by Kanungo
et al. (2004): In each step, try to improve by swapping an
existing center with an input point. Although they showed
that this eventually yields a constant approximation, the
number of required steps can be very large.

Under the bicriteria optimization setting, Aggarwal et al.
(2009) and Wei (2016) proved that if one over-samples and
runs D2-sampling for O(k) steps (instead of just k), one
can get a constant approximation of the k-means objective
with these O(k) centers. We note that a single step of
LocalSearch++ has almost the same asymptotic
running time as over-sampling once using D2-sampling
(see Section 3.3 for details) while enforcing the constraint
of exactly k centers. However, their results are stronger in
terms of approximation guarantees: Aggarwal et al. (2009)
proved that in O(k) steps one achieves a 4 + ε
approximation to the optimal cost with constant probability,
while Wei (2016) proved that after εk more sampling steps
one achieves an O(1/ε)-approximation in expectation.

Other related work include speeding up k-means++ via
approximate sampling (Bachem et al., 2016), approximating
k-means++ in the streaming model (Ackermann et al.,
2012), and running k-means++ in a distributed setting
(Bahmani et al., 2012).

1.3. Our Method, in a Nutshell

Lattanzi and Sohler showed that given any clustering with
approximation ratio of at least 500, a single step of
LocalSearch++ improves the cost by a factor of
1 − 1/(100k), with constant probability. In general, one
cannot hope to asymptotically improve their bound1.
Instead, our improvement comes from structural insights on
solutions provided by Algorithm 1 and Algorithm 2. We
argue that if we have a bad approximation at any point in
time, the next step of Algorithm 2 drastically improves the
cost with a positive constant probability.

To be more specific, consider an optimal clustering OPT .
We prove that throughout the course of Algorithm 2, most
centroids of OPT clusters have a candidate center in the
current solution close to it. Through a chain of technical
lemmas, à la (Lattanzi & Sohler, 2019), we conclude that
the new sampled point is close to the centroid of one of the
(very few) costly OPT clusters with constant probability.
Then, we argue that there is an existing candidate that can
be swapped with the newly sampled point to improve the
solution quality substantially. Putting everything together,
we get that the solution improves by a factor of
1 − Θ( 3

√
α/k) with constant probability in a single

LocalSearch++ step, where α is the approximation
factor of the current solution. This improved multiplicative
cost reduction suffices to prove our main result.

In Section 2, we introduce notation and crucial definitions,
1Consider a (k − 1)-dimensional simplex with n/k points at

each corner and a clustering with all k centers in the same corner.
Swapping one center to another corner of the simplex improves the
solution by a factor of 1−Θ(1/k). However, we do not expect to
get such a solution after running the k-means++ algorithm.



k-means++: Constant Approximation

along with several helpful lemmas. In Section 3, we walk
the reader through our proof while deferring some lengthy
proofs to the supplementary material.

2. Preliminaries
Let P be a set of points in Rd. For two points p, q ∈ Rd, let
‖p− q‖ be their Euclidean distance. We denote C ⊆ P as
the set of candidate centers and C∗ = OPT as the centers
of a (fixed) optimal solution, where |C∗| = k. Note that
a center c∗ ∈ C∗ may not be a point from P while all
candidates c ∈ C are actual points from P . For c∗ ∈ C∗,
the set Qc∗ denotes the points in P that OPT assigns to
c∗. We define cost(P,C) =

∑
p∈P minc∈C ‖p − c‖2 as

the cost of centers C, where cost(P,C∗) is the cost of an
optimal solution. When clear from context, we also refer to
the optimal cost as OPT . For an arbitrary set of points Q,
we denote their centroid by µQ = (1/|Q|) ·

∑
q∈Q q. Note

that µQ may not be a point from Q.

For the sake of readability, we drop the subscript Q when
there is only one set of points in discussion and we drop
braces when describing singleton sets in cost(·, ·). We will
also ignore rounding issues as they do not play a critical
role asymptotically.

We now define D2-sampling introduced in k-means++.

Definition 2 (D2-sampling). Given a set C ⊆ P of
candidate centers, we sample a point p ∈ P with
probability P[p] = cost(p, C)/

∑
p∈P cost(p, C).

The following folklore lemma describes an important
property of the cost function. This is analogous to the
bias-variance decomposition in machine learning and to the
parallel axis theorem in physics (Aggarwal et al., 2009). As
the variable naming suggests, we will use it with Q being
an OPT center and c being a candidate center.

Lemma 3. Let Q ⊆ P be a set of points. For any point
c ∈ P (possibly not in Q),

cost(Q, c) = |Q| · ‖c− µQ‖2 + cost(Q,µQ)

To have a finer understanding of the cluster structure, we
define the notions of settled and approximate clusters.
Consider an arbitrary set of points Q ⊆ P (e.g. some
cluster of OPT ). We define

RQ,β = {q ∈ Q : ‖q − µQ‖2 ≤ (β/|Q|) · cost(Q,µQ)}

as the subset of points in Q that are within a certain radius
from µQ (i.e. “close” with respect to β). As β decreases,
the condition becomes stricter and the set RQ,β shrinks.

Definition 4 (β-settled). An OPT cluster Q is β-settled if
Rβ ∩ C 6= ∅. That is, there is a candidate center c ∈ Q
with distance at most (β/|Q|) · cost(Q,µQ) from µQ.

µ

Rβ1

Rβ2

Figure 1: × are points in set Q with centroid µ (which may
not be a point from Q). For β1 > β2, Rβ2 ⊆ Rβ1 ⊆ Q. 4
represents a candidate center c ∈ C that does not belong
to Q. Since c 6∈ Q, cluster Q is not β1-settled even though
‖c− µQ‖2 ≤ (β1/|Q|) · cost(Q,µQ).

Definition 5 (α-approximate). An OPT cluster Q is α-
approximate if cost(Q,C) ≤ α · cost(Q,µQ).

Intuitively, a β-settled cluster Q has small cost(Q,C). As
settled-ness requires a candidate c ∈ C to belong to cluster
Q, an unsettled cluster Q could have small cost(Q,C). See
Fig. 1 for an illustration of Q, µQ, RQ,β and β-settled. We
now relate the definitions of settled and approximate.
Lemma 6. Suppose Q is a cluster of OPT that is β-settled.
Then, cost(Q,C) ≤ (β + 1) · cost(Q,µ). In other words,
β-settled implies (β + 1)-approximate.

Proof. For any β-settled cluster Q, there is some candidate
center c ∈ C in Rβ , so

cost(Q,C) ≤ cost(Q, c) = |Q| · ‖c− µ‖2 + cost(Q,µ)

≤ (β + 1) · cost(Q,µ) = (β + 1) · cost(Q,C∗)

It is also useful to consider the contrapositive of Lemma 6.
Corollary 7. Let Q be a cluster of OPT . If cost(Q,C) >
(β + 1) · cost(Q,µ), then ‖c− µ‖2 > (β/|Q|) · cost(Q,µ)
for any candidate center c ∈ C. That is, Q is β-unsettled.

In our analysis, we will prove statements about clusters
being settled for general values of β. However, there are
uncountably many possible β’s and therefore we cannot
do a union bound over all possible choices of β. Using a
similar idea to ε-net arguments, we will discretize the set of
β’s into a sufficiently small finite set of legal values.
Definition 8 (Legal β values). A parameter β is legal if
β ∈ B = {2i : i ∈ {3, 4, . . . , 0.3 · log k}}. In particular,
this implies that all legal β are at least 8 and at most k0.3.

3. Analysis
In this section, we present the key ideas of our proof while
deferring some details to the supplementary material.



k-means++: Constant Approximation

Following the proof outline of Lattanzi and Sohler (2019),
we perform a more intricate analysis of LocalSearch++.
Their key lemma shows that, with constant probability, the
cost of the solution decreases by a factor of 1 − 1/(100k)
after one local search step.

Lemma 3 in (Lattanzi & Sohler, 2019) Let P be a set
of points and C be a set of centers with
cost(P,C) > 500 OPT . Denote the updated centers by
C ′ = LocalSearch++(P,C). Then, with probability
1/1000, cost(P,C ′) ≤ (1− 1/(100k)) cost(P,C).

The above lemma implies that we expect the cost of the
current solution to drop by a constant factor after O(k)
LocalSearch++ steps (unless we already have a
constant approximation of the optimum). Since we start
with a solution that is an O(log k)-approximation in
expectation, we expect that after O(k log log k) iterations,
the cost of our solution drops to a constant. This yields the
main theorem of (Lattanzi & Sohler, 2019).

Theorem 1 in (Lattanzi & Sohler, 2019) Let P be a set
of points and C be the output of k-means++ followed by
at least 100000 k log log k many local search steps. Then,
we have E[cost(P,C)] ∈ O(cost(P,C∗)). The running
time of the algorithm is O(dnk2 log log k).

Our improvements rely on the following structural
observation: After running k-means++, most of the
clusters of the optimal solution are already “well
approximated” with high probability in k.

3.1. Structural Analysis

In this subsection, we study the event of sampling a point
from a β-unsettled cluster and making it β-settled. This
allows us to prove concentration results about the number of
β-settled clusters, which we will use in the next subsection.

Suppose α is the current approximation factor. The result
below states that with good probability, the new sampled
point is from a cluster that is currently badly approximated.

Lemma 9. Suppose that cost(P,C) = α · cost(P,C∗) and
we D2-sample a point p ∈ P . Consider some fixed β ≥ 1.
Then, with probability at least 1− β/α, the sampled point
p is from a cluster Q with cost(Q,C) ≥ β · cost(Q,µQ).

Proof. Let Q̃ be the union of all clusters Q such that
cost(Q,C) < β · cost(Q,µQ). By definition,
D2-sampling will pick a point from Q̃ with probability at
most cost(Q̃, C)/cost(P,C) ≤ β/α.

Similar to most work2 on k-means++, we need a sampling

2Cf. Lemma 2 in (Arthur & Vassilvitskii, 2007), Lemma 5 of
(Aggarwal et al., 2009), Lemma 6 of (Lattanzi & Sohler, 2019).

lemma stating that if we sample a point within a cluster Q
(according to D2 weights of points in Q), then the sampled
point will be relatively close to µQ with good probability.

Lemma 10. Suppose that Q is an OPT cluster with
cost(Q,C) ≥ β · cost(Q,µQ) for some β ≥ 4 and we
D2-sample a point p ∈ Q. Then, with probability at least
1 − 6/

√
β, Q becomes (β − 1)-settled. That is,

‖p − µQ‖2 ≤ ((β − 1)/|Q|) · cost(Q,µQ) and
cost(Q, p) ≤ β · cost(Q,µQ).

Proof. Let β′ ≥ β be the exact approximation factor. i.e.
cost(Q,C) = β′ · cost(Q,µ). We define sets Qin and P ′in:

Qin =

{
q ∈ Q : ‖q − µQ‖ ≤

√
β − 2

|Q|
cost(Q,µQ)

}

P ′in =

{
p ∈ P : ‖p− µQ‖ ≤

√
β′ − 2

|Q|
cost(Q,µQ)

}

By definition, we have Qin ⊆ Q and Qin ⊆ P ′in. However,
P ′in ⊆ Q does not hold in general.

Lemma 3 tells us that P ′in ∩ C = ∅. Otherwise
β′ · cost(Q,µQ) = cost(Q,C) ≤ (β′ − 1) · cost(Q,µQ),
which is a contradiction. Furthermore, it holds that
|Q \ Qin| ≤ |Q|/(β − 2). Otherwise cost(Q,µQ) >
(|Q|/(β − 2)) · ((β − 2)/|Q|) · cost(Q,µQ), which is a
contradiction. Hence, |Qin| ≥ (1− 1/(β − 2)) · |Q|.

Let di = ‖qi − µQ‖ be the distance of the i-th point of Qin

from µQ, so
∑|Qin|
i=1 d

2
i ≤ cost(Q,µQ). By the

Cauchy-Schwarz inequality, we have∑|Qin|
i=1 di ≤

√
|Qin| ·

∑|Qin|
i=1 d

2
i ≤

√
|Q| · cost(Q,µQ).

Since P ′in ∩ C = ∅, triangle inequality tells us that√
cost(qi, C) ≥

√
cost(µQ, C) −

√
cost(qi, µQ) ≥√

((β′ − 2)/|Q|) · cost(Q,µQ) − di for each point
qi ∈ Qin. Thus,

cost(Qin, C) =

|Qin|∑
i=1

cost(qi, C)

≥
|Qin|∑
i=1

(√
β′ − 2

|Q|
cost(Q,µQ)− di

)2

≥
|Qin|∑
i=1

β′ − 2

|Q|
cost(Q,µQ)− 2di

√
β′ − 2

|Q|
cost(Q,µQ)

=
|Qin|
|Q|

(β′ − 2)cost(Q,µQ)

− 2

√
β′ − 2

|Q|
cost(Q,µQ) ·

|Qin|∑
i=1

di



k-means++: Constant Approximation

≥
(

1− 1

β − 2

)
(β′ − 2) cost(Q,µQ)

− 2

√
β′

|Q|
cost(Q,µQ) ·

√
|Q|cost(Q,µQ)

=

((
1− 1

β − 2

)
(β′ − 2)− 2

√
β′
)
cost(Q,µQ)

=

((
1− 1

β − 2

)(
1− 2

β′

)
− 2√

β′

)
cost(Q,C)

≥
(

1− 2 + 2 + 2√
β

)
cost(Q,C)

=

(
1− 6√

β

)
cost(Q,C)

Hence, the probability that the sampled point p is taken from
Qin is at least 1−6/

√
β. Having sampled a point p ∈ Qwith

‖p− µQ‖2 ≤ ((β − 1)/|Q|) · cost(Q,µQ), Lemma 3 tells
us that the cost of cluster Q is at most β · cost(Q,µQ).

Corollary 11. Fix α ≥ 10 such that cost(P,C) = α·OPT
and let 1 < β ≤ α2/3. Suppose that we D2-sample a new
point p ∈ P . Then, with probability at least 1 − 8/

√
β,

the sampled point p is from a β-unsettled cluster and this
cluster becomes β-settled.

Proof. Lemma 9 tells us that, with probability at least
1 − (2β)/α, we sample from an OPT cluster Q with
cost(Q,C) ≥ (2β) · cost(Q,µQ). As
cost(Q,C) > (β + 1) · cost(Q,µQ), Corollary 7 implies
that Q is β-unsettled. According to Lemma 10, Q becomes
β-settled with probability at least
1− 6/

√
β + 1 ≥ 1− 6/

√
β. As β ≤ α2/3, the probability

of the first event is at least
1− (2β)/α ≥ 1− (2β)/β3/2 = 1− 2/

√
β. Thus, the joint

event of sampling from a β-unsettled cluster and making it
β-settled happens with probability at least 1− 8/

√
β.

We can now use Corollary 11, together with a Chernoff
Bound, to upper-bound the number of β-unsettled clusters.
First, we show that with high probability, k-means++
leaves only a small number of clusters β-unsettled for every
legal β ≤ α2/3. Then, we show that this property is
maintained throughout the course of the local search.

Lemma 12. After running k-means++ (for k steps) and
` ≤ k steps of LocalSearch++, let C denote the set of
candidate centers and α ≥ 1 be the approximation factor.
Then, with probability at least 1 − exp(−Ω(k0.1)), there
are at most (30k) /

√
β clusters that are β-unsettled, for any

legal β ≤ α2/3.

Recall that every legal β is smaller than k0.3, as for larger β
one cannot obtain strong concentration results. For
reasonably small α, Lemma 12 allows us to conclude that

C∗ clusters

C clusters

Possibly
M -γ-good

Possibly
L-γ-good

M L

Figure 2: Let k = 6. The top row represents the k OPT
centers C∗. The bottom row represents the k candidate
centers C. Each OPT center is connected to the closest
candidate center by a line. Observe thatM andL are subsets
of C, where some candidate centers might be in neither M
nor L, and that γ-goodness is defined on the OPT centers.
This example shows a tight case for Observation 14.

there are at most O(k/
√
α2/3) = O(k/ 3

√
α) clusters that

are α2/3-unsettled, with high probability in k. Conditioned
on this event, we can expect a stronger multiplicative
improvement in one iteration of LocalSearch++
compared to Lemma 3 of (Lattanzi & Sohler, 2019).

3.2. One Step of LocalSearch++

Given the structural analysis of the previous section, we can
now analyze the LocalSearch++ procedure. First, we
will identify clusters whose removal will not significantly
increase the current cost, thus making them good candidates
for swapping with the newly sampled center.

To that end, we define subsets of matched and lonely
candidate centers M ⊆ C and L ⊆ C. The notion of lonely
centers came from Kanungo et al. (2004). To describe the
same subsets, Lattanzi and Sohler (2019) used the notation
H and L, while we use M and L. For an illustration of
these definitions, see Fig. 2.

Definition 13 (M and L candidates). We assign OPT
centers c∗ ∈ C∗ to candidate centers c ∈ C, and define the
notion of matched (M ) and lonely (L) on candidates based
on assignment outcome. For each c∗ ∈ C∗, assign c∗ to the
closest c ∈ C, breaking ties arbitrarily. We say candidate
c ∈ C is matched if there is exactly one c∗ ∈ C∗ assigned
to it and we call c∗ the mate of c. We say candidate c ∈ C
is lonely if there is no c∗ ∈ C∗ assigned to it.

We define M ⊆ C as the set of matched candidates and
L ⊆ C as the set of lonely candidates. We sometimes
overload notation and write (c, c∗) ∈ M if c ∈ C is a
matched candidate center with mate c∗ ∈ C∗.

Observation 14. Since |C| = |C∗| = k, a counting
argument tells us that k − |M | ≤ 2|L|.

We now define reassignment costs for candidate centers



k-means++: Constant Approximation

c ∈ M ∪ L ⊆ C and the notion of γ-good OPT centers3.
Informally, OPT center c∗ ∈ C∗ is γ-good if selecting a
random point in Qc∗ and removing a suitable candidate c ∈
C reduces a “sufficient” fraction of the current clustering
cost with a constant probability.

Definition 15 (Reassignment costs).
If (c, c∗) ∈M ,

reassign(P,C, c)

= cost(P \Qc∗ , C \ {c})− cost(P \Qc∗ , C)

If c ∈ L,

reassign(P,C, c) = cost(P,C\{c})−cost(P,C)

We will use the following lemma about reassignment costs,
proven in Lemma 4 of (Lattanzi & Sohler, 2019).

Lemma 16. For c ∈M ∪L, with Pc as the points assigned
to c,

reassign(P,C, c) ≤ 21

100
cost(Pc, C)+24cost(Pc, C

∗)

Definition 17 (M -γ-good and L-γ-good).
We say that c∗ ∈ C∗ ∩M with mate c ∈ C is M -γ-good if

cost(Qc∗ , C)−reassign(P,C, c)−100·cost(Qc∗ , c∗)

>
γ

104k
· cost(P,C).

We say that c∗ ∈ C∗ \M is L-γ-good if

cost(Qc∗ , C)−min
c∈L

reassign(P,C, c)

− 100 · cost(Qc∗ , c∗) >
γ

104k
· cost(P,C).

Claim 18. Let Q be a M -γ-good or L-γ-good cluster and
we D2-sample a point q ∈ Q. Then, with probability at
least 2/5, we have cost(Q, q) ≤ 100 · cost(Q,µQ).

Proof. Let C denotes the current set of candidate centers.
Suppose cluster Q is M -γ-good. Then,

cost(Q,C) > reassign(P,C, c) + 100 · cost(Q,µQ)

+
γ

104k
· cost(P,C) ≥ 100 · cost(Q,µQ)

By Lemma 10, we have cost(Q, q) ≤ 100 · cost(Q,µQ)
with probability at least 1 − 6/

√
100 = 2/5. The same

argument holds when Q is an L-γ-good cluster by applying
the definition of L-γ-good instead.

3For clarity, we define using γ. Later, we set γ =
√
β.

Conditioned on our main structural insight (Lemma 12), we
sample a point from an M -

√
β-good or L-

√
β-good cluster

Q with constant probability, for every legal β ∈ B such
that 4 ≤ β ≤ α2/3 and α ≥ 109. When this happens, the
sampled point s satisfies cost(Q, s) ≤ 100 · cost(Q,µQ)
with constant probability. In that case, the definition of
M -
√
β-good and L-

√
β-good implies the existence of a

candidate t ∈ C with cost(P,C \{t}∪{s}) ≤ (1−
√
β

104k ) ·
cost(P,C), so LocalSearch++ makes progress.

Similar to the analysis of Lattanzi and Sohler (2019), we
partition the space of possible events into whether∑

(c,c∗)∈M cost(Qc∗ , C) ≥ cost(P,C)/2, or not. In each
case, we argue that the probability of sampling a point
contained in a M -

√
β-good or L-

√
β-good cluster happens

with a positive constant probability for a suitable legal β.
We first refine Lemma 5 of (Lattanzi & Sohler, 2019).

Lemma 19. Suppose 2 ·
∑

(c,c∗)∈M cost(Qc∗ , C) ≥
cost(P,C) = α · cost(P,C∗) for α ≥ 109. Let
4 ≤ β ≤ α2/3 be arbitrary. If there are at most (30k)/

√
β

clusters that are β-unsettled, then∑
(c,c∗)∈M,

c∗ ∈M -
√
β-good

cost(Qc∗ , C) ≥ 1

500
· cost(P,C).

Lemma 19 tells us that if points in M have sufficiently large
probability mass, then points in M -

√
β-good clusters hold

a constant fraction of the total probability mass.

Proof. We show that the probability mass is large by upper
bounding the probability mass on its negation. To do this,
we partition the summation of c∗ 6∈ M -

√
β-good into β-

settled and β-unsettled. We denote

A =
{

(c, c∗) ∈M, c∗ 6∈M -
√
β-good, c∗ is β-settled

}
B =

{
(c, c∗) ∈M, c∗ 6∈M -

√
β-good, c∗ is β-unsettled

}
From Lemma 6, we know that C pays no more than (β +
1) · cost(P,C∗) for all β-settled clusters. So,∑

A
cost(Qc∗ , C) ≤ (β + 1) · cost(P,C∗)

≤ (α2/3 + 1) · cost(P,C∗) ≤ 2α2/3

α
· cost(P,C)

≤ 1

500
· cost(P,C)

To bound
∑
B cost(Qc∗ , C), recall that P is the set of all

points and Qc∗ ⊆ P for any c∗ ∈ C∗.∑
B
cost(Qc∗ , C)



k-means++: Constant Approximation

≤
∑
B

(
reassign(P,C, c) + 100 · cost(Qc∗ , c∗)

+

√
β

104k
· cost(P,C)

)
(?)

≤

(∑
B
reassign(P,C, c)

)
+ 100 · cost(P,C∗)

+
30

104
· cost(P,C) (†)

≤ 21

100
· cost(P,C) + 24 · cost(P,C∗)

+ 100 · cost(P,C∗) +
30

104
· cost(P,C) (‡)

≤ 250

1000
· cost(P,C) (∗)

(Legend) (?): Definition 17; (†): because there are at
most 30k√

β
clusters that are β-unsettled; (‡): Lemma 16; (∗):

cost(P,C) ≥ 109 · cost(P,C∗)

Thus, ∑
(c,c∗)∈M,

c∗ ∈M -
√
β-good

cost(Qc∗ , C)

≥
(

1

2
− 1

500
− 250

1000

)
·cost(P,C) ≥ 1

500
·cost(P,C)

Using the same structural insight on β-unsettled clusters, we
now refine Lemma 7 of (Lattanzi & Sohler, 2019). Abusing
notation, we use C∗ \M to denote the set of optimal cluster
centers which don’t have a mate. That is, the point c ∈ C
which c∗ is assigned to is assigned to has more than one
center of C∗ assigned to it.

Lemma 20. Suppose 2 ·
∑

(c,c∗)∈M cost(Qc∗ , C) <

cost(P,C) = α · cost(P,C∗) for α ≥ 109. Let
4 ≤ β ≤ α2/3 be arbitrary. If there are at most (30k)/

√
β

clusters that are β-unsettled, then∑
c∗∈C∗\M,

c∗ ∈ L-
√
β-good

cost(Qc∗ , C) ≥ 1

500
· cost(P,C).

Lemma 20 tells us that if points in C∗ \M have sufficiently
large probability mass, then points in L-

√
β-good clusters

hold a constant fraction of the total probability mass.

With Lemma 19 and Lemma 20, we can now refine Lemma
3 from (Lattanzi & Sohler, 2019).

Lemma 21. Suppose we have a clustering C with
cost(P,C) = α · cost(P,C∗) for some α ≥ 109. Assume
that for each legal β, where β ≤ α2/3, there are at most

(30k)/
√
β clusters that are β-unsettled. If we update C to

C ′ in one LocalSearch++ iteration, we have with
probability at least 1/2000:

cost(P,C ′) ≤
(

1− min{ 3
√
α, k0.15}

2 · 104k

)
· cost(P,C)

Proof. Pick a legal β ∈ B such that
1
2 min

{
k0.3, α2/3

}
≤ β < min

{
k0.3, α2/3

}
. We define

M and L candidate centers as in Definition 13 and consider
the following two cases separately:

1.
∑

(c,c∗)∈M cost(Qc∗ , C) ≥ 1
2 · cost(P,C)

2.
∑

(c,c∗)∈M cost(Qc∗ , C) < 1
2 · cost(P,C)

Let q be the D2-sampled point and c ∈ C be some current
candidate center, which we will define later in each case. In
both cases (1) and (2), we will show that the pair of points
(q, c) will fulfill the condition cost(P,C ∪ {q} \ {c}) ≤(

1−
√
β/
(
104 · k

))
· cost(P,C) with some constant

probability. The claim follows since the algorithm takes the
c ∈ C that decreases the cost the most and swaps it with the
D2-sampled point q.

Case (1):
∑

(c,c∗)∈M cost(Qc∗ , C) ≥ 1
2 · cost(P,C)

Lemma 19 tells us that we sample from a M -
√
β-good

cluster with probability at least 1/500. Denote this cluster
asQc∗ . Then, by Claim 18, theD2-sampled point q satisfies
cost(Qc∗ , q) ≤ 100 · cost(Qc∗ , µQc∗ ) with probability at
least 2/5. Jointly, with probability at least 2/2500, we D2-
sampled a “good” point q ∈ Qc∗ where (c, c∗) ∈ M and
c∗ ∈M -

√
β-good, so

cost(P,C ∪ {q} \ {c})
= cost(P,C)− (cost(P,C)− cost(P,C ∪ {q} \ {c}))

≤ cost(P,C)−
(

(cost(P \Qc∗ , C) + cost(Qc∗ , C))

− (cost(P \Qc∗ , C \ {c}) + cost(Qc∗ , q))
)

= cost(P,C)−
(
cost(Qc∗ , C)− (cost(P \Qc∗ , C \ {c})

− cost(P \Qc∗ , C))− cost(Qc∗ , q)
)

≤ cost(P,C)−
(
cost(Qc∗ , C)− reassign(P,C, c)

− 100 · cost(Qc∗ , µQc∗ )
)

≤ cost(P,C)−
√
β

104 · k
· cost(P,C)

=

(
1−

√
β

104 · k

)
· cost(P,C)

≤
(

1− min{ 3
√
α, k0.15}

2 · 104 · k

)
· cost(P,C)



k-means++: Constant Approximation

Case (2):
∑

(c,c∗)∈M cost(Qc∗ , C) < 1
2 · cost(P,C)

This is the same as Case (1), but we use Lemma 20 instead
of Lemma 19.

From this lemma, we can conclude that if the current
approximation factor is very high, we drastically decrease it
within just a few steps. In particular, we can show that if we
start with an approximation guarantee that is no worse than
exp(k0.1), we can decrease it to just O(1) within εk steps,
with probability 1 − exp(−Ω(k0.1)). By Markov’s
inequality, we know that the probability of having an
approximation guarantee that is worse than exp(k0.1) is at
most exp(−Ω(k0.1)). Our main theorem4 now follows:

Theorem 1 (Main theorem). Let k ∈ Ω(1/ε20) and 0 <
ε ≤ 1. Suppose we run Algorithm 1 followed by ` = εk
steps of Algorithm 2. We have cost(P,C) ≤

(
1030/ε3

)
·

cost(P,C∗) with probability at least 1− exp(−Ω(k0.1)).

3.3. Concluding Remarks

Expectation versus high probability An approximation
guarantee in expectation only implies (via Markov
inequality) that with a constant probability we get a
constant approximation. So, our result is stronger as we get
a constant approximation of the optimum cost with a
probability of at least 1 − exp(−Ω(k0.1)). To recover a
guarantee in expectation, we can run the algorithm twice5:
Let C1 be the solution obtained by running k-means++
plus LocalSearch++, let C2 be the output of another
independent run of k-means++, and let E be the event
that LocalSearch++ outputs an O(1)-approximation.
Then, the expected cost of min{cost(C1), cost(C2)} is

E[min{cost(C1), cost(C2)}]
≤ Pr[E ] · O(1) + (1− Pr[E ]) · E[cost(C2)]

≤
(
1− exp(−Ω(k0.1))

)
· O(1)

+ exp(−Ω(k0.1)) · O(log k)

∈ O(1)

Running Time On a d-dimensional data set consisting
of n data points, a naive implementation of k-means++
has time complexityO(dnk2) and space complexityO(dn).
This running time can be improved to O(dnk) if each data
point tracks its distance to the current closest candidate
center in C. This is because D2-sampling and subsequent
updating this data structure can be done in O(dn) time for
each iteration of k-means++.

4The cube-root of α in Lemma 21 is precisely why we obtain
an approximation factor of O(1/ε3) after εk LocalSearch++
steps, with high probability in k.

5It is not unusual to run k-means++multiple times in practice.
e.g. See documentation of sklearn.cluster.KMeans.

LocalSearch++ can be implemented in a similar
manner where each data point remembers its distance to the
closest two candidate centers. Lattanzi and Sohler (Lattanzi
& Sohler, 2019) argue that if LocalSearch++ deletes
clusters with an average size of O(n/k), then an iteration
of LocalSearch++ can be performed in an amortized
running time of O(dn).

However, in the worst case, each iteration of
LocalSearch++ can still take O(dnk) time. A way to
provably improve the worst case complexity is to use more
memory. With O(dnk) space, each data point can store
distances to all k centers in a binary search tree. Then, each
step can be implemented in O(dn log k) time, as updating a
binary search tree requires O(log k) time.

4. Acknowledgements
We are grateful to Zalan Borsos, Mohsen Ghaffari, Saeed
Ilchi, and Andreas Krause for their help and discussing this
problem with us. In particular, we thank Mohsen Ghaffari
for giving us feedback on previous versions of this paper.
We also thank the referees for their useful feedback and
suggestions.

References
Ackermann, M. R., Märtens, M., Raupach, C., Swierkot, K.,

Lammersen, C., and Sohler, C. Streamkm++ a clustering
algorithm for data streams. Journal of Experimental
Algorithmics (JEA), 17:2–1, 2012.

Aggarwal, A., Deshpande, A., and Kannan, R. Adaptive
sampling for k-means clustering. In Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pp. 15–28. Springer, 2009.

Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward,
J. Better guarantees for k-means and euclidean k-median
by primal-dual algorithms. SIAM Journal on Computing,
(0):FOCS17–97, 2019.

Aloise, D., Deshpande, A., Hansen, P., and Popat, P.
Np-hardness of euclidean sum-of-squares clustering.
Machine learning, 75(2):245–248, 2009.

Arthur, D. and Vassilvitskii, S. k-means++: The advantages
of careful seeding. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 1027–1035. Society for Industrial and Applied
Mathematics, 2007.

Awasthi, P., Charikar, M., Krishnaswamy, R., and Sinop,
A. K. The hardness of approximation of euclidean k-
means. arXiv preprint arXiv:1502.03316, 2015.



k-means++: Constant Approximation

Bachem, O., Lucic, M., Hassani, H., and Krause, A. Fast
and provably good seedings for k-means. In Advances in
neural information processing systems, pp. 55–63, 2016.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and
Vassilvitskii, S. Scalable k-means++. Proceedings of the
VLDB Endowment, 5(7):622–633, 2012.

Bandyapadhyay, S. and Varadarajan, K. On variants of
k-means clustering. arXiv preprint arXiv:1512.02985,
2015.

Bhattacharya, A., Jaiswal, R., and Ailon, N. Tight
lower bound instances for k-means++ in two dimensions.
Theoretical Computer Science, 634:55–66, 2016.

Brunsch, T. and Röglin, H. A bad instance for k-means++.
Theoretical Computer Science, 505:19–26, 2013.

Cohen-Addad, V. A fast approximation scheme for low-
dimensional k-means. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 430–440. SIAM, 2018.

Cohen-Addad, V., Klein, P. N., and Mathieu, C. Local
search yields approximation schemes for k-means and
k-median in euclidean and minor-free metrics. SIAM
Journal on Computing, 48(2):644–667, 2019.

Friggstad, Z., Rezapour, M., and Salavatipour, M. R. Local
search yields a ptas for k-means in doubling metrics.
SIAM Journal on Computing, 48(2):452–480, 2019.

Jain, K. and Vazirani, V. V. Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and lagrangian relaxation. Journal
of the ACM (JACM), 48(2):274–296, 2001.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. A local
search approximation algorithm for k-means clustering.
Computational Geometry, 28(2-3):89–112, 2004.

Kumar, A., Sabharwal, Y., and Sen, S. A simple linear
time (1+/spl epsiv/)-approximation algorithm for k-means
clustering in any dimensions. In 45th Annual IEEE
Symposium on Foundations of Computer Science, pp. 454–
462. IEEE, 2004.

Lattanzi, S. and Sohler, C. A better k-means++ algorithm
via local search. In International Conference on Machine
Learning, pp. 3662–3671, 2019.

Lee, E., Schmidt, M., and Wright, J. Improved and
simplified inapproximability for k-means. Information
Processing Letters, 120:40–43, 2017.

Lloyd, S. Least squares quantization in pcm. IEEE
transactions on information theory, 28(2):129–137, 1982.

Mahajan, M., Nimbhorkar, P., and Varadarajan, K. The
planar k-means problem is np-hard. In International
Workshop on Algorithms and Computation, pp. 274–285.
Springer, 2009.

Wei, D. A constant-factor bi-criteria approximation
guarantee for k-means++. In Advances in Neural
Information Processing Systems, pp. 604–612, 2016.


